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ABSTRACT Blockchain technology is a promising resource management architecture due to its ability
of building trust in a decentralized transaction. Block mining participants, i.e. miners, are incentivized
with reward for successfully mining blocks. Unfortunately, solving the proof-of-work puzzle consumes
substantial computing powers during the mining period, which greatly challenges miners. Mobile devices
also fail to participate in mining because of limited resource. To solve these issues, we are motivated to pro-
pose a mining framework of alleviating miner’s computation-intensive mining burdens, as well as enabling
mobile devices’ participation. Depending on the proposed model, miners are capable of offloading their
computation-intensive tasks to the edge cloud and mobile devices. The interactions among them formulate
a muti-leader multi-follower Stackelberg game. We achieve the Subgame Perfect Equilibrium (SPE) in
the game, which guarantees three types of participants to realize profit maximization. Simulation results
demonstrate the effectiveness of the proposed model.

INDEX TERMS Blockchain, edge computing, Internet of Things, stackelberg game.

I. INTRODUCTION
Blockchain is a developing technology of decentralized trans-
action database shared by all nodes participating in a net-
work based on a consensus protocol [11]. As indicated by
the name ‘‘blockchain,’’ blockchain store data (i.e. records
of transactions) in blocks that are then chained together.
The utilization of blockchain implements network data stor-
age, verification, transmission and communication through
its own distributed nodes. Moreover, data interactions are
performed anonymously since the process of information
exchange between nodes is not involved with their identity
information. Therefore, non-trusting network participants are
able to reach a consensus in a verifiable manner without
resorting to any third party. Accordingly, the cost is reduced
because of eliminating third-party verification. Blockchain
technology has the potential to be applied for dealing with
the data security and mutual trust problems, confronted by
the Internet and mobile devices [25], [31], [34].
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With the development of the IoT (Internet of Things), high
demands for edge computing enhance requirements for the
distributed self-organizing management mode among a large
number of devices. Blockchain is an underlying solution to
deal with such issue due to its distributed and fault-tolerant
features. Under blockchains, data is distributed and hard to
tamper with. Blockchain’s security depends on a proof-of-
work (PoW) mechanism. The PoW of every block ensures
a specific level of difficulty to create a new block, and then
a decentralized consensus enforces to validate every block
in the blockchain. There exist alternatives of PoW, such
as ‘‘proof-of-stake’’ (PoS) and ‘‘Proof-of-Elapsed-Time’’
(POET). PoS builds on the notion that only those holding
assets in the system may participate in the consensus process
for growing the blockchain [25], [37]. That is to say, PoS
requires strong financial strength. Moreover, PoS is vulnera-
ble to various attacks in comparison with PoW. POET is low-
cost, but it must use specific hardware [17]. Therefore, POET
is not extensively suitable for public blockchain. Under such
concerns, PoW is here considered for blockchain mining.

The key point in Blockchain is to utilize PoW system for
validating transactions. While a fresh block is filled with
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new data, it requires to solve the PoW for obtaining a spe-
cific hash value that links the previous block to the fresh
block [3]. The process of building blocks by PoWmechanism
is generally called mining. Mining generates a lot of hashes
based on a cryptographic hashing algorithm. The probability
of obtaining the correct hash value is positively related with
the computational power. Blockchain requires heavy compu-
tation powers for solving computation-intensive PoW, which
challenges the development of blockchain in IoT mobile
applications [2], [44]. Some devices, due to their hardware
limitations, fail to afford the high computing resources for
finding the value in mining process [5], [9], [29].

Motivated by the situation above, recent studies have
proposed edge computing resource allocation schemes and
blockchain mining task offloading models [4], [26], [35],
[36], [40], [43]. Traditional mobile edge computing (MEC)
suffers high costs of infrastructure deployment and mainte-
nance. The complex and changeable edge computing envi-
ronment also places a huge burden on the MEC servers [43].
To this end, authors in [36] proposed a resource allocation
scheme based on deep reinforcement learning (DRLRA),
which is able to adaptively allocate computing resources
for reducing the average service time. In [16], the author
proposed a multiagent DRL framework to realize long-term
performance for computation offloading. In order to improve
its stability, league learning is introduced for agents to explore
the environment collaboratively for fast convergence and
robustness. Considering the substantial resource consump-
tion of solving the proof-of-work puzzle, the authors in [40]
proposed a multi-access mobile edge computing model for
resource-limited mobile devices. Such model employed a
Stackelberg-based game to optimize resource allocation and
pricing between mobile devices and the edge cloud.

To support the application of blockchain in mobile net-
works, the mining task offloading of miners is studied in
our paper by considering the assistance of nearby mobile
devices and edge cloud operator (ECO). Mobile devices are
typically hardware-constrained mobile endpoints. Since cur-
rent mobile devices are equipped with limited computation
resources, the growing amount of mining tasks are able to
exceed their computing powers. Therefore, the mining tasks
are offloaded to mobile devices, as well as edge cloud. Edge
clouds are small data centers or medium computing resources
in edge computing. It is thus fit for offloading the mining
tasks to edge cloud instead of traditional cloud [1]. We build
a multi-leader multi-follower Stackelberg game into three
stages to calculate the best resource allocation strategy and
the optimal resource pricing for maximizing their profits.
As matter of fact, both of edge computing and fog computing
allow computing needs to be performed closer to the source
of data. We here concentrate on edge computing but the
proposed model is also applicable to fog computing. The
salient contributions of this paper are summarized as follows:
• In order to solve the intensive computing tasks
in blockchain mining, we first propose mobile
device enabled block mining. Each miner is usually

surrounded by mobile devices. A miner can opportunis-
tically request mobile devices for aid of performing
computation-intensive tasks. In response, the mobile
devices charge the miner to compensate their energy
costs, generated by mining task execution. The interac-
tions between a miner and nearby mobile devices can
be modeled as a single-leader multi-followers subgame
of Stackelberg game. The miners, as leaders, have the
priority to decide the market prices for their nearby
mobile devices, on which mobile devices, as followers,
determine mining resources for miners.

• We then consider the edge cloud for computation
offloading due to massive computation of miners and
limited resource of mobile devices. The interactions
between the edge cloud operator (ECO) and miners can
be modeled as a single-leader multi-followers subgame
of Stackelberg game, The ECO, as the leader, has more
market powers to determine the price per unit resource,
on which the miners, as followers, decide the mining
resources from ECO.

• We use a unique incentive framework for players of the
ECO,miners andmobile devices to solve the utilitymax-
imization problem. Jointly considering two Stackelberg
games above, we build a three-stage Stackelberg game
with multiple leaders and followers. In the first stage,
ECO determines its optimal resource price for miners.
In the second stage, Miners decide the optimal resource
demands fromECO and fix the resource price for mobile
devices. In the third stage, mobile devices determine the
optimal resources, allocated for miners. The aggregation
of computational resources from the ECO and mobile
devices reduces the uncertainty of successful mining.

• Wederive the subgame perfect equilibrium (SPE), corre-
sponding to the three-stage Stackelberg game. We show
that a Nash equilibrium is achieved in every subgame
of the three-stage game. Under SPE, every player deter-
mines its best strategy for profit maximization.

II. RELATED WORK
A. BLOCKCHAIN APPLICATION TECHNOLOGY
The IoT connects a large scale of devices for information
exchanging and economic benefits, in which Mobile Edge
Computing (MEC) is a promising solution that allows mobile
devices to run demanding applications by providing com-
puting resources. However, building trust between multiple
parties is a challenge because these parties often have con-
flicting interests [2], [28]. Therefore, blockchain technology
is introduced to address such problem. The blockchain is a
distributed database that does not need a central authority and
eliminates the need for third party verification [24].

Despite the evident benefit of using blockchain, the pri-
vacy security is still a concern in establishing a trustable
environment. In terms of privacy, authors in [7] proposed a
permissioned blockchain edge model for smart grid network
(PBEM-SGN) to address issues of privacy protections and
energy security in smart grid. And an optimal security-aware
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policy is constructed through smart contracts running on
the blockchain. In [6], authors presented a consortium
blockchain-oriented approach to deal with the privacy leak-
age problem of transaction information, existing on the
blockchain. This method mainly solves the privacy problem
of energy transaction users in smart grid. By mining differ-
ent energy transaction volumes, it detects the relationship
between them and other information, such as physical loca-
tion, energy use and so on. So, the distribution of seller’s
energy sales can be shielded. The authors in [30] proposed
a secure distributed cloud framework based on blockchain
technology for cost-effective and high-performance comput-
ing in IoT network. Thismethod effectivelymanages the huge
data storage caused by the expansion of devices in the Internet
of Things.

Another concern is that in mobile edge networks, the
widespread application of blockchain is challenging due
to the limited computing and storage resources of mobile
devices. Mobile devices with limited computation capa-
bility fail to directly participate in mining since PoW of
blockchain requires huge computation powers [25], [38].
To this end, offloading tasks to MEC has been intro-
duced for overcoming the issues of mobile blockchain
application. Mobile blockchain technology has been widely
applied to various networks and distributed systems [8],
[12], [19], [21], [25], [32], [42]. In [8], the author proposed
a blockchain-based computation scheme for edge-enabled
Smart Grid. In [21]and [19], the author proposed a
blockchain-based video system to build a decentralized and
flexible video ecosystem. In [42], the author formulated a
resource pricing and trading scheme based on blockchain
technology to optimally allocate edge computing resources,
and it has been successfully applied to the field of unmanned
aerial vehicle.

B. MOBILE BLOCKCHAIN MINING
Edge computing provides support of blockchain deployment
in mobile devices for block mining. Depending on edge
computing, interactions among block miners and mobile
devices can be modeled as market activities. In [22],
the authors developed an optimal auction algorithm based
on deep learning to realize the edge resource allocation.
In [18], the authors proposed a new wireless blockchain
framework, on which computation-intensive mining tasks
can be offloaded to nearby edge computing nodes for
addressing proof-of-work puzzle. Multiple economic incen-
tives also focus on mining strategies in the blockchain
networks [10], [13], [18], [22], [33], [38], among which
Stackelberg game is a popular approach for motivating
participants [10], [15], [27], [38], [41].

Stackelberg game-based mechanism frames the interac-
tions among mining participants as leader-follower game.
Through this game, computation resource allocation and
price competition are studied to maximize the payoff of
participants. In [38], the authors studied the interactions
between the cloud/fog providers and the miners in a proof

of work-based blockchain network, which formulates the
computation resource management in the blockchain con-
sensus process as a two-stage Stackelberg game. In [39],the
authors considered that different unit prices are assigned to
different miners, on which a two-stage Stackelberg game
named ADMM algorithm is formulated to solve the PoW
puzzle. Considering the competition among mining-devices,
the authors in [10] adopted a double auction method to man-
age mining offloading for resource sharing between mobile
devices in collative mining network (CMN). Besides, a two-
stage Stackelberg game model is used to simulate the interac-
tions between the edge cloud operator and different CMNs.

Most of works discussed above only considered one type of
participant to assist miners. Despite the work proposed in [10]
was involved in mobile devices and edge cloud, two models
are built to describe the interactions between miners and
them, respectively. Motivated by this situation, we propose
a three-stage Stackelberg game model, which jointly takes
the benefits of three types participants into consideration to
stimulate their active participation in block mining.

III. SYSTEM MODEL
During blockchain mining process, a miner can be com-
putationally powerful or resource-limited. Authors in [38]
incentivize the cloud/fog providers to assist resource-limited
miners. Moreover, we concentrate on building an incentive
system model for considering the interactions among ECO,
resource-limited miners and mobile devices. Miners offload
their mining tasks to nearby non-mining devices and edge
cloud when they have no insufficient resources. Fig.1 illus-
trates the proposed framework with one ECO, m miners
and multiple mobile devices. Miners request computation
offloading from the edge cloud and nearby mobile devices.
However the edge cloud and mobile devices are managed
by selfish owners. They unwillingly share their computation
resources with the miners because of energy consumption.
Therefore, theminers need to offer proper incentives formoti-
vating their active participation. A miner should negotiate
with mobile devices and ECO in an aim to maximize its
own profit. Miners can offload their mining tasks to nearby
non-mining devices or the edge cloud when there are insuffi-
cient resources.

Without loss of generality, we assume the system
model contains a set of miners, denoted by M =

{M1, . . . ,M i, . . . ,Mm
}. Miners have their local computation

resources, denoted by g = (g1, . . . , gi, . . . , gm)T . In order
to solve computation-intensive PoW, a miner requests the
nearby non-mining devices if they can share their unneces-
sary computation resource for executing computation tasks.
We further assume that there are ni mobile devices for
offloading the computation workload ofM i, i ∈M, denoted
by the set Ni = {1, . . . , nk , . . . , ni}. Specifically, the device
k, k ∈ Ni allocates its computation resource x ik toM

i. Hence,
the vector of total resources from mobile devices is xi =
(x i1, . . . , x

i
k , . . . , x

i
ni )

T . The miner M i acts as the leader and
has the priority to determine the price pik compensated for the
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FIGURE 1. The system model with the ECO, miners and mobile devices.

mobile device k . We define pi = (pi1, . . . , p
i
k , . . . , p

i
ni )

T as
the price vector of miner M i. We also assume that yi is the
computation resource that ECO provides for miner M i. The
vector y represents the mining resources that miners obtain
from ECO, where y = (y1, . . . , yi, . . . , ym)T . Compared with
miners, the ECO has significant market power to determine
the resource price p paid by miners.
We formulate the interactions among miners, mobile

devices and ECO as a three-stage Stackelberg game, shown in
Fig.2. Through the game, three participants achievesmaximal
profits by deciding their strategies. The definition of profit
relies on the traditional ‘‘gain minus cost.’’

In the first stage, ECO acts as the leader of miners to
determine the resource price for maximizing its own rev-
enue. The gain of ECO is generated from all of the miners’

FIGURE 2. Interactions among miners, mobile devices and ECO.

compensation for its resource consumption. The cost of ECO
is incurred by allocating its computation resource to miners
for task execution. Therefore, the profit of ECO is defined
as:

UECO(p, y) = p
m∑
i=1

yi − c
m∑
i=1

yi, (1)

where p is the ECO’s price per unit resource and c is the cost
for performing unit computation on edge cloud.

In the second stage, the miners act as followers of ECO
to decide the computation resource y, requested from ECO.
In the meantime, miners act as leaders of mobile devices to
decide the resource price pi, paid for mobile devices. Obvi-
ously, the cost of miner M i is

∑
k∈Ni

x ik · p
i
k +

∑
k∈Ni

yi · p,
since the miner M i is charged for utilizing computation
resources of the ECO and mobile devices in Ni, i ∈M. The
gain of minerM i is the reward of successfully mining a valid
block.

To be valid, a block needs to go through two consecutive
procedures: mining and propagation. In the mining proce-
dure, miners compete to generate a new block. The prob-
ability of mining the new block for a miner is positively
related with its computing/hash power. A miner M i, i ∈ M
has computing resources gi + yi +

∑
k∈Ni

x ik , shared from
ECO and mobile devices, gi is the local resource, and differ-
ent miner may have deffrent resource capacity. Accordingly,
the total computation resources of miners in the system are∑m

j=1 (gj + yj +
∑

l∈Nj
x jl ). Referring to the total computing/

hash power, we calculate the relative computing/hash power

11982 VOLUME 10, 2022



Y. Liang et al.: Resource Competition in Blockchain Networks Under Cloud and Device Enabled Participation

hi of the minerM i

hi =
gi + yi +

∑
k∈Ni

x ik∑m
j=1 (gj + yj +

∑
l∈Nj

x jl )
, hi > 0, (2)

such that
∑

i∈M hi = 1.
Once a block is mined by a miner, the propagation proce-

dure is then implemented across the blockchain network. The
miner propagates the new block to other miners for verifica-
tion to reach consensus. However, this block is likely to be
invalid due to slow propagation. We call such phenomenon
as orphaning and the block as orphaned block. The orphaned
block will be abandoned eventually. The propagation latency
of a block depends on the transactions it contains. Consid-
ering the fact that block mining process follows the Poisson
distribution, the orphaning probability can be approximated
as

Po(ti) = 1− e−λτ (ti), (3)

where λ is the mean value of Poission distribution and ti is
the number of transactions in the block [20]. The function
τ (ti) denotes the block propagation time, which is a directly
proportional function of number of transactions.We therefore
let τ (ti) = zti, where z is a fixed latency factor. The block
with a large number of transactions leads to long latency
while propagating the block to the whole network [14]. Thus,
the probability of M i successfully mining to generate a valid
block is

Pi(yi, ti) = hi × (1− Po(ti)) =
(gi + yi +

∑
k∈Ni

x ik )e
−λzti∑m

j=1 (gj + yj +
∑

l∈Nj
x jl )
,

(4)

The miner earns the corresponding reward by itself while
successfully mining a valid block. The reward consists of a
fixed reward R, paid by the system and a variable reward
rti, paid by blockchain users. The parameter r is the average
reward from blockchain users for each transaction. So, the
profit ofM i is formulated,

Ui(xi, pi, yi, y−i, p) = (R+ rti)
(gi + yi +

∑
k∈Ni

x ik )e
−λzti∑m

j=1 (gj + yj +
∑

l∈Nj
x jl )

−

∑
k∈Ni

x ik · p
i
k − yi · p, (5)

Numerous mobile devices are able to gather their com-
putation resources and share their hashing power in order
to smooth out their mining rewards effectively. Then they
split the reward in proportion for their contribution to solve
a block [10]. In the third stage, mobile devices in Ni act as
followers to decide the computation resource x i, allocated for
M i, i ∈M. The profit of mobile device k is quantified,

U i
k (x

i
k , x

i
−k , p

i
k ) = pik · x

i
k − s

i
k ·

(
x ik
)2
− cik · x

i
k . (6)

The first two terms represent the gain obtained by mobile
device k , which captures the intrinsic value of the shared

TABLE 1. Symbol summary.

resources tominerM i. The first term is the compensation paid
by miner M i and the second term is the mobile devices k’s
sensibility to the satisfaction of shared resources. The elastic-
ity factor sik measures the sensitivity of the device satisfaction
to change in shared computation resources. A simple example
is used for illustration. Assume that device 1 and device 2
can share unnecessary resources with size of 8 for a miner.
However, theminer only requests computation resources with
size of 5 to each of them. As a result, device 2 is more
satisfied with the shared resources than device 1. So, we see
that device 1 is more sensitive to the satisfaction of shared
resources than device 2 [27]. The third term is the cost of
mobile device k , in which cik represents the cost per unit
resource, allocated for miner i in M i.

IV. STACKELBERG GAME FORMULATION
FOR SYSTEM MODEL
In game theory, a Stackelberg game is an approach of model-
ing the layers of action between two types of users: one is a
leader and the other is a follower. The leader first initiates a
strategy, on which the followers decide their optimal response
strategies and then submit them to the leader. After obtaining
followers’ response, the leader updates its strategy. This pro-
cess continues until the strategies of the leader and followers
constitute Nash equilibrium. Under Nash equilibrium, there
is no motivation for the leader and followers to violate unilat-
erally [10], [15], [27], [45].

In this section, we formulate the interactions among ECO,
miners and mobile devices as a three-stage Stackelberg game
with multiple leaders and followers. In each stage, one type of
participants decides its strategy formaximizing its own profit.
The optimal strategies of the ECO,miners andmobile devices
jointly constitute the Subgame Perfect Equilibrium (SPE).
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Under such SPE, there is no motivation for the ECO, miners
and mobile devices to unilaterally modify their strategies.

A. MINING GAME FORMULATION
In stage one, the ECO, acting as miners’ leader, prices the
computation resources allocated for miners. The goal of
ECO is to maximize its profit by allocating computation
resources to miners. In stage two, miners, acting as the
ECO’s followers, decide the computation resources requested
from ECO. In the meantime, miners, acting as the mobile
devices’ leaders, price computation resources allocated from
mobile devices. Utilizing the resources from ECO andmobile
devices, miners improve the possibility of mining valid
blocks for profit maximization. In stage three, mobile devices
act as miners’ followers to decide computation resources allo-
cated for miners. The goal of mobile devices is to maximize
their profits by sharing computation resources to miners. The
three-stage Stackelberg game is defined in a mathematical
way as follows.

Stage one: The leader ECO determines the unit price p∗ of
computation resources allocated for miners to maximize its
total profit. So, the ECO’s optimization problem is defined,

p∗ = argmax
(p≥0)

UECO(p, y) (7a)

subject to y ≤ yi ≤ y (7b)

where y and y denote minimal and maximum resources pro-
vided by ECO, respectively.

Stage two: Given the unit price p, the followerM i chooses
the amount of computation resources y∗i , allocated fromECO.
Meantime,M i acts as the leader to decide a unit resource price
pik
∗
for mobile devices to maximize the profit function Ui.

The M i’s optimization problem is defined as:

(pi
∗

, y∗) = argmax
pi,y

Ui(xi, pi, yi, y−i, p) (8a)

subject to x ≤ x ik ≤ x, (8b)

y ≤ yi ≤ y, (8c)

where y−i denotes mining resource of other miners expect
M i in M, obtained from ECO. x and x correspond to the
minimum and maximum resources that mobile device share
with miners.

Stage three: The mobile device k inNi chooses the optimal
resource strategy given the unit price pik to maximize its profit
function. Therefore, mobile device k’s optimization problem
is defined as:

x i
∗

k = argmax
xik

U i
k (x

i
k , x

i
−k , p

i
k ) (9a)

subject to x ≤ x ik ≤ x, (9b)

where x i
−k denotes the resources of other mobile devices

expect device k in Ni.
Problem (7), Problem (8) and Problem (9) compose the

Stackelberg game together. Our aim is to achieve the Sub-
game Perfect Equilibrium (SPE) of such game. SPE is a stable
point of the Stackelberg game that the three types of players

interact through self-optimization to reach. At such a point,
none of the players have any incentive to deviate. The SPE is
defined in the proposed game as follows.
Definition 1: Subgame Perfect Equilibrium (SPE) [23]:

The strategy profile is a subgame perfect equilibrium if it
constitutes a Nash equilibrium in every subgame of the three-
stage multi-leader multi-follower game.
Stage one: p∗ = argmaxUECO(p, y), i ∈M,

Stage two: (pi
∗
, y∗i ) = argmax(pi,y) Ui(x

i, pi, yi, y−i, p),
Stage three: x i

∗

k = argmaxxik U
i
k (x

i
k , x

i
−k , p

i
k ),

(10)
with k ∈ Ni, i ∈M.

Under SPE in (10), every player optimizes its strategy to
maximize its profit. We employ the backward induction to
determine the optimal strategies of all players. The mobile
devices first act as followers of miners to achieve their opti-
mal resources allocation strategies xi∗, i ∈ M. The miners
then take action to derive their optimal price strategies pi∗

on those of the mobile devices. Meantime, the miners act as
followers of ECO to achieve their optimal allocation resource
strategies yi∗. Finally, ECO derives its optimal price strategy
p∗ based on the NE of miners’ strategies. The optimal strate-
gies of all players are derived in the following work.

B. GAME IN STAGE THREE
Given the price vector pi∗ determined by miner M i, mobile
devices in Ni are entitled to decide how much mining
resource they can offer. The purpose of Stage three is to
achieve profit maximization ofM i’s followers, defined in (9).
The interaction between leader M i and its followers formu-
lates the subgame 0i = {Ni, {x ik}k∈Ni

, {pik}k∈Ni
}. The opti-

mal strategies, decided by the M i’s followers, xi∗ achieve
a unique Nash Equilibrium. Obviously, there exist m Nash
Equilibrium in Stage three since m miners participate in
mining. Given Miner M i, the NE of game 0i is defined as
follows.
Definition 2: Given the price vector set by M i, pi

∗

=

(pi
∗

1 , . . . , p
i∗
k , . . . , p

i∗
ni )

T , a computation resource vector xi =

(x i1, . . . , x
i
k , . . . , x

i
ni )

T is the Nash equilibrium of the subgame
0i = {Ni, {x ik}k∈Ni

, {pik}k∈Ni
}, if, for device k ∈ Ni,

U i
k (x

i∗
k , x

i∗
−k , p

i∗) > U i
k (x

i
k , x

i∗
−k , p

i∗), (11)

for all x ik = [x, x].
According to Definition 2, no followers ofM i can increase

its profit by altering its resource strategy xik
∗
. Based on the

NE of the mining resources in the game 0i,M i optimizes the
pricing strategy to maximize its profit.
Definition 3: Given the NE of the strategies of minerM i’s

followers, a strategy profile pi∗ is the optimal price, if at pi∗,
M i can’t further increase its profit by unilaterally changing
its strategy,

Ui(x∗i , p
∗
i , y
∗
i , y
∗
−i, p

∗) > Ui(x∗i , pi, y
∗
i , y
∗
−i, p

∗), ∀pi > 0,

(12)
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The Nash equilibrium among followers of M i achieves
when each follower k ∈ Ni select its optimal mining resource
strategy, defined in the following Theorem 1.
Theorem 1: The optimal mining resource of mobile device

k is

x i
∗

k = Fk (xi) =



x if
pik − c

i
k

2sik
< x,

x if
pik − c

i
k

2sik
> x,

pik − c
i
k

2sik
otherwise.

(13)

Proof: The problem (9) is solved by Karushi-Kuhn-
Tucker (KKT) analysis. The KKT conditions of problem (9)
are written:

∇U i
k (x

i
k , x

i
−k , p

i
k )− α

i
k + β

i
k = 0, (14a)

αik (x
i
k − x) = 0, (14b)

β ik (x − x
i
k ) = 0, (14c)

x ≤ x ik ≤ x, (14d)

αik , β
i
k ≥ 0, (14e)

where αik , β
i
k ≥ 0 are the optional Lagrange multip-

liers. While αik = 0 and β ik = 0, x ik
∗
can be obtained by

solving (14a),

∇U i
k (x

i
k , x

i
−k , p

i
k ) =

∂U i
k (x

i
k , x

i
−k , p

i
k )

∂x ik
= 0. (15)

In such case, the best strategy x ik
∗
is calculated as

x ik
∗
=
pik − c

i
k

2sik
. (16)

While αik > 0, the best strategy is x ik
∗
= x based on (14b) and

thus β ik = 0 based on (14c).While β ik > 0, the best strategy is
x ik
∗
= x based on (14c) and thus αik = 0 based on (14b).

To guarantee the optimal strategies of leader M i and its
followers, we next prove the existence and uniqueness of NE
in the game 0i. Theorem 2 illustrates the existence of NE
in game 0i. Moreover, the uniqueness of NE in game 0i is
proved in Theorem 3.
Theorem 2: The NE of game 0i exists.
Proof: The strategy space for each mobile device is

[x, x], which is obviously non-empty, convex, and compact.
It is easily observed that U i

k is continuously differentiable
with respect to x ik .We calculate its first and second derivatives
in x ik ,

∂U i
k

∂x ik
= pik − 2sikx

i
k − c

i
k , (17)

∂2U i
k

∂2x ik
= −2sik . (18)

Since −2sik < 0, the second order derivative of U i
k in x ik is

negative. So, U i
k is concave with respect to x ik . Therefore, 0i

is a concave game of admitting a NE.

Theorem 3: The NE of game 0i is unique.
Proof: It is obviously seen from (13) that the best

response function Fk (xi) > 0. Let xi′′ > xi. We see that
Fk (xi

′′) − Fk (xi) = 0, demonstrating the monotonicity of
Fk (xi). For all 8 > 1,8Fk (xi) − Fk (8xi) > 0, which
exhibits the scalability of Fk (xi). So, Fk (xi) is a standard
function that guarantees the unique NE of game 0i.

C. GAME IN STAGE TWO
We investigate the behavior of miners to achieve their profit
maximization, defined in (8). A miner acts two roles: leader
of mobile devices and follower of ECO. We have discussed
the noncooperative game between aminer andmobile devices
in Stage one. The main work here is to analyze the interac-
tion between miners and ECO, which forms miners’ mining
subgame 0m+1 = {M, {yi}i∈M, p}. Given the ECO’s pricing
strategy, miners, followers of ECO, optimize their mining
resource strategies to achieve a Nash Equilibrium.
Definition 4: Given the price strategy p∗, a mining

resource vector y∗ = (y∗1, . . . , y
∗
i , . . . , y

∗
m)

T is the Nash
equilibrium of the subgame 0m+1 = {M, {yi}i∈M, p}, if, for
miner i,

Ui(xi
∗
, pi
∗
, y∗i , y

∗
−i, p

∗) > Ui(xi
∗
, pi
∗
, yi, y

∗
−i, p

∗), (19)

for all yi = [y, y], where y∗
−i is other miners’ optimal resource

strategy except miner i inM. While the NE of subgame0m+1
reaches, no miners increase its profit overhead by unilaterally
altering its strategy. Moreover, ECO can optimize its pricing
strategy to maximize its profit defined in (7).
Definition 5: Given the NE of game 0m+1, a strategy pro-

file p∗ is the optimal price, if at p∗, ECO can’t improve its
profit by unilaterally deviate,

UECO(p∗, y∗) > UECO(p, y∗), ∀p > 0 (20)

The following Theorem 4 defines miners’ optimal resource
strategies, allocated by ECO. Such optimal strategies admit
the Nash equilibrium among miners. We also calculate the
optimal pricing strategy pi∗ while the miners act as leaders of
mobile devices.
Theorem 4: The optimal resource of miner i, allocated

from ECO, is calculated in (21), as shown at the bottom of
the next page. And the unique optimal price of miner i for
mobile device k in Ni is, with B = m−1∑m

i=1
eλzti
(R+rti)

.

pik =
p+ cik

2
. (22)

Proof: The problem (8) is solved by Karushi-Kuhn-
Tucker (KKT) analysis. The KKT conditions of problem (8)
are written:

∇Ui(x i, pi, yi.y−i, p)− µi + νi = 0, (23a)

µi(yi − y) = 0, (23b)

νi(y− yi) = 0, (23c)

y ≤ yi ≤ y, (23d)

µi, νi ≥ 0, (23e)
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whereµi, νi ≥ 0 are the optional Lagrangemultipliers.While
µi = 0 and νi = 0, we obtain y∗i based on (23a). Solving
∇Ui(x i, pi, yi.y−i, p) =

∂Ui
∂yi
= 0, we get,

(R+ rti)

∑m
j6=i (gj + yj +

∑
l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]2
e−λzti − p = 0.

(24)

For easy use, we rewrite (24),
m∑
j=1

(gj + yj +
∑
l∈Nj

pjl − c
j
l

2sjl
)

=

√√√√√ (R+ rti)
∑m

j6=i (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)

p
e−λzti . (25)

Summarizing two sides of (24) at different i, we get,

(m− 1)
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]2

= p
m∑
i=1

eλzti

(R+ rti)
.

(26)

We simplify (26),
m∑
j=1

(gj + yj +
∑
l∈Nj

pjl − c
j
l

2sjl
) =

m− 1

p
∑m

i=1
eλzti

(R+rti)

. (27)

Combining (25) and (27) together, we obtain,
m∑
j6=i

(gj + yj +
∑
l∈Nj

pjl − c
j
l

2sjl
) =

eλzti

p(R+ rti)
(

m− 1∑m
i=1

eλzti
(R+rti)

)2

(28)

We compare (27) with (28) to realize,

yi =
m− 1

p
∑m

i=1
eλzti

(R+rti)

−
eλzti

p(R+ rti)
(

m− 1∑m
i=1

eλzti
(R+rti)

)2

−

∑
k∈Ni

pik − c
i
k

2sik
− gi. (29)

Considering the case that µi > 0, the best strategy is yi∗ =
y according to (23b). In such case νi > 0, the best strategy is
yi∗ = y according to (23c). So, the optimal resource strategy
that miner i gain from ECO is calculated in (21).

We then calculate the first and second derivatives ofUi with
respect to pik in (30) and (31), as shown at the bottom of the

next page. It is easily seen from (31) that ∂
2Ui
∂2pik

< 0. So, Ui is

concave on pik . It demonstrates the unique optimal pricing of
M i to mobile devices. By substituting (27) and (28) into (30),
we rewrite ∂Ui

∂pik
,

∂Ui
∂pik
=
p− 2pik + c

i
k

2sik
. (32)

We thus calculate the unique optimal pricing in (22) by let-
ting ∂Ui

∂pik
= 0. To guarantee the optimal strategies of leader

ECO and miners, we prove the existence and uniqueness of
Nash equilibrium in game 0m+1 in the following work.
Theorem 5: The NE of the game 0m+1 exists.
Proof: We see yi ∈ [y, y] based on (7). According

to (13), we also have pik ∈ [2xsik + c
i
k , 2xs

i
k + cik ]. So,

the strategy space of game 0m+1 on yi and pik , k ∈ Ni is
obviously nonempty, compact and convex. For easy illustra-
tion, we denote the utility function Ui into Ui = ϕi + ωi,

where ϕi = (R + rti)
gi+yi+

∑
k∈Ni

xik∑m
j=1 (gj+yj+

∑
l∈Nj

xjl )
e−λzti and ωi =

−
∑

k∈Ni
x ik · p

i
k − yi · p.

Substituting (13) into ϕi, it is easily observed that the
second derivate of ϕi is the same with that of Ui in (31).
we then calculate the first and second derivatives of ϕi with
respect to yi,

∂ϕi

∂yi
= (R+ rti)

∑m
j6=i (gj + yj +

∑
l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]2
e−λzti ,

(33)
and

∂2ϕi

∂2yi
= (R+ rti)

−2
∑m

j6=i (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]3

e−λzti .

(34)

Themixed partial derivative of ϕi on pik and p
i
t is calculated,

∂2ϕi

∂pik∂p
i
t
= (R+ rti)

−
1

2sik s
i
t

∑m
j6=i (gj + yj +

∑
l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]3

× e−λzti . (35)

yi∗ = Fi(y) =



y if
B
p
−

eλzti

p(R+ rti)
B2 −

∑
k∈Ni

pik − c
i
k

2sik
− gi < y

y if
B
p
−

eλzti

p(R+ rti)
B2 −

∑
k∈Ni

pik − c
i
k

2sik
− gi > y

B
p
−

eλzti

p(R+ rti)
B2 −

∑
k∈Ni

pik − c
i
k

2sik
− gi otherwise

(21)
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The mixed partial derivative of ϕi on pik and yi is also
calculated,

∂2ϕi

∂pik∂yi
= (R+ rti)

−
1
sik

∑m
j6=i (gj + yj +

∑
l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]3

× e−λzti . (36)

The Hessian matrix of ϕi with respect to yi and pik is
described,

Hϕ
=



−2α −
α

si1
−
α

si2
−
α

si3
. . . −

α

sini
−
α

si1
−

α

2si1
2 −

α

2si1s
i
2

−
α

2si1s
i
3

. . . −
α

2si1s
i
ni

−
α

si2
−

α

2si1s
i
2

−
α

2si2
2 −

α

2si2s
i
3

. . . −
α

2si2s
i
ni

−
α

si3
−

α

2si1s
i
3

−
α

2si2s
i
3

−
α

2si3
2 . . . −

α

2si3s
i
ni

...
...

...
...

. . .
...

−
α

sini
−

α

2si1s
i
ni

−
α

2si2s
i
ni

−
α

2si3s
i
ni

. . . −
α

2sin
2



,

(37)

where α =
∑m

j6=i (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
). We then substitut-

ing (13) into ωi to calculate the Hessian matrix of ωi with

respect to yi and pik , where ωi = −
∑

k∈Ni

pik−c
i
k

2sik
· pik − yi · p.

It is easily seen that the Hessian matrix of ωi with respect to
yi and pik is denoted,

Hω
=



0 0 0 0 . . . 0

0 −
1

si1
0 0 . . . 0

0 0 −
1

si2
0 . . . 0

0 0 0 −
1

si3
. . . 0

...
...

...
...

. . .
...

0 0 0 0 . . . −
1
sin


. (38)

The two Hessian matrices above are obviously semi-
negative, therefore, the Hessian matrix of Ui with respect to

yi and pik is semi-negative. It indicates that Ui is concave on

yi and pik , i ∈ Ni to reach an optimal solution.
Theorem 6: The NE of game 0m+1 is unique.
Proof: It is observed that the best response function

Fi(y) > 0 based on (21). Assuming yi′′ > yi, we thus get
Fi(yi

′′) − Fi(yi) = 0. It demonstrates the monotonicity of
Fi(y). For all ψ > 1, ψFi(y) − Fi(ψy) > 0, which exhibits
the scalability of Fi(y). So, Fi(y) is a standard function that
guarantees the unique NE of game 0m+1.

D. GAME THEORY IN STAGE ONE
Theorem 7: ECO achieves the unique optimal price p∗ for

profit maximization while yi ∈ [y, y], i ∈M.
Proof: Substituting (21) and (22) into (1), we get the

objective function of problem (7),

UECO
= (p−c)[

m− 1

p
∑m

i=1
eλzti

(R+rti)

−

m∑
i=1

∑
k∈Ni

p− cik
4sik

−

m∑
i=1

gi].

(39)

We then calculate the first and second derivatives of UECO

with respect to p in (40) and (41), as shown at the bottom of
the next page. It is obviously seen from (41) that the second
order derivative ofUECO on p is always negative. So,UECO is
concave on p. It concludes that the unique optimal price can
be achieved for maximizing ECO’s profit.

The optimal price of ECO can be acquired by solving the
problem (40). However, the non-linearity of the objective
function in (40) prevents us to obtain the optimal solution by
directly solving the first-order derivative equation ∂UECO

∂p =

0. Instead, we propose the use of gradient ascent method to
approximate the optimal solution iteratively. It follows that,

p(l+1) = p(l) + δ(l) ·
∂UECO

∂p

∣∣∣∣p(l), (42)

where δ(l) is the step size at iteration l and ∂UECO

∂p is shown in
(40). Correspondingly, the following Algorithm 1 is designed
to solve p.

V. PERFORMANCE EVALUATION
In this section, the performance of our proposed model is
measured by extensive experiments. To begin with, we ini-
tialize the simulation setup. Then, we conduct numerical
simulations for illustration.

∂Ui
∂pik
= (R+ rti)

1
2sik

∑m
j6=i (gj + yj +

∑
l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]2

e−λzti −
2pik − c

i
k

2sik
(30)

∂2Ui
∂2pik

= (R+ rti)
−

1
2sik

2

∑m
j6=i (gj + yj +

∑
l∈Nj

pjl−c
j
l

2sjl
)

[
∑m

j=1 (gj + yj +
∑

l∈Nj

pjl−c
j
l

2sjl
)]3

e−λzti −
1

sik
(31)
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Algorithm 1Algorithm of Gradient Ascent to Solve for p

Input: precision threshold ε and p(l)

Output: p(l)

initialization: l ← 0, p(0);
do

p(l+1) = p(l) + δ(l) · ∂U
ECO

∂p

∣∣∣∣p(l) as in (42);

l = l + 1;
while |p(l) − p(l−1)| > ε;
return p(l);

TABLE 2. Simulation parameter initialization.

A. SIMULATION SETUP
We here consider the scenario that m miners participate in
mining tasks with m = 10. Because of massive computa-
tion powers for mining, each miner is motivated to offload
computation. In our model, each miner has the opportu-
nity of offloading computation to the ECO and its nearby
mobile devices. We assume that ni mobile devices shares
their computation resource to miner M i, i ∈ M, where
ni follows a normal distribution N (µd , σd ). The miner M i

owns its local computation resource, which follows a normal
distribution, N (µg, σg). The size of block mined by miner i
considers a normal distributionN (µb, σb). The mobile device
k’s mining cost cik and sensibility s

i
k are assumed to follow the

normal distributions, such as N (µc, σc) and N (µs, σs), k ∈
Ni, i ∈ M. We refer to system parameter initialization
of the ming tasks, stated in [10], [15], [27], [38]. The
default system parameters are set in Table 2, unless otherwise
described.

B. SIMULATION RESULT
To validate the efficiency of the proposed algorithm for
mobile blockchain, we compare it with the outcome of
cloud/fog computing resource management and pricing algo-
rithm proposed in [38], which only considers the cloud to
admit computation offloading. We investigate the computing
resource allocated to miners and resource pricing, on which
evaluate profits of different participants. To further eval-
uate how miners’ computation resources affect the model
performance, we extend the baseline algorithm for compar-
ison. Miners also have their local computation resources
in the extended baseline algorithm, which follow a normal
distribution, N (µg, σg).
We first observe the comparison by changing the number

of participants. To do this, we assume that miners’ local
resources are zero for the proposed algorithm. Fig.3 shows
different strategies of participants with respect to miner
number and device number. The increase of miner number
incurs the increasingly fierce competition among miners,
which forces them to decrease the pricing for mobile devices
in Fig.3b, as well as the computation resources requested
from the edge cloud in Fig.3a. Accordingly, mobile devices
decrease computation resources for executing miners’ tasks
in Fig.3a. By a drop on resource pricing in Fig. 3b, the
cloud inspires miners to request more resources for profit
maximization. For the baseline algorithm, with the increase
of miners, miners reduce the resources requested from the
cloud due to the increasing price. It can be easily found that
the pricing in the baseline algorithm is higher than that in the
proposed algorithm.

With the increasing number of mobile devices in the
proposed algorithm, cloud hostilely compete with mobile
devices to interest miners at the cost of price. We observe the
declining price of cloud in Fig.3b, on which more resources
are requested by miners in Fig.3a. The miners correspond to
decrease device resources in Fig.3a, by declining the pricing
for mobile devices in Fig.3b. Compared with the baseline
algorithm, the proposed algorithm significantly assistsminers
to obtain more computation resources, allocated by the cloud,
with a relatively low price in Fig.3b.

Base on the analysis above, we explore the profits of the
edge cloud,miners, andmobile devices in Fig.4. It is observed
from Fig.3 that the increase number of miners incurs cloud’s
lower pricing for miners. The total of requested resources by
miners accordingly improves, which leads to a temporal rise
of cloud profit. However, with the continuingly increasing
number of miners, the benefit from requested resources of

∂UECO

∂p
=

c(m− 1)

p2
∑m

i=1
eλzti

(R+rti)

−

m∑
i=1

∑
k∈Ni

p− cik
4sik

− (p− c)
m∑
i=1

∑
k∈Ni

1

4sik
−

m∑
i=1

gi (40)

∂2UECO

∂2p
=
−2c(m− 1)

p3
∑m

i=1
eλzti

(R+rti)

− 2
m∑
i=1

∑
k∈Ni

1

4sik
(41)
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FIGURE 3. Effect of number of miners and devices on resource allocation and pricing.

FIGURE 4. Effect of number of miners and devices on profits of cloud, miners and devices.

FIGURE 5. Effect of cloud cost on resource allocation and and pricing.

miners fails to compensate the loss, generated by the lower
pricing. Therefore, the cloud profit temporally improves and
finally diminishes in Fig.4a. The increasing number of miners
incurs the fierce competition among miners, which reduces

the profits of miners and mobile devices in Fig.4b and Fig.4c.
Without loss of generality, the increase of number of miners
has a negative effect on profits of three types of partici-
pants. Fig.4 also shows that the increase of mobile devices
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FIGURE 6. Effect of cloud cost on profits of cloud, miners and devices.

FIGURE 7. Effect of miners’ local resources on resource allocation and pricing.

FIGURE 8. Effect of miners’ local resources on profits of cloud, miners and devices.

improves the miner profits while reducing the profits of cloud
and mobile devices. Compared with the baseline algorithm,
the utilization of the proposed algorithm enables miners to
improve their profits by offloading mining tasks to devices
in Fig.4b.

We next consider the variation of cloud cost if it determines
the performance of different models. With the increasing
cloud cost, cloud improves the resource pricing in Fig.5b,
on which miners reduce computation resources requested
from the cloud. Moreover, for the proposed algorithm, min-
ers raise the price to increase computation resources from
mobile devices. Such resource allocation and pricing incurs

the increase of profits of miners and devices in Fig.6b and
Fig.6c, as well as the drop of cloud profit in Fig.6a. In com-
parison with the baseline algorithm, the use of the proposed
algorithm improves miner profits by offloading mining tasks
to devices, shown in Fig.6b.

We are also interested in evaluating miners’ local com-
putation resources on model performance. Fig.7 shows the
computing resources, allocated by cloud and devices, and
resource pricing. The larger local resource incurs cloud’s
lower pricing in order to increase the resource requested
by miners for profit maximization. So, the pricing by cloud
shows a declining trend in Fig.7b while the resources,
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FIGURE 9. Associations among latency factor, number of transactions and reward rate.

FIGURE 10. Effect of number of transactions and latency factor on miner
profits.

allocated by cloud, improve with incremental local resources
in Fig.7a. Under such case, a miner reduces the pricing for
devices in Fig.7b, on which mobile devices decrease the
resources, allocated for miners, in Fig.7a. The increase of
miners’ local resources reduces the economic payment for
cloud and mobile devices. Therefore, Fig.8b shows that min-
ers’ average profit tends to swell. Profits of ECO and mobile
devices tend to dwindle in Fig.8a and Fig.8c. We also see
from Fig.8b that the increasing number of devices improve
miner profits while miners are equipped with limited local
resources. Device number has no obvious effect on miner
profits while miners have large local computation resources.

Our model here takes the latency factor, reward rate and
number of transactions into account since the profit of each
miner is jointly affected by these parameters. We therefore
investigate the associations among them, displayed in Fig.9.
We see from Fig.9a that, given a latency factor, average profit
of miners improves with the increasing number of transac-
tions. However, Fig.9b shows a descending trend of average
profit of miners. So, it should be particularly noteworthy

FIGURE 11. Effect of number of transactions and reward rate on miner
profits.

FIGURE 12. Effect of latency factor and reward rate on miner profits.

of number of transactions on block mining. To this end,
we further investigate the effects of such parameters on the
performance of the proposed model for mobile blockchain.
We see from Fig.10 and Fig.11 that miner profits start with
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increasing and then decrease with incremental number of
transactions. It indicates that relatively large number of trans-
actions has a negative effect on miner profits. We also see
from Fig.10 that latency factor is negatively related with
number of transactions. Large latency factor reduces the
possibility of successful mining a valid block, which dis-
courage participants to participant in block mining. Miner
profits finally accord with reduction. It is also observed that
the reward rate has a positive correlation with number of
transactions in Fig.11 and Fig.12.

In summary, the comparative experiments demonstrate that
the superiority of the proposed algorithm. Miners obtains
more profits while offloading to ECO and mobile devices
than only to ECO. We imitate how our proposed algorithm
adapts to blockchain mining in different scenarios. The sim-
ulation results conclude the practicality and applicability of
the proposed algorithm, which indicates that it can work well
in practical scenarios.

VI. CONCLUSION
In this paper, we utilize edge computing for mobile
blockchain application. Due to the computation-intensive
mining tasks, it is difficult for single mobile device to partici-
pate in block mining. We therefore consider the assistance of
mobile devices for miners in mining process. The edge cloud
is also considered for computation offloading due to its pow-
erful computation capability. The miners, mobile devices and
cloud jointly cooperate for mining. To maximize their prof-
its, we model the interactions among them as a three-stage
Stackelberg game. Moreover, we derive the subgame Stack-
elberg game, which guarantees the uniqueness of three types
of participants’ optimal decisions. The performance of the
proposed model is verified by numerical simulations. The
utilization of PoW in the proposed model consumes powerful
computation resources. Therefore, our future work focuses
on studying how to reduce computing resource demands for
application of blockchain in mobile networks.
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