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ABSTRACT For the input and output constraints and uncertainties in batch processes, a 2D output feedback
robust constrained model predictive control (MPC) method is designed by combining iterative learning
control (ILC), MPC and output feedback. Firstly, an equivalent 2D-FM closed-loop prediction model is
established by combining with the proposed output feedback controller. Then an optimization performance
index function with terminal constraint is constructed to study its control optimization. According to the
designed optimization performance index and Lyapunov stability theory, the feasible MPC problem is
obtained by solving the linear matrix inequalities (LMIs). At the same time, the gain of the new output
feedback control law is given to ensure that the performance index reaches the minimum upper bound under
the constraints of input and output. In order to solve the manual adjustment problem of some parameters in
the performance index function, the particle swarm optimization (PSO) algorithm is introduced, and a better
solution is found near the controller by using the search optimization method. Finally, taking the injection
molding process as an example and comparing with the existing method without using PSO algorithms, it is
proved that the above method is more feasible.

INDEX TERMS Batch processes, input–output constraint, iterative learning output feedback predictive
control, particle swarm optimization algorithm.

I. INTRODUCTION
In the past 50 years, in order to adapt to the develop-
ment of industrialization, the control technology of the
chemical industry’s production process has made great
progress [1]–[7]. The process targeted by the research results
is roughly based on continuous processes and batch pro-
cesses. The early design of control technology was obviously
based on a continuous process. Such as PID control, adaptive
control, etc., [1]–[6]. During the research process, it is discov-
ered that the products produced by some types of chemical
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production processes are typical batch production processes,
whose characteristics are significantly different from the con-
tinuous process, such as multiple time-varying characteristics
in injection molding processes. Following this, new control
technologies are constantly being proposed. It is roughly
divided into two stages of development: iterative learning
control(ILC) stage [7]–[9] and two-dimensional(2D) control
algorithm stage [10]–[11]. ILC is a good choice for repetitive
process controller design [12]. But due to the changes of
environmental factors and operating conditions, especially
the chemical batch process can not be well repeated, that is,
it has a certain degree of non repeatability (or uncertainty),
single ILC is no longer applicable. In order to deal with the
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above problems, a 2D control algorithm combining feedback
control and ILC was proposed [13]. Reference [13] first
proposed the batch process control algorithm to ensure two-
dimensional stability. At the same time, it also proposed the
general method and idea of feedback control combined with
ILC under the framework of the two-dimensional system
theory. Many results are currently available [11], [14]–[16],
including system control under normal conditions or in case
of failure.

With the deepening of scientific research, people have
found that model predictive control (MPC) is well-applied
in industrial processes because of its ‘‘receding optimiza-
tion’’ ability, especially in processes that cannot be accurately
modeled. Based on the advantages of MPC, the combination
design of ILC and MPC in a 2D framework was very mean-
ingful for batch processes [17]–[26]. In these designs, the
design of combining ILC and MPC was included [17]–[22],
as well as the design of feedback control combined with ILC
and MPC [23]–[28]. The control strategy combining feed-
back, ILC and MPC was proposed [23], multi-step prediction
in the time direction and batch direction was given, and it
was verified that multi-step prediction in the batch direc-
tion could further improve the convergence speed. A feed-
back control based on iterative learning predictive updating
law was constructed and the ‘worst’ case linear quadratic
function was also designed. Optimization of the controller
was obtained using the worst-case objective function along
the infinite moving horizon [24]. A two-stage optimization
method was designed to reduce the sensitivity of the method
to nonrepetitive disturbances, and a 2D Lyapunov function
was used to ensure the robust stability of the system [25].
Reference [26] extended the method to nonlinear systems
with unknown nonlinear inputs. Moreover, the predictive
control results of multi-stage batch process models have also
appeared [27], [28]. Most of the above researches are based
on state feedback. However, in the actual production process,
the state of the system is often not easy to measure directly,
or due to the economic and usability limitations of the mea-
suring equipment, the state feedback can not be realized
physically. Therefore, the relevant control methods for out-
put feedback have attracted attention. At present, there have
been many achievements in the research of robust predictive
control with output feedback [29]–[31]. For linear systems
with norm-bounded uncertainties and disturbances, a new
state estimator was designed by using the output feedback
robust MPC method, and all the parameter matrices were
optimized online, which improved the control performance
of the system [29]. The Lyapunov matrix without structural
constraints was chosen, and an iterative cone complementary
approach was adopted to optimize the control law parame-
ters [30]. In actual industrial processes, due to the limita-
tion of physical conditions or safety reasons, the input and
output variables often have constraint conditions and cannot
be infinitely valued. The existence of constraints seriously
affects the control performance. How to address the con-
straints in complex industrial systems is very important to

improve the safety and efficiency of production. When the
controlled process is constrained, if the unconstrained control
technology is used, the calculated control effect will not only
reduce the performance of the closed-loop system, but also
cause the instability of the system. Especially in the case of
multi-variable control, how to deal with various constraints in
the control system quickly and effectively is very important
work in industrial process control. For the problem of output
and input constraints, it is usually converted to the linear
matrix inequalities (LMIs) [32], [33].

Because the essence of predictive control optimization is
to achieve optimization by manually adjusting the param-
eter variables of the performance index, which is not in
line with today’s high efficiency and high precision control.
It is urgent to find an intelligent optimization algorithm to
optimize control systems. As an intelligent search algorithm,
the genetic algorithm has strong advantages in batch process
optimization. In the description of the optimization problem,
only a simple expression of the target is needed, the operation
object is the coded population individual, and the target has
no continuous and differentiable restrictive constraints, which
reduces the processing difficulty in the problem [34], [35].
Compared with the genetic algorithm, the particle swarm
optimization (PSO) algorithm [36] has the characteristics of
simplicity, fewer parameters, easy implementation, no cod-
ing, fast convergence, etc., and has been applied to many
engineering fields [37]–[39]. However, few scholars have
used the PSO algorithm to optimize control parameters in the
field of batch process control.

In this paper, a 2D output feedback robust constrained
MPC method for batch processes based on PSO is proposed
under a 2D theoretical framework. The advantages of this
method are as follows: (1) In the framework of 2D system
theory, combined with ILC and MPC, the controller with
extended information is designed, which has better tracking
performance and robustness, stronger resistance to system
uncertainty and external interference. (2) Considering the
output and input constraints and the unmeasurable state in the
actual production, the output feedback controller achieves its
control goal and satisfies the actual production requirements.
(3) A PSO algorithm is used to search for a better solution
near the traditional controller, which makes up for the influ-
ence that some parameters of the performance index function
may not be optimal due to manual adjustment. Finally, the
feasibility and superiority of the proposedmethod are verified
by modeling and simulation. Compared with the existing
results, the control effect obtained based on the method pro-
posed in this paper is indeed better.

II. PROBLEM DESCRIPTION AND THE ESTABLISHMENT
OF A NEW STATE SPACE MODEL
A. PROBLEM DESCRIPTION
For batch processes, a normal-bounded uncertain 2D system
model is established based on the state space model for
the controlled object. The following discrete time repeated
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processeswith uncertain parameter perturbations is considered:

x(Tt + 1,Tk ) = [A+1A(Tt ,Tk )]x(Tt ,Tk )

+ [B+1B(Tt ,Tk )]

u(Tt ,Tk )+ υ(Tt ,Tk )

y(Tt ,Tk ) = Cx(Tt ,Tk ), 0 ≤ Tt ≤ Tp

x(0,Tk ) = x(0), Tk = 0, 1, . . . ;

(1)

where Tt is time; Tk is the batch index; x(Tt ,Tk ) ∈ <nx ,
y(Tt ,Tk ) ∈ <

ly , u(Tt ,Tk ) ∈ <
mu , and υ(Tt ,Tk ) ∈

<
nx are the state, output, input and disturbance signals of

batch Tk at time Tt , respectively; and {A,B,C} are con-
stant matrices with appropriate dimensions. 1A(Tt ,Tk ) and
1B(Tt ,Tk ) represent the uncertainty of the system param-
eters, and it is assumed that they have the following struc-
ture: [1A(Tt ,Tk ),1B(Tt ,Tk )] = E1(Tt ,Tk )[F1,F2], where
E,F1,F2 are constant matrices with appropriate dimensions
and 1(Tt ,Tk ) is the unknown parameter perturbation that
satisfies 1T (Tt ,Tk )1(Tt ,Tk ) ≤ I .

B. EQUIVALENT 2D SYSTEM REPRESENTATION
Let x(Tt + l|Tt ,Tk + m|Tk ), y(Tt + l|Tt ,Tk + m|Tk ), and
u(Tt + l|Tt ,Tk + m|Tk ) denote the predicted values of the
state variable, output variable and input variable at time Tt of
batch Tk , respectively.
For the uncertain system model presented in (1), the ILC

strategy is adopted to design the following controller:
u(Tt + l|Tt ,Tk + m|Tk )
= u(Tt + l|Tt ,Tk + m− 1|Tk )
+U (Tt + l|Tt ,Tk + m|Tk )

u(Tt |Tt ,Tk |Tk ) = u(Tt ,Tk )
Tt = 0, 1, 2, . . . ,Tp; l,m = 0, 1, 2, . . . , (2)

where U (Tt + l|Tt ,Tk +m|Tk ) ∈ <mu represents the iterative
updating law to be designed at time Tt of batch Tk , and
U (Tt |Tt ,Tk |Tk ) = U (Tt ,Tk ). u(Tt , 0) represents the initial
value of the iteration.

Introduce a variableϒ , whereϒ can be an input, an output,
a state variable or other correlated variables. Let ϒ},—λ =
ϒ(Tt + }|Tt ,Tk +—λ|Tk ). The output tracking error of the
system is designed as follows:

el,m = yl,m − yr (Tt ) (3)

where yr (Tt ) is the set-point trajectory for each cycle. The
error function in the batch direction is defined as follows:

σ el,m = σl,m − σl,m−1 (4)

where σ can be an input, an output, or a state variable, and
Ul,m = uel,m. From (1), (2), (3) and (4), we can obtain:

xel+1,m = [A+1Al,m]xel,m + [B+1Bl,m]Ul,m + υ̃l,m (5)

el+1,m = el+1,m−1 + C{[A+1Al,m]xel,m
+ [B+1Bl,m]Ul,m + υ̃l,m} (6)

υ̃l+1,m = [1Al,m −1Al,m−1]xl,m−1
+ [1Bl,m −1Bl,m−1]ul,m−1 + υel,m (7)

When υ̃l,m = 0, it is a repetitive disturbance; otherwise, it is
a nonrepetitive disturbance.
A new state variable is introduced as follows:

χ̄l,m =

l−1∑
n=0

en,m (8)

An extended equivalent 2D system is as follows:

χ̂l+1,m = [A1 +1A1]χ̂l,m + A2χ̂l,m−1
+ [B1 +1B1]Ul,m + D1υ̃l,m

yel,m =

 el,m−1χ̄l,m + el,m
el,m

 = Gχ̂l,m,

1 ≤ Tt ≤ Tp
χ̄ (0,Tk ) = 0, Tk = 0, 1, . . . ;

l = 1, 2, 3 . . . ; m = 1, 2, 3 . . .

(9)

where

χ̂l,m =

 xel,m
χ̄l,m
el,m

 , A1 =
 A 0 0

0 I I
CA 0 0

 ,
A2 =

 0 0 0
0 0 0
0 0 I

 ,
B1 =

B0
CB

 , D1 =

 I0
C

 , G =
−C I 0

0 I I
0 0 I

 ,
1A1 = Ê1(Tt ,Tk )F̂1, 1B1 = Ê1(Tt ,Tk )F̂2,

Ê = [(E)T , 0, (CE)T ]T , F̂1 = [F1, 0, 0], F̂2 = F2

When only the output can be measured in the process,
based on the above 2D output feedback ILC framework, the

FIGURE 1. Output feedback structure diagram.
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following controller can be designed:
xcl+1,m = Ac1xcl,m + Ac2x

c
l+1,m−1 + Bc1y

e
l,m

+Bc2yel+1,m−1
Ul,m = Cc1xcl,m + Cc2x

c
l+1,m−1

+Dc1yel,m + Dc2y
e
l+1,m−1

(10)

where xcl,m ∈ <
nx+2ly is the internal state of the controller

and {Aci,Bci,Cci,Dci}i=1,2 is the appropriate dimension con-

troller parameter. Let Zl+1,m =
[
χ̂l+1,m
xcl+1,m

]
. When (10) is

substituted into (9), the 2D control system is obtained:
Zl+1,m = (Ā1 +1Ā1)Zl,m + Ā2Zl+1,m−1

+ (B̄1 +1B̄1)Ul,m + D̄υ̃l,m
yel,m = ḠZl,m
l = 1, 2, 3 . . . ;m = 1, 2, 3 . . .

(11)

where

Ā1 =
[

A1 0
Bc1G Ac1

]
,1Ā1 =

[
1A1 0
0 0

]
= Ē1(Tt ,Tk )F̄1,

Ā2 =
[

A2 0
Bc2G Ac2

]
, B̄1 =

[
B1
0

]
, 1B̄1 =

[
1B1
0

]
= Ē1(Tt ,Tk )F̄2,

Ē =
[
Ê
0

]
, F̄1 =

[
F̂1 0

]
,

F̄2 = F̂2, D̄ =
[
D1
0

]
, Ḡ =

[
G 0

]
III. PSO-BASED 2D OUTPUT FEEDBACK ROBUST
PREDICTIVE TRACKING CONTROLLER DESIGN
A. PERFORMANCE INDEX FUNCTION
According to the characteristics of the batch process, it can be
divided into repetitive interference and nonrepetitive interfer-
ence. Therefore, the definitions of the performance indicators
are also different. When the interference is nonrepetitive
interference, in infinite time domains and, the ‘‘worst’’ case
indicator at time of batch of the uncertain system is defined
as follows:

min
Ul,m,l,m≥0

max J∞(Tt ,Tk )
[A,B,C]∈�

J∞(Tt ,Tk ) =
∞∑
l=0

∞∑
m=0

`l,m=

N−1∑
l=0

N−1∑
m=0

`l,m+Vm(ZN ,N )

(12)

where Vm(Zl,m) is called a terminal constraint and

`l,m = ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1

+UT
l,mRUl,m − (γ )2υ̃Tl,mυ̃l,m

The constraint condition is as follows:
Zl+1,m = (Ā1 +1Ā1)Zl,m + Ā2Zl+1,m−1

+ (B̄1 +1B̄1)Ul,m + D̄υ̃l,m
l = 1, 2, 3 . . . ; m = 1, 2, 3 . . .

{∥∥Ul,m∥∥ ≤ rm∥∥yel,m∥∥ ≤ ym (13)

where Q1,Q2,R is the corresponding weight matrix;
γ > 0 and rm, ym are the upper bound values of variables
Ul,m and yel,m, respectively;

[
A B C

]
∈ �; and � denotes

uncertain sets.

B. STABILITY ANALYSIS AND CONTROLLER DESIGN
OF A 2D SYSTEM
To solve the optimization problem in (12), a new predictive
law (10) is designed with predictive control theory, and the
robust stability of the system is studied. Under controller (10),
the closed-loop predictionmodel can be expressed as follows:

Zl+1,m = (Ā1 +1Ā1 + B̄1Y1 +1B̄1Y1)Zl,m

+ (A2 + B̄1Y2+1B̄1Y2)Zl+1,m−1+D̄υ̃l,m

yel,m = ḠZl,m

l = 1, 2, 3 . . . ; m = 1, 2, 3 . . .

(14)

where Y1 =
[
Dc1G Cc1

]
,Y2 =

[
Dc2G Cc2

]
.

The Lyapunov function is defined as follows:

V (Zl,m) = Vh(Zl,m)+ Vv(Zl,m),

Vh(Zl,m) = ZTl,mP1Zl,m = ZTl,mθ1L
−1
1 Zl,m,

Vv(Zl,m) = ZTl,mP2Zl,m = ZTl,mθ1L
−1
2 Zl,m (15)

where P1,P2 are positive definite matrices to be determined
and satisfy:

αP1 + βP2 < P, α > 1, β > 1, P > 0, P = θ1L−1,

αL−11 + βL
−1
2 < L−1 (16)

To ensure the robust stability of the system and the solvability
of optimization problem, the following Lyapunov inequality
constraints are required to hold:

Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

≤ −

[
ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1

+UT
l,mRUl,m − (γ )2υ̃Tl,mυ̃l,m

]
(17)

For the closed-loop prediction model in (14), it is assumed
that there are a series of initial conditions, there are two
positive integers Tl,Km, and

Z (Tt + l,Tk ) = 0, l ≥ s1; Z (Tt ,Tk + m) = 0, m ≥ s2

where s1 < ∞ and s2 < ∞ are positive integers, and
the corresponding Z (Tt + l,Tk ) and Z (Tt ,Tk + m) are the
boundaries of the time direction and the batch direction,
respectively. s = max {s1, s2}.

By superimposing

Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

≤ −

[
ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1

+UT
l,mRUl,m − (γ )2υ̃Tl,mυ̃l,m

]
(18)
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from l,m = 0 to l,m = ∞, the following inequality is
obtained:

max J∞(Tt ,Tk ) ≤ sV (Z (Tt ,Tk )) ≤ θ

where θ is the upper bound of J∞(Tt ,Tk ).
Lemma 1 ([40]): For the given matrices W , L and V with

appropriate dimensions, whereW and V are positive definite
matrices, then

LTVL −W < 0 (19)

if and only if[
−W LT

L −V−1

]
< 0 or

[
−V−1 L

LT −W

]
< 0 (20)

Lemma 2 ([41]): Let E,F ,D andM denote real matrices with
appropriate dimensions andM satisfyM = MT ; then, for all
FTF ≤ I ,

M + DFE + ETFTDT < 0 (21)

if and only if there exists ξ > 0 such that

M + ξ−1DDT + ξETE < 0 (22)

Theorem 1: Assume υ̃(Tt ,Tk ) = 0 holds. For given positive
definite matricesQ1,Q2 ∈ <

(nx+ly)×(nx+ly), and R ∈ <mu×mu ,
and positive numbers α > 1, β > 1, the 2D-FM system
in (11) is solvable if there exist positive definite symmetric
matrices X > 0,Y > 0, P̄ > 0, S1 > 0, S2 > 0, appropriate
dimension matrices

_

Aci,
_

Bci,
_

Cci,
_

Dci(i = 1, 2), and scalars
ε > 0 and θ1 > 0 such that the following LMIs hold:211 212 213

∗ 214 0

∗ ∗ 215

 < 0 (23)

αS1 + βS2 < 511 (24)[
−1 Z (Tt |Tt ,Tk |Tk )

∗ −P̄−1

]
≤ 0 (25)−r

2
m521 0

∏
23

∗ −r2m531
∏

33

∗ ∗ −I

 < 0 (26)

[
−y2mP̄

−1 Ḡ

∗ −I

]
≤ 0 (27)

where

211 =

−511 512 513

∗ −S1 0

∗ ∗ −S2

 , 212 =

 0 0 0

522 0 523

0 532 533


213 =

 0 514

524 0

534 0

 ,

214 =

−θ1Q
−1
1 0 0

∗ −θ1Q
−1
2 0

∗ ∗ −θ1R−1

 ,
215 =

[
−εI 0
∗ −ε−1I

]
∏

11
=

[
X I
I Y

]
,
∏

12
=

[
A1X + B1

_

Cc1 A1 + B1
_

Dc1G
_

Ac1 YA1 +
_

Bc1G

]
,

∏
13
=

[
A2X + B1

_

Cc2 A2 + B1
_

Dc2G
_

Ac2 YA2 +
_

Bc2G

]
,
∏

14
=

[
XÊ
Ê

]
,

∏
21
= S1,

∏
22
=

∏
32
=

[
X M
I 0

]
,∏

23
=

[
_

Cc1
_

Dc1G
]T
,∏

24
=

[
F̂1X + F̂2

_

Cc1 F̂1X + F̂2
_

Dc1G
]T

∏
31
= S2,

∏
33
=

[
_

Cc2
_

Dc2G
]T
,∏

34
=

[
F̂2

_

Cc2 F̂2
_

Dc2G
]T

If X ,Y ,
_

Aci,
_

Bci,
_

Cci,
_

Dci(i = 1, 2) are the feasible solutions
of matrix inequalities (23)-(27), then the parameters of con-
troller (10) with output feedback can be designed as follows:

Dci =
_

Dci

Cci = (
_

Cci − DciGX )(MT )−1

Bci = N−1(
_

Bci − YB1Dci)

Aci = N−1(
_

Aci − YAiX + YB1DciGX+

NBciGX + YB1CciMT )(MT )−1

(i = 1, 2)

(28)

IfM ,N are full rank matrices that satisfy the condition XY +
MNT

= I , then they can be obtained by a singular value
decomposition of the matrix I − XY .

Proof: When υ̃(Tt ,Tk ) = 0, in infinite time domains
[Tt ,∞) and [Tk ,∞), the ‘‘worst’’ case indicator at time Tt of
batch Tk of the uncertain system is defined as follows:

min
Ul,m,l,m≥0

max J∞(Tt ,Tk )
[A,B,C]∈�

J∞(Tt ,Tk ) =
∞∑
l=0

∞∑
m=0

`l,m =

N−1∑
l=0

N−1∑
m=0

`l,m + Vm(ZN ,N )

(29)

where

`l,m = ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1 + UT
l,mRUl,m

The increment function is designed as follows:

1V (Zl+1,m) = 1Vh(Zl+1,m)+1Vv(Zl+1,m)

= Vh(Zl+1,m)− Vh(Zl,m)

+Vv(Zl+1,m)− Vv(Zl+1,m−1)
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V (Zl,m) = Vh(Zl,m)+ Vv(Zl,m)

Vh(Zl,m) = ZTl,mP1Zl,m = ZTl,mθ1L
−1
1 Zl,m

Vv(Zl,m) = ZTl,mP2Zl,m = ZTl,mθ1L
−1
2 Zl,m

1Vh(Zl+1,m) = ZTl+1,mP1Zl+1,m − Z
T
l,mP1Zl,m

= ZTl+1,mθ1 (L1)
−1 Zl+1,m − ZTl,mθ1 (L1)

−1 Zl,m

1Vv(Zl+1,m) = ZTl+1,mP2Zl+1,m − Z
T
l+1,m−1P2Zl+1,m−1

= ZTl+1,mθ1 (L2)
−1 Zl+1,m

−ZTl+1,m−1θ1 (L2)
−1 Zl+1,m−1 (30)

The following variables are defined as follows:

φl,m = φ(Tt + l|Tt ,Tk + m|Tk ) =

[
Zl,m

Zl+1,m−1

]
The sufficient condition for the robust stability of the closed-
loop system in (11) is the existence of some positive definite
symmetric matrices P,P1,P2 that make (31)true,

Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

= ZTl+1,m(P1 + P2)Zl+1,m − Z
T
l,mP1Zl,m − Z

T
l,mP2Zl,m

≤ ZTl+1,mPZl+1,m − Z
T
l,mP1Zl,m − Z

T
l,mP2Zl,m

≤ −

[
ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1 + UT

l,mRUl,m
]
(31)

Eq. (31) can be translated into

φTψφ < 0⇔ ψ < 0 (32)

where Ul,m = Y1Zl,m + Y2Zl+1,m−1.

ψ = ζ T1 θ1L
−1ζ1 − ζ

T
2 θ1L

−1
1 ζ T2 − ζ

T
3 θ1L

−1
2 ζ T3 +ζ

T
2 Q1ζ

T
2

+ ζ T3 Q2ζ
T
3 − ζ

T
4 Rζ

T
4

ζ1 =
[
Ā1+1Ā1+B̄1Y1+1B̄1Y1 Ā2+B̄1Y2+1B̄1Y2 D̄

]
ζ2 =

[
I 0 0

]
, ζ3 =

[
0 I 0

]
,

ζ4 =
[
Y1 Y2 0

]
Applying Lemma 1 and Lemma 2 to (32), we obtain221 222 223

∗ 214 0
∗ ∗ 215

 < 0 (33)

where

221 =

−L
−1 L−1(Ā1 + B̄1Y1) L−1(Ā2 + B̄1Y2)

∗ −L−11 0

∗ ∗ −L−12

 ,

222 =

 0 0 0

I 0 Y T1
0 I Y T1

 ,

223 =

 0 L−1Ē

F̄T1 + Y
T
1 F̄

T
2 0

Y T2 F̄
T
2 0



Let L−1 = P̄, P̄ =
[
Y N
NT W

]
, P̄−1 =

[
X M
MT K

]
,31 =[

X I
MT 0

]
. Multiplying (33) on the left by 3̄T

1 =

diag(3T
1 ,3

T
1 ,3

T
1 , I , I , I , I , I ) and on the right by 3̄1,

we can obtain: 231 232 233
∗ 214 0
∗ ∗ 215

 < 0 (34)

where 231, as shown at the bottom of the next page.
Notably, (34) is equivalent to (23). According to (24), αL−11 +

βL−12 < L−1, so αP1 + βP2 < P. Therefore, (23) and (24)
are sufficient conditions for Eq. (31).

According to (31),

1V (Zl,m) < −
[
ZTl+1,m−1Q2Zl+1,m−1

+ZTl,mQ1Zl,m + UT
l,mRUl,m

]
< 0

Then, the closed-loop system in (11) is solvable.
According to (18), when the system is superimposed

from l,m = 1 to l,m = ∞, we obtain (35), as shown at
the bottom of the next page. Then,

−sV (Z (Tt ,Tk )) ≤ −
∞∑
l=0

∞∑
m=0

`l,m (36)

From (25), we can obtain ZT0,0L
−1Z0,0 ≤ 1.

If P = θ1L−1 and ψl = P1 + P2, then ZT0,0PZ0,0 ≤ θ1 is
true; hence,

V (Z (Tt ,Tk )) = ZT (Tt ,Tk )ψlZ (Tt ,Tk ) ≤ θ1 (37)

where θ1 is the upper bound of V (Z (Tt ,Tk )). Therefore,

J∞(Tt ,Tk ) =
∞∑
l=0

∞∑
m=0

`l,m ≤ sV (Z (Tt ,Tk )) ≤ sθ1 ≤ θ

is true. Thus, when perturbations are involved, the traditional
asymptotic stability cannot converge to the origin. In contrast,
there exists the following robust positive definite invariant
set:

9 := {Z |V (Z ) ≤ θ1} (38)

It is satisfied that the system states converge to this set.
For ∀Z ∈ 9, there is:

α1V (|Z |) ≤ V (Z ) ≤ α2V (|Z |) (39)

where α1, α2 ∈ K∞, and

V (Z )+ − V (Z )

≤ −

[
ZT (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)Q2

Z (Tt + 1,Tk − 1)+ UT (Tt ,Tk )RU (Tt ,Tk )

]
(40)

(λmin)∗ |Z |2 ≤ V
∗

(Z ) ≤ (λmax)∗ |Z |2 (41)

where (λmin)∗ := min
{
pmin(ψl)∗

}
, (λmax)∗:= max{

pmax(ψl)∗
}
, pmin(·) and pmax(·) are the minimum and max-

imum eigenvalues respectively, V ∗(Z ) is the optimal value
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231 =

−3
T
1 P̄31 3T

1 P̄(Ā1 + B̄1Y1)31 3T
1 P̄(Ā2 + B̄1Y2)31

∗ −3T
1 L
−1
1 31 0

∗ ∗ −3T
1 L
−1
2 31

 ,

232 =


0 0 0

3T
1 0 3T

1 Y
T
1

0 3T
1 3T

1 Y
T
2

 ,

233 =


0 3T

1 Ē

3T
1 (F̄

T
1 + Y

T
1 F̄

T
2 ) 0

3T
1 Y

T
2 F̄

T
2 0


3T

1 P̄31 =

[
X I
I Y

]
,

3T
1 P̄ =

[
I 0
Y N

]
3T

1 P̄(Ā1 + B̄1Y1)31 =

[
A1X + B1

_

Cc1 A1 + B1
_

Dc1G
_

Ac1 YA1 +
_

Bc1G

]
,

3T
1 P̄(Ā2 + B̄1Y2)31 =

[
A2X + B1

_

Cc2 A2 + B1
_

Dc2G
_

Ac2 YA2 +
_

Bc2G

]
,

3T
1 Y

T
1 =

[
_

Cc1
_

Dc1G
]T
, 3T

1 Y
T
2 =

[
_

Cc2
_

Dc2G
]T
,

3T
1 (F̄

T
1 + Y

T
1 F̄

T
2 ) =

[
F̂1X + F̂2

_

Cc1 F̂1X + F̂2
_

Dc1G
]T

3T
1 (Y

T
2 F̄

T
2 ) =

[
F̂2

_

Cc2 F̂2
_

Dc2G
]T
,

3T
1 Ē =

[
XÊ
Ê

]


_

Dci = Dci
_

Cci = DciGX + CciMT

_

Bci = YB1Dci + NBci
_

Aci = YAiX + YB1DciGX
+NBciGX + YB1CciMT

+ NAciMT

(i = 1, 2)

S1 = 3T
1 L
−1
1 31, S2 = 3T

1 L
−1
2 31, 511 = −3

T
1 P̄31

∞∑
l=0

∞∑
m=0

{
Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

}

=

∞∑
m=0

Vh(Z1,m)− Vh(Z0,m)+ Vv(Z1,m)− Vv(Z1,m−1)+ Vh(Z2,m)

−Vh(Z1,m)+ Vv(Z2,m)− Vv(Z2,m−1)+ · · · + Vh(Z∞+1,m)

−Vh(Z∞,m)+ Vv(Z∞+1,m)− Vv(Z∞+1,m−1)


=

∞∑
m=0

(Vh(Z∞+1,∞)− Vh(Zl+1,−1))+
∞∑
l=0

(Vv(Zl+1,∞)− Vv(Z0,m))

= −

s2∑
m=0

Vh(Z0,m)−
s1∑
l=0

Vv(Zl+1,−1)

≥ −s2Vh(Z0,0)− s1Vv(Z1,−1)

≥ −sV (Z0,0) = −sV (Z (Tt ,Tk )) (35)

VOLUME 10, 2022 8415



W. Zhang et al.: PSO-Based 2D Output Feedback Robust Constraint MPC for Batch Processes

of V (Z ) at the time Tt of batch Tk , ψ∗l is the optimal value
of ψl at the time Tt of batch Tk .

Define Z0,0 = Z (Tt ,Tk ), U0,0 = U (Tt ,Tk ), equation (29)
is equivalent to

J∞(Tt ,Tk ) =
∞∑
l=0

∞∑
m=0

`l,m = `0,0 +

∞∑
l=1

∞∑
m=1

`l,m

+

∞∑
l=1

`l,0 +

∞∑
m=1

`0,m

= ZT (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)

×Q2Z (Tt + 1,Tk − 1)

+UT (Tt ,Tk )RU (Tt ,Tk )+
∞∑
l=1

∞∑
m=1

`l,m

+

∞∑
l=1

`l,0 +

∞∑
m=1

`0,m (42)

Acorrding to (30), superpose:

Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

≤−

[
ZTl,mQ1Zl,m+ZTl+1,m−1Q2Zl+1,m−1+UT

Tl ,KmRUl,m
]

(43)

From l,m = 1 to l,m = ∞, we can get

∞∑
l=1

∞∑
m=1

`l,m <

∞∑
m=1

Vh(Z1,m)+
∞∑
l=1

Vv(Zl+1,0) (44a)

From l = 1 to l = ∞, m = 0, we can get

∞∑
l=1

`l,0 <

∞∑
l=1

Vv(Zl+1,−1)−
∞∑
l=1

Vv(Zl+1,0)+ Vh
(
Z1,0

)
(44b)

From m = 1 to m = ∞, l = 0, we can get

∞∑
m=1

`0,m <

∞∑
m=1

Vh(Z0,m)−
∞∑
m=1

Vh(Z1,m)+ Vv
(
z1,−1

)
(44c)

According to (44a), (44b), (44c),

∞∑
l=1

∞∑
m=1

`l,m +

∞∑
l=1

`l,0 +

∞∑
m=1

`0,m

<

∞∑
l=1

Vv(Zl+1,m)+Vh
(
Z1,0

)
+

∞∑
m=1

Vh(Z0,m)+ Vv
(
Z1,−1

)
<V (Z1,0)+

S1∑
l=1

Vv(Zl+1,−1)

+

S2∑
m=1

Vh(Z0,m) ≤ sV (Z1,0) ≤ sθ1 (45)

Then

J∞(Tt ,Tk )

≤

[
ZT (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)Q2

Z (Tt + 1,Tk − 1)+ UT (Tt ,Tk )RU (Tt ,Tk )+ sθ1

]
(46)

The optimization problem in the time Tt of batch Tk can be
solved by the following formula:

min
Ul,m,l,m≥0

ϕ (47)

where J∞(Tt ,Tk ) ≤ ϕ.
The optimization problem can be solved by transforming

it into a linear matrix inequality

[ZT (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)

×Q2Z (Tt + 1,Tk − 1)

+UT (Tt ,Tk )RU (Tt ,Tk )+ sθ1] ≤ ϕ (48)

(48) is equivalent to
−ϕ +4 ZT (Tt ,Tk ) ZT (Tt + 1,Tk − 1) UT (Tt ,Tk )

∗ −Q−11 0 0

∗ ∗ −Q−12 0

∗ ∗ ∗ −R−1


≤ 0 (49)

where 4 = sθ1,

min
Ul,m,l,m≥0

ϕ (50)

The constraints are (25) and (49).
For the input constraint of equation (26), combined with

Lemma 1 and (24), the following exists:∥∥Ul,m∥∥2
=

[
Zl,m

Zl+1,m−1

]T [
Y1 Y2

]T [
Y1 Y2

] [ Zl,m
Zl+1,m−1

]

≤

[
Zl,m

Zl+1,m−1

]T [
r2mL
−1
1 0
0 r2mL

−1
2

][
Zl,m

Zl+1,m−1

]
≤ ZTl,mr

2
mL
−1Zl,m ≤ r2m (51)

For the output constraint of equation (27), combined with
Lemma 1, the following exists:∥∥yel,m∥∥2 = ∥∥ḠZl,m∥∥2 = ZTl,mḠ

T ḠZl,m

≤ ZTl,my
2
mL
−1Zl,m ≤ y2m (52)

Theorem 2: Assume υ̃(Tt ,Tk ) 6= 0 holds. For given positive
definite matricesQ1,Q2 ∈ <

(nx+ly)×(nx+ly), and R ∈ <mu×mu ,
and positive numbers α > 1, β > 1, γ > 0, if the 2D-
FM system in (11) is solvable if there exist positive definite
symmetric matrices X > 0,Y > 0, P̄ > 0, S1 > 0, S2 > 0,
appropriate dimension matrices

_

Aci,
_

Bci,
_

Cci,
_

Dci(i = 1, 2)
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and scalars ε > 0, θ1 > 0, and λ > 0 such that the following
LMIs hold:211 212 241
∗ 214 0
∗ ∗ 242

 < 0 (53)

αS1 + βS2 < 511 (54)

−51,1 512 t1513 0 514 515

∗ −(1− λ)S1 0 524 0 0

∗ ∗ −(1− λ)S2 534 0 0

∗ ∗ ∗ −εI 0 0

∗ ∗ ∗ ∗ −ε−1 0

∗ ∗ ∗ ∗ ∗ −
λ

γ 2
I


< 0 (55)[
−1 Z0,0
∗ −P̄−1

]
≤ 0 (56)−r

2
m521 0

∏
23

∗ −r2m531
∏

33

∗ ∗ −I

 < 0 (57)

[
−y2mP̄

−1 Ḡ

∗ −I

]
≤ 0 (58)

where

241 =

 0 514 515
524 0 0
534 0 0

 ,
242 =

−εI 0 0
∗ −ε−1I 0
∗ ∗ −θ−11 γ 2I

 ,
∏
15

=

[
XD1
D1

]
.

If X ,Y ,
_

Aci,
_

Bci,
_

Cci,
_

Dci(i = 1, 2) are the feasible solutions
of matrix inequalities (53)-(58), then the parameters of con-
troller (10) with output feedback can be designed as (28).
If M ,N are full rank matrices that satisfy the condition

XY + MNT
= I , then they can be obtained by a singular

value decomposition of the matrix I − XY .
Proof:When υ̃(Tt ,Tk ) 6= 0, Similar to the Theorem 1:

min
Ul,m,l,m≥0

max J̄∞(Tt ,Tk )
[A,B,C]∈�

J̄∞(Tt ,Tk ) =
∞∑
l=0

∞∑
m=0

¯̀l,m =

N−1∑
l=0

N−1∑
m=0

¯̀l,m + Vm(ZN ,N )

(59)

where

¯̀l,m = ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1 + UT
l,mRUl,m

− (γ )2υ̃Tl,mυ̃l,m

The following variables are defined as follows:

φ̄l,m =

 Zl,m
Zl+1,m−1
υ̃l,m

 (60)

The sufficient condition for the robust stability of the closed-
loop system in (11) is the existence of positive definite sym-
metric matrices P,P1,P2 that make (61) true.

Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

= ZTl+1,m(P1 + P2)Zl+1,m

−ZTl,mP1Zl,m − Z
T
Tl+1,Km−1P2Zl+1,m−1

≤ ZTl+1,mPZl+1,m − Z
T
l,mP1Zl,m − Z

T
l+1,m−1P2Zl+1,m−1

≤ −

[
ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1

+UT
l,mRUl,m − (γ )2υ̃Tl,mυ̃l,m

]
(61)

(61) can be translated into

φ̄Tl,mψ̄φ̄l,m < 0⇔ ψ̄ < 0 (62)

where Ul,m = Y1Zl,m + Y2Zl+1,m−1,

ψ̄ = ζ T1 θ1L
−1ζ1 − ζ

T
2 θ1L

−1
1 ζ T2 − ζ

T
3 θ1L

−1
2 ζ T3 +ζ

T
2 Q1ζ

T
2

+ ζ T3 Q2ζ
T
3 − ζ

T
4 Rζ

T
4 + ζ

T
5 γ

2ζ T5 ,

ζ1 =
[
Ā1+1Ā1+B̄1Y1+1B̄1Y1 Ā2+B̄1Y2+1B̄1Y2 D̄

]
,

and

ζ2 =
[
I 0 0

]
, ζ3 =

[
0 I 0

]
, ζ4 =

[
Y1 Y2 0

]
,

ζ5 =
[
0 0 I

]
.

Applying Lemma 1 and Lemma 2 to Equation (62), we can
obtain 221 222 251

∗ 214 0

∗ ∗ 242

 < 0 (63)

where

251 =

 0 L−1Ē L−1D̄

F̄T1 + Y
T
1 F̄

T
2 0 0

Y T2 F̄
T
2 0 0


Let L−1 = P̄, P̄ =

[
Y N
NT W

]
, P̄−1 =

[
X M
MT K

]
,31 =[

X I
MT 0

]
and multiply (63) on the left by 3̃T

1 =

diag (3T
1 ,3

T
1 ,3

T
1 , I , I , I , I , I , I ) and on the right

by 3̃1; then, we can obtain231 232 261

∗ 214 0

∗ ∗ 242

 < 0 (64)
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where

261 =

 0 3T
1 Ē 3T

1 D̄

3T
1 (F̄

T
1 + Y

T
1 F̄

T
2 ) 0 0

3T
1 Y

T
2 F̄

T
2 0 0

 ,
3T

1 D̄ =

[
XD1

D1

]

Notably, (64) is equivalent to (54). According to (24), αL−11 +

βL−12 < L−1, so αP1+βP2 < P. Therefore, (54) and (55) are
sufficient conditions for Equation (61). Similar to Theorem 1,
the closed-loop system in (11) is robustly stable.

From the superposition of inequality (61), we can
obtain (65), as shown at the bottom of the page. Then,

−sV (Z (Tt ,Tk )) ≤ −
∞∑
l=0

∞∑
m=0

¯̀l,m (66)

Referring to Theorem 1, the following can be obtained
from (56):

V (Z (Tt ,Tk )) = ZT (Tt ,Tk )ψlZ (Tt ,Tk ) ≤ θ1 (67)

where θ1 is the upper bound of V (Z (Tt ,Tk )). Then,

J̄∞(Tt ,Tk ) =
∞∑
l=0

∞∑
m=0

¯̀l,m ≤ sV (Z (Tt ,Tk )) ≤ sθ1 ≤ θ

Applying Lemma 1 and Lemma 2 to Equation (55), we can
obtain

ζ T1 L
−1ζ1−ζ

T
2 (1− λ)L

−1
1 ζ2−ζ

T
3 (1−λ)L

−1
2 ζ3−ζ

T
5
λ

γ 2 ζ5<0

When (63) is multiplied on the left by φ̄Tl,m and on the right
by φ̄l,m, we can obtain:

1
θ1

{
ZTl+1,mPZl+1,m − (1− λ)

[
Vh(Zl,m)+ Vv(Zl+1,m−1)

]}
− λ

1
γ 2 υ̃

T υ̃ < 0 (68)

The following can be obtained from the above equation:

1
θ1
V (Zl+1,m) ≤ (1− λ)

1
θ1

[
Vh(Zl,m)

+Vv(Zl+1,m−1)

]
+ λ

1
γ 2 υ̃

T υ̃

≤ (1− λ)
1
θ1
V (Zl,m)+ λ

1
γ 2 υ̃

T υ̃

≤ (1− λ)+ λ = 1 (69)

Thus, when perturbations are involved, the traditional asymp-
totic stability cannot converge to the origin. In contrast, there
exists a robust positive definite invariant set:

9 := {Z |V (Z ) ≤ θ1} (70)

It is satisfied that the system states converge to this set.
For ∀Z ∈ 9, there exists

α3V (|Z |) ≤ V (Z ) ≤ α3V (|Z |) (71)

where α3, α4 ∈ K∞ and

V (Z )+ − V (Z )

≤ −

[
ZTl,mQ1Zl,m + ZTl+1,m−1Q2Zl+1,m−1

+UT
l,mRUl,m − (γ )2υ̃Tl,mυ̃l,m

]
(72)

(λmin)∗ |Z |2 ≤ V
∗

(Z ) ≤ (λmax)∗ |Z |2 (73)

When Z0,0 = Z (Tt ,Tk ) and U0,0 = U (Tt ,Tk ), equation (59)
is equivalent to

J̄∞(Tt ,Tk )

=

∞∑
l=0

∞∑
m=0

¯̀l,m = ¯̀0,0 +

∞∑
l=1

∞∑
m=1

¯̀l,m +

∞∑
l=1

¯̀l,0 +

∞∑
m=1

¯̀0,m

= ZT (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)

×Q2Z (Tt + 1,Tk − 1)

+UT (Tt ,Tk )RU (Tt ,Tk )− (γ )2υ̃T (Tt ,Tk )υ̃(Tt ,Tk )

+

∞∑
l=1

∞∑
m=1

¯̀Tl ,Km +

∞∑
l=1

¯̀l,0 +

∞∑
m=1

¯̀0,m (74)

∞∑
l=0

∞∑
m=0

{
Vh(Zl+1,m)− Vh(Zl,m)+ Vv(Zl+1,m)− Vv(Zl+1,m−1)

}

=

∞∑
m=0

Vh(Z1,m)− Vh(Z0,m)+ Vv(Z1,m)− Vv(Z1,m−1)+ Vh(Z2,m)
−Vh(Z1,m)+ Vv(Z2,m)− Vv(Z2,m−1)+ . . .+ Vh(Z∞+1,m)
−Vh(Z∞,m)+ Vv(Z∞+1,m)− Vv(Z∞+1,m−1)


=

∞∑
m=0

(Vh(Z∞+1,∞)− Zl+1,−1)+
∞∑
l=0

(Vv(Zl+1,∞)− Vv(Z0,m)

= −

s2∑
m=0

Vh(Z0,m)−
s1∑
l=0

Vv(Zl+1,−1)

≥ −s2Vh(Z0,0)− s1Vv(Z1,−1)

≥ −sV (Z0,0) = −sV (Z (Tt ,Tk )) (65)
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Similar to theorem 1, we can obtain:

J̄∞(Tt ,Tk )

<

 Z
T (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)Q2

Z (Tt + 1,Tk − 1)+ UT (Tt ,Tk )RU (Tt ,Tk )

− (γ )2υ̃T (Tt ,Tk )υ̃(Tt ,Tk )+ sθ1


(75)

The optimization problem at time Tt of batch Tk can be solved
by the following formula:

min
Ul,m,l,m≥0

ϕ (76)

where J̄∞(Tt ,Tk ) ≤ ϕ.
The optimization problem can be solved by transforming

it into a linear matrix inequality:

[ZT (Tt ,Tk )Q1Z (Tt ,Tk )+ ZT (Tt + 1,Tk − 1)

×Q2Z (Tt + 1,Tk − 1)

+UT (Tt ,Tk )RU (Tt ,Tk )+ sθ1] ≤ ϕ (77)

(77) is equivalent to
−ϕ +4 ZT (Tt ,Tk ) ZT (Tt + 1,Tk − 1) UT (Tt ,Tk )
∗ −Q−11 0 0
∗ ∗ −Q−12 0
∗ ∗ ∗ −R−1


≤ 0 (78)

where 4 = sθ1 and

min
Ul,m,l,m≥0

ϕ (79)

The constraints are (56) and (78).

C. CONTROLLER PARAMETER OPTIMIZATIONBASED ON
THE PSO ALGORITHM
The basic principle of the PSO algorithm can be described as:
a group is composed ofmultiple particles in high-dimensional
space flight at a certain speed, and each particle in the search
considers the best particle and the best group in the search
history of the other particles on the basis of the speed and
position updates.

vi,k+1 = w vi,k + c1ξ (pi,k − x i,k )+ c2η(pg,k − x i,k )

x i,k+1 = x i,k + vi,k+1 (80)

where vi,k is the velocity vector of the ith particle in the
kth iteration, vi,0 is initial iteration speed of the ith particle,
x i,k is the position of the ith particle in the kth iteration, w
is the inertia weight, c1 and c2 are the learning factors or
acceleration coefficients, ξ and η are uniformly distributed
random numbers between [0, 1], pi,k is the optimal location
of the ith particle in the kth iteration, and pi,k is the global
optimal position of all particles in the kth iteration.
Let x be the vector composed of all the elements in

controller Ac1,Bc1,Cc1,Dc1,Ac2,Bc2,Cc2,Dc2, andit is the
decision variable in the optimization problem, where x ∈ R40.

Our goal is to obtain min
x∗j −|x

∗
j |≤xj≤x

∗
j +|x

∗
j |
J (x), j = 1, 2, . . . , 40,

where xj is the jth component of x, x∗j is the jth component of
x∗, and x∗ is the vector composed of all elements in the con-
troller parameters A∗c1,B

∗

c1,C
∗

c1,D
∗

c1,A
∗

c2,B
∗

c2,C
∗

c2,D
∗

c2 that
are obtained by the traditional method. x∗ is the initial itera-
tion position in (80). The optimal position mentioned above
refers to the position when the performance index is mini-
mized, and the same constraint x∗j − |x

∗
j | ≤ x

i,k
j ≤ x

∗
j + |x

∗
j |

is applied to each particle position in (80), where x i,kj is the
jth component of the ith particle in the kth iteration.
In simple terms, the PSO algorithm is used to find a better

solution near the controller obtained by the traditional method
to make the function value of the performance index J as
small as possible.

In the PSO algorithm with the above constraints, the initial
total number of particles is set as 100, the inertia weight is
set as 0.5, the learning factors c1 and c2 are set as 1.5, and
k ≤ 300 (i.e., the number of iterations is 300).

IV. SIMULATION
The injection molding process is a typical multistage pro-
duction process in the chemical industry. Each product pro-
duction mainly includes five steps, that is, the Clamping
period → Injection period → Packing period → Cooling
period→Mold opening period. The injection speed and other
parameters of the injection period need to be controlled with
high precision to achieve an increase in the final product
yield. Here, we take the injection period as an example to
consider its control effect.

The control speed parameters are taken as the research
object. First, the response to the injection speed (output) of
the proportional valve (input) is determined as an autoregres-
sive model, and the mathematical model in the frequency
domain of the injection section of the injection molding
process is established as follows:

IV
VO
=

1.239z−1 − 0.9282z−2

1− (1.607+ 0.1δ)z−1 + (0.6089+ 0.1δ)z−2
(81)

where IV is the injection speed and VO is the valve
opening.

The state space model of model (81) is expressed as

x(Tt + 1,Tk )=

([
1.607 1

−0.6089 0

]

+

[
0.1δ(Tt ,Tk ) 0

0.1δ(Tt ,Tk ) 0

])
x(Tt ,Tk )

+

([
1.239
−0.9282

]
+

[
0.1δ(Tt ,Tk )

0.1δ(Tt ,Tk )

])
u(Tt ,Tk )+ υ(Tt ,Tk )

y(Tt ,Tk ) =
[
1 0

]
x(Tt ,Tk )

(82)
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FIGURE 2. Tracking performance comparison with/without extended
information.

FIGURE 3. Tracking performance comparison with/without PSO.

where the variable δ(Tt ,Tk ) varies randomly in the
range [0, 1].

The set-point under every batch is set as:{
yr (Tt ) = 15 0 ≤ Tt ≤ 141
yr (Tt ) = 30 141 < Tt ≤ 282

(83)

In order to verify the effectiveness of the control method
proposed in this paper, under repetitive disturbance and non-
repetitive disturbance, the control effects without extended
information, with extended information, and with extended
information combined with PSO algorithm are compared.

A. CASE 1: ROBUSTNESS TO REPETITIVE DISTURBANCE
As seen from the above simulation experiments, the state
space model of the injection period is (82), where υ(Tt ,Tk )
is the disturbance of the injection period and satisfies υ =
cos(Tt )×

[
0.1 0.2

]T . In this case, the external disturbance is
only determined by time.

As shown in Fig.2, the tracking performance of the system
with or without extended information under repetitive distur-
bance is compared. It can be seen from Fig.2 that the track-
ing performance of the system with extended information

FIGURE 4. Output response of systems under repetitive disturbances.

is significantly better than that of the system without
extended information, and it can converge to the stable state
faster.

In Fig.3, the tracking performance of the system optimized
by PSO is compared with that of the system not optimized
by PSO when the system has extended information under
repetitive disturbance. It can be seen from Fig.3 that the
tracking performance of the system optimized by PSO is also
better than that of the system not optimized by PSO, and the
same is true when converging to a steady state.
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FIGURE 5. Tracking performance comparison with and without extended
information.

FIGURE 6. Tracking performance comparison with/without PSO.

Fig.4 shows output response of systems under repetitive
disturbances. Figs.4(a, b and c) show the output response
without extended information, with extended information,
andwith extended information combinedwith PSO algorithm
in the 1st, 5th, 10th and 20th batches, respectively. Compared
Fig.4(a) with Fig.4(b), Fig.4(b) can almost track the given
output trajectory in the first batch, and the fluctuation time
in subsequent batches is shorter. Compared Fig.4(b) with
Fig.4(c), it is obvious that the output tracking using the opti-
mized algorithm is faster, as shown in Fig.4(c), the first batch
of output trajectories. Not only that, the fluctuation in the ini-
tial time of subsequent batches is also small. Under repetitive
disturbance, the tracking performance with extended infor-
mation is better than that without extended information, and
the tracking performance of PSO with extended information
is better than that only has extended information.

B. CASE 2: ROBUSTNESS TO NON-REPETITIVE
DISTURBANCE
In this case, robustness against non-repetitive disturbances
is shown. The real-time dynamics of the system are given
in (82), where the nonrepeated disturbance υ(Tt ,Tk ) satisfies

FIGURE 7. Output response of systems under nonrepetitive disturbances.

υ = 0.3 ×
[
11 12

]T and 1i (i = 1, 2, 3) varies randomly
in the range [0, 1] and υ(Tt ,Tk ) depends on both Tt and Tk .
As shown in Fig.5, the tracking performance of the system

with or without extended information under non-repetitive
disturbances is compared. It can be seen from Fig.5 that the
tracking performance of the system with extended informa-
tion is significantly better than that of the system without
extended information, and it can converge to the stable state
faster in about four batches, and is close to zero error tracking.
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Similar to the results given in Fig.5, under non-repetitive
disturbances, the control performance is obviously better with
the optimization algorithm, as shown in Fig.5.

Similar to Fig.4. Fig.7 still shows output response of
the system, but in the case of non-repetitive disturbances.
As shown in Fig.4, the control effect is the best by applying
PSO with extended information. Of course, affected by non-
repetitive disturbances, the output curve obviously fluctuates
near the given trajectory.

V. CONCLUSION
For a single-phase batch process with uncertainties and
unknown disturbances, a PSO-based two-dimensional output
feedback robust constrained MPC method is proposed by
introducing a new model formed by extended information,
combining ILC and MPC. We optimize and adjust perfor-
mance index parameters through PSO algorithm such that the
designed output feedback predictive controller achieves bet-
ter control effects. Finally, take the injection molding process
as an example, compared with the existing results, this fact is
also proved.
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