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ABSTRACT The article proposes a methodology for optimizing the process of irrigation of crops using a
phytoindication system based on computer vision methods. We have proposed an algorithm and developed
a system for obtaining a map of irrigation for maize in low latency mode. The system can be installed
on a center pivot irrigation and consists of 8 IP cameras connected to a DVR connected to a laptop. The
algorithm consists of three stages. Image preprocessing stage - applying an integrated excess green and
excess red difference (ExGR) index. The classification stage is the application of the method that we choose
depending on the system’s operating conditions. At the final stage, a neural network trained using the
Resilient Propagation method is used, which determines the rate of watering of plants in the current sector
of the location of the sprinkler. The selected methods of pretreatment and classification made it possible
to achieve an accuracy of plant identification up to 93%, growth stages - up to 92% (with unconsolidated
maize sowing and good lighting). System performance up to 100 plants in one second, which exceeds the
performance of similar systems. The neural network showed an accuracy of 92% on the training set and 87%
on the test set. Dynamic analysis of spatial and temporal variability leads to an increase in productivity and
efficiency of water use. In addition, given the ubiquitous distribution of agribusiness management systems,
this approach is quite simple to implement in the farm’s conditions.

INDEX TERMS Artificial neural networks, computer vision, image classification, irrigation, machine
learning.

I. INTRODUCTION
According to statistics, agricultural production on a global
scale over the past half-century has grown 2.5-3 times, and
the growth of acreage was about 12%. In addition, according
to UNESCO data, agriculture is undoubtedly the largest con-
sumer of water, while 70% of the total freshwater intake is
used for irrigation [1]. In water-stressed regions, irrigation is
of fundamental importance, as irrigated agriculture accounts
for 16% of the world’s cultivated area, which produces 30%
to 40% of the world’s food [2]. At the same time, the area
of irrigated land has more than doubled over fifty years
and comprises on average more than 16% of all agricultural
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land, and the volume of water withdrawn for irrigation has
almost doubled. FAO’s projected 1-2% annual growth in
global irrigated areas, as well as trends in climate change
(temperature and precipitation), in the next 20 years could
lead to a significant increase in water consumption (according
to FAO estimates by 14%) and energy, which in turn puts
forward the problem of saving water, energy and material and
technical resources, protecting the natural environment [2].
Traditional methods of planning irrigation based on visual
inspection lead to significant water losses and raise the issue
of optimizing irrigation. All of this has contributed to the
emergence of various methods of controlled irrigation such
as sprinkler, drip, and furrow irrigation. The introduction
of these methods allows to reduce water losses by 30–70%
and contributes to the sustainable development of irrigated
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agriculture [3]. Further development of optimization methods
led to the emergence of the so-called precision irrigation,
which allows you to estimate the amount of water, irri-
gation time, and maintains the exact water content in the
soil, depending on the needs of the growth and development
of crops. In this regard, technologies of precision farming
have become widespread, which involve considering spa-
tial and temporal variability and differentiating the use of
resources [4], [5].

In this regard, a key problem of irrigation management
arises - its optimization both from the point of view of irri-
gation technique and from the point of view of technology.
Classical water resources management is based on the use of
uniformly introduced resources across the field, considered
as a single spatial unit and if the actual operating parameters
of the sprinkler equipment coincide with the theoretical ones.
However, on the one hand, sprinkler technology is a complex
dynamic system, the operation of which is influenced by
many stochastic factors. On the other hand, the object of
the impact of technology - the field is a complex biological
system with Spatio-temporal heterogeneity of the character-
istics of soil, climate, plants, and, therefore, uneven need for
irrigation [6], [7].

The operation of irrigation equipment plays an important
role in irrigated agriculture. Optimizing irrigation equipment
is an important strategy for conserving resources, increasing
productivity, and improving production efficiency. Among
the various systems, one can distinguish Center Pivot Irriga-
tion Systems, which account for up to 23% of the total area
irrigated by sprinkler irrigation systems [8]. And in Russia,
for example, about 22% of the total irrigated area is irrigated
with such systems.

A. PRECISION AGRICULTURE, DIGITALIZATION, AND
ARTIFICIAL INTELLIGENCE
In connection with the role played by Center Pivot Irrigation
systems (CPI), numerous studies are being carried out to
improve the technical parameters of these systems: improving
the uniformity of irrigation, modeling sprinklers, and lateral
corner joints [9]–[11]. In addition, the Precision Agricul-
ture methodology appears for such systems as well. Variable
Rate Irrigation (VRI) considers Spatio-temporal variability
by delivering a variable amount of water to a specific area
following crop water requirements. At the same time, for
sprinkler systems of circular action, VRI assumes either irri-
gation at a controlled speed (assumes a change in the irriga-
tion rate in the direction of a moving sprinkler by changing
the speed of its movement) or irrigationwith a controlled zone
(involves a change in the irrigation rate both along the side
pipeline and in the direction of movement sprinkler) [12].
Many scientists have been involved in the development and
improvement of VRI methods [12]–[14] since the creation of
optimal VRI solutions is rather difficult and must consider
a large number of factors. Some scientists considered the
properties of water in the soil as a basis for monitoring,
others - the state of plants. Thus, in the study [12], automatic

control of the speed of movement is based on technologies
for monitoring the electrical conductivity of the soil and
altimetry, the moisture content in the soil, and vegetation
indices obtained from satellite images. In [13], the interac-
tion between spatially changing soil properties and the time-
varying dynamics of water in crops is investigated. It is shown
that modeling soil moisture depletion can be an effective
planning tool in VRI. A decision support system for variable
rate irrigation is presented in a study [14]. The system is
based on the vegetation index (VI), obtained after processing
multispectral images obtained by unmanned aerial vehicles.
And the evapotranspiration model and the crop water stress
index are derived from their established relationships with
the vegetation index. Work [15] summarizes the advantages
and disadvantages of the variable rate irrigation methodol-
ogy. Until now, these methods need further development and
improvement as further studies of space-time variability are
needed to make these improvements.

Digitalization is becoming one of such powerful tools for
increasing the efficiency of both irrigation and agriculture
in general. The current stage of development of precision
farming and digital agriculture makes it possible to widely
use such tools based on artificial intelligence, and the Inter-
net of Things (IoT) is the basis for intelligent agriculture.
Thus, [16] provides an overview of best practices in the
implementation of sensor irrigation systems, along with the
most used nodes and wireless technologies. In such systems,
wireless sensor networks and all kinds of sensors (soil mois-
ture, soil temperature, ambient temperature, etc.) are actively
used. Optimization of irrigation is achieved in various ways,
in [17] - by precise control of the water valve using neural
network forecasting of soil water demand, and in [18], for
example, by integrating an automated irrigation system with
an irrigation decision support tool. In addition, all sorts of
applications are created for data analysis and decision support
at all stages of the agricultural cycle. SWAMP platform [19]
for intelligent water management based on the Internet of
Things for precision irrigation. The system for optimal irri-
gation of crops [20] is based on a wireless sensor network
using nodal sensors in the field and data management via
a smartphone and a web application. [21] presents a study
on the integration between various tools to improve water
efficiency in agriculture (field sensors and remote sensing).
The systems considered in [22], [23] involve data monitoring,
their preliminary processing, integration, synchronization,
and storage with subsequent use for intelligent irrigation.
Thus, the digitalization of agriculture makes it possible to
make the transition from classical control systems to systems
with artificial intelligence.

In recent years, many researchers in the development of
the Precision Agriculture methodology in general and for
irrigation management use such a tool as artificial neural net-
works. The range of applications of artificial neural networks
in agriculture is very wide. Researchers are using these tools
to model agricultural production, replacing classical mathe-
matical models. They can be both part of precision farming
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systems and decision support. An overview of the applica-
tion is presented in [24], [25] and includes forecasting in
agriculture, intelligent monitoring of diseases and pests, and
weed control. Artificial intelligence methods are also used
to optimize storage and transportation processes. In addition,
AI methods contribute to the improvement of the automation
of various processes.

The introduction of artificial intelligence in agriculture
is associated with the problems of the systematic collec-
tion of data from multiple sources of storage and anal-
ysis. Approaches to solving these problems are outlined
in [26], [27] and represent pilot projects for the analysis
of advanced control systems in various natural and climatic
conditions. One of the key artificial intelligence techniques,
such as machine learning, has significant potential for solving
numerous problems. The work [28] provides an overview
of the use of machine learning in agriculture, namely, the
management of water resources, soil, and animal husbandry.
Big data and machine learning (ML) open new possibilities
for understanding agricultural processes using data, along
with this, there are numerous problems of integrating these
technologies that require research and solution [29]. Machine
learning is an important decision support tool, for example
in [30] it has found application in yield forecasting, including
making decisions about crop types and cultivation technolo-
gies during the growing season. Artificial intelligence meth-
ods are gaining importance in agricultural robotics. A study
of the similarities and differences between industrial and
field robots is presented in [31], along with a suggestion of
potential methods for use on farms.

B. ARTIFICIAL INTELLIGENCE IN IRRIGATED
AGRICULTURE
In recent years, data-driven models have begun to play
a key role in comparison with classical physical models.
Methods of artificial intelligence, machine learning (ML),
artificial neural networks show good predictive character-
istics, more quickly and efficiently process large arrays of
Spatio-temporal data. This is especially important for
irrigation management due to the large Spatio-temporal vari-
ability of external conditions and, often, the need for contin-
uous calibration in real-time. These methods have numerous
applications for irrigation and water management. Some sys-
tems [32] are based on an intelligent algorithm that considers
the received sensor data together with the parameters of the
weather forecast (precipitation, air temperature, humidity,
and UV radiation) for the near future. In others [17], [33],
irrigation is optimized by precise control of the water valve,
current sensors using neural networks forecasting soil water
demand, or fuzzy inferences [34] by creating prescriptive
maps to control the rotation speed of the central axis based
on remote sensing. The combination of big data and machine
learning technologies with remote sensing technologies leads
to the creation of new methods and algorithms presented
in [35]. And [36] presents the development of a combined
intelligent agricultural machine that can automatically weed

and irrigate at a variable rate on a cultivated field. Some
approaches to the intellectualization of CPI control systems
are considered in [37].

One of the directions is the creation of intelligent decision
support systems. In [38], a comparative study of various
algorithms and training methods (ANN, linear regression
(LR), random forest regression (RFR) and auxiliary vector
regression (SVR), k-nearest neighbor (kNN), and adaptive
gain (AdaBoost) algorithms were carried out to determine the
admissibility of the erroneousness of the experts’ decisions.
Such systems are also developed at the level of management
of irrigation systems. The AWARD system [39] uses artificial
neural network techniques to predict water level, a fuzzy
logic control algorithm to estimate the sluice adjustment
period, and hydraulic equations to adjust the sluice level.
An example is DLiSA’s intelligent irrigation system based on
a deep learning neural network for predicting the volumetric
moisture content in the soil, the period of irrigation, and
the spatial distribution of water, considering the need for
it [40]. In addition, models of artificial neural networks and
machine learning are used to calculate important irrigation
parameters, such as soil moisture [41], soil salinity [42],
horizontal daily global solar irradiation predictive model-
ing [43], modeling the water-soil regime and transport of
dissolved substances [44]. And, artificial neural networks,
machine learning to use to develop strategies for irriga-
tion management with given economic parameters to reduce
water and energy consumption without compromising crop
yields [45]–[47].

Yang et al. [48] proposed an integrated CNN model based
on hyperspectral and RGB images taken at 5 stages of corn
growth. Pang et al. [49] based on drone images using the com-
bined convolutional neural network MaxArea Mask Scoring
RCNN, areas of poor germination of corn were identified.
The authors noted the high processing speed, however, does
not allow the use of this system for real-time applications.
Zhong et al. [50] recorded different stages of plant growth
using a method based on a combination of time series with
convolutional neural networks. Kuznetsova et al. [51], [52]
use high-speed computer vision techniques YOLOv3 and
YOLOv5 on a robotic crop picker.

Despite a large amount of research, there are still many
open problems in the field of optimal irrigation management
using CPI systems. The variable rate irrigation approach
has undoubtedly proven to be effective. However, an anal-
ysis of the current state of research on VRI optimization
by CPI systems allows us to identify the main problem
points:
• The complexity of collecting the required data set, the
lack of time series data on the state of a particular field,
and crop yields in this field, considering the temporal
climatic variability.

• Difficulty in choosing appropriate data analysis methods
to find a compromise between the two paradigms for
monitoring spatial variability - water properties in soil
and plant health.
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• Difficulty in applying more accurate methods of intel-
lectual analysis in dynamics during the entire agricul-
tural season.

• Difficulty in the technical implementation of the pro-
posed solutions, for example, expensive sensors, sen-
sors, and other equipment.

With current advances in proximal and non-invasive sens-
ing technologies, IOTs can provide a wealth of information
about soil, crops, and related environmental properties, and
artificial intelligence techniques to analyze all this data are
contributing to new approaches to improve the situation. The
use of computer vision systems for condition monitoring
seems to be quite interesting due to the relatively inexpensive
implementation and the possibility of using more accurate
methods of intellectual analysis. Optimal variable rate irriga-
tion management requires a combination of both computer
vision systems and additional climate and remote sensing
data to detect Spatio-temporal dynamic variability in crop
water requirements.

The purpose of this study is to develop a methodology
for optimizing irrigation by creating dynamic maps of irri-
gation prescriptions. It is based on the implementation of
regular monitoring of the state of crops and the environment
through phytoindication, as well as forecasting the dynamic
variability of the state of water availability to improve irriga-
tion. The proposed solutions offer a combination of neural
network approaches, from the use of multilayer artificial
neural networks to pattern recognition and convolution neural
networks.

The algorithm of the proposed approach is as follows:
At the first step, the Phyto monitoring of the state of the

agricultural crop and the environment is carried out based on
computer vision using convolution neural networks.

At the second step, a dynamic variable forecast is con-
structed based on the time series of data of average daily air
temperature (T), amount of precipitation (R), Air humidity
(AH), Wind speed (WS), and Normalized Difference Water
Index (NDWI) -ability of water availability based on multi-
layer artificial neural networks.

As a result, we obtain dynamic maps of irrigation prescrip-
tions based on the classification procedure of the results of the
first two neural networks.

II. MATERIALS AND METHODS
A. MATERIALS
The study was conducted in the Saratov region of the Russian
Federation. Russia has significant soil and water resources,
but the largest part of its land used for agricultural production
is in areas of risky agriculture with insufficient or excessive
modes of natural moisture. Only 2% of the land in the Russian
Federation is in optimal moisture conditions. The main share
of agricultural products (in value terms) is produced in the
arid zone, where more than 78% of arable land is concen-
trated. The land reclamation fund of the Russian Federation
amounted to an area of 9.45 million hectares of which 75%
was used, including 4.67 million hectares of irrigated land,

of which 82% was used and 4.78 million hectares of drained
land, of which 68% were used [46].

The Volga region is one of the largest regions of Russia,
where land reclamation is developed. The Saratov Region
occupies about 10% of the total area of the Volga Federal
District. TheVolga Federal District is in third place among the
federal districts in terms of reclaimed lands and the leader in
terms of the percentage of irrigated lands in good condition.
Among all regions, the Saratov region ranks first in the district
in terms of the area of reclaimed land - 19%. The main
climatic parameters of the irrigated zone of the Saratov region
are presented in Table 1.

TABLE 1. The main climatic parameters of the study area.

The sums of air humidity deficits in the warm season
increase from north to south from 1800 to 2200 millibars.
On the contrary, the sums of active temperatures decrease in
the same direction from 3500 to 3000 ◦C. The zonal soils of
the left-bank regions (the main irrigation zone) of the Saratov
region are classified as southern chernozems, chestnut of
various subtypes (dark-chestnut, light-chestnut, and chestnut
proper), as well as brown semi-desert in the extreme southeast
of the left bank. In terms of the content of organic matter,
the soils of the Left Bank are rather poor: it varies within
3.0 . . . 5.0% in southern chernozems, 2.5 . . . 4.0% in dark
chestnut soils; 1.5 . . . 3.0% for light chestnut and chestnut.

In the natural and climatic zone of the Saratov region, there
is significant spatial variability of natural conditions, primar-
ily soil, geomorphological, hydrogeological. Analysis of the
data of the geoinformation system for monitoring irrigated
lands showed that within the framework of the site of one
farm, they can be located on 133 contours of 29 soil differ-
ences. Moreover, individual irrigated fields were located on
several soil differences - from 2 to 5.

The quantitative and qualitative composition of irrigation
techniques plays an important role both in the condition of
irrigated lands and in increasing the efficiency of agricultural
production on irrigated lands. In Russia about 22% of CPI
systems are used; in the melioration complex of the Saratov
region, these systems are the main ones.

To collect data, experimental studies were carried out in
the Engelsky district of the Saratov region of Russia (exper-
imental farm �Povolgy� of the Saratov State Agrarian
University). The irrigated area is equipped with the Center
Pivot Irrigation (CPI) system �Cascade�. It is equipped

8580 VOLUME 10, 2022



G. Kamyshova et al.: Artificial Neural Networks and Computer Vision’s-Based Phytoindication Systems for VRI Improving

with GPS trackers, cameras and real-time data is displayed
in the�Agrosignal� digital platform for agribusiness man-
agement (Figure 1). In addition, the�Agrosignal� system
allows collecting data on weather, soil condition, and basic
agrotechnical information about crops, equipment operation
based on weather station sensors, remote sensing, etc. In this
study, the following data were used:

FIGURE 1. The �Agrosignal� system window.

- Climatic data - wind speed and direction, air temperature,
relative air humidity, temperature and humidity of foliage and
soil, atmospheric pressure, amount of precipitation.

- Indices - Normalized Difference Water Index (NDWI).
-CPI information - speed.
An example of a date-set of climatic data for a month

(June 2020) is given in Table 2. The Normalized Difference
Water Index (NDWI) provides information on both the spatial
distribution of water stress on vegetation and its temporal
development. The example of an image of the NDWI index
for the experimental site is shown in Figure 2.

The second component of our system is based on biological
methods for diagnosing anthropogenic changes - this is both
the state of the agricultural crop itself and the state of the
environment. The active use of these methods is associated
with the quick reaction of organisms to any deviations in
the environment from the norm. In our study, these are
the parameters of the soil condition in the irrigated area.
Control is necessary for almost all-important parameters of
the state of the soil. These include the provision of soil
with moisture, mechanical composition, type of oxidation-
reduction regime, etc. We use an approach based on deter-
mining the qualitative properties of the soil using indicator
plants. It is based [53] considering the species diversity of
macrophytes and their indicator significance. Phytoindica-
tors are called plants, plant communities, or their features
that indicate some specific properties of the environment.
Phytoindication is one of the practical uses of various traits
and properties of individual plants or plant communities and
their complexes to obtain qualitative and sometimes quan-
titative characteristics of the environment. With the help
of plants, it is possible to identify individual characteris-
tics of soils: their texture, moisture, acidity, salinity, nutri-
ent supply. Figure 3 shows plant bioindicators used in our
study.

TABLE 2. Data-set: climatic data.

B. CALCULATION OF THE VEGETATION INDEX
For better localization of plants in the image, we use the
vegetation index. This increases the contrast between vege-
tation and soil. Three bands of the spectrum are used as color
sources: red (R), green (G), and blue (B). Since the encoding
of each band is carried out in the range from 0 to 255,
we normalize the image using (1):

r =
R

R+ G+ B
; g =

G
R+ G+ B

;

b =
B

R+ G+ B
; r + g+ b = 1 (1)

Considering the peculiarities of the object of study of video
filming, we are interested in the index of excess green (ExG)
(1) and excess red (ExR) (2). Based on these indices, the
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FIGURE 2. NDWI index snapshot.

FIGURE 3. Plants—bioindicators and the main crop: 1) Cirsium arvense,
2) chamomile, 3) wormwood, 4) main crop—corn.

ExGR index (3) is created.

ExG = 2g− r − b (2)

ExR = 1.4r − b (3)

ExGR = ExG− ExR (4)

The ExGR index results (Figure 4) in an image in which pix-
els range from positive (plant) to negative (soil and residues)
values. This allows segmentation without the need for addi-
tional processing tools such as Otsu, Niblack, etc.

C. USING A DESCRIPTOR
The HOG method assumes that the type of distribution of
image intensity gradients makes it possible to accurately
determine the presence and shape of objects present on it.

The image is split into cells. Histograms hi of the directed
gradients of the interior points are calculated in the cells.
They are combined into one bar chart h= f (h1, . . . , hk), after
which it is normalized in brightness. The normalization factor
can be obtained in several ways, but they show approximately
the same results. We will use the following:

hL =
h√

‖h‖22 + ε
2

(5)

where ‖h‖2 – used norm, ε – some small constant.

FIGURE 4. Images of corn plants at different stages of growth: 1), 3), and
5) color image and 2), 4), and 6) image binarized using the ExGR index.

FIGURE 5. Images of corn plants at different stages of growth: 1), 3), and
5) in grayscale, obtained using the ExGR index and 2), 4), and 6) obtained
by the HOG method.

When calculating the gradients, the image is convolved
with the kernels [−1, 0, 1] and [−1, 0, 1]T, as a result of which
two matrices Dx and Dy of derivatives along the x and y axes
are formed, respectively. These matrices are used to calculate
the angles and magnitudes of the gradients at each point in
the image.

Figure 5 (2, 4, 6) shows the result of applying the HOG
method to an image processed using vegetation index 5
(1, 3, 5). For clarity, only the magnitude of the gradient is
shown (the brighter the pixel, the larger the gradient).

The scale-invariant feature transform (SIFT) descriptor is
used to extract feature points from the image, which are later
used in classifiers. The key point in finding them is building
a pyramid of Gaussians and the difference of Gaussians.
Gaussian - image blurred with a Gaussian filter:

L (x, y, σ ) = G (x, y, σ ) ∗ I (x, y) , (6)

with coordinates (x, y) and blur radius σ ; G (x, y, σ ) – Gaus-
sian kernel; I (x, y)– the value of the original image; ∗ -
convolution operation.

The difference of Gaussians is an image obtained by pixel-
by-pixel subtraction of the Gaussian of the original image
from a Gaussian with a different blur radius (kσ ):

D (x, y, σ ) = L (x, y, kσ)− L (x, y, σ ) (7)
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A pyramid of Gaussians and Gaussian differences is con-
structed. When moving from one level of the pyramid to
another, the dimensions of the images are halved.

After building the pyramids, the singular points are deter-
mined, which are the local extrema of the difference of the
Gaussians. False key points are discarded, and for the remain-
ing ones, their orientation is calculated. The magnitude of the
gradient m and the direction of the gradient θ is determined
from the (8)-(9):

m (x, y) = ((L (x + 1, y)− L (x − 1, y))2

+ (L (x, y+ 1)− L (x, y− 1))2)1/2 (8)

θ (x, y) = tan−1
(
L (x, y+ 1)− L (x, y− 1)
L (x + 1, y)− L (x − 1, y)

)
(9)

In the SIFT method, the descriptor is a vector. Take a
4 × 4 square area centered at the singular point, rotate fol-
lowing the direction of the singular point. Each element of
the area indicates the magnitude of the gradient in eight
directions.

D. IMAGE CLASSIFICATION USING BOVW
BOVW is used to improve the performance of descriptors.
This approach considers the blocks as key parts of the plant,
and each block’s HOG represents the local information of
the corresponding part. Next, we cluster the HOG of all the
blocks in the training set into homogeneous groups using
K-means, and the centers will be the mean value of the
blocks’ HOG within the cluster. (We then group the HOGs
of all the blocks in the training set into homogeneous groups
using K-means, and the centers will be the average of the
HOGs of the blocks in the cluster.) These centers will play
the role of Visual-Words in BOVW (Figure 6).

FIGURE 6. Steps to create a Visual-Words.

III. EXPERIMENTS AND RESULTS
A. INSTALLATION
8 IP cameras were installed on the irrigation system, con-
nected to an 8-channel video recorder, constantly filming
plants. For more efficient video recording, the cameras were
not evenly fixed to the irrigation system. The first camera
was installed at a remote point of the irrigation system. The
removal of the rest was determined by (10):

ri = K ∗
√
(2i− 1)/2 (10)

where i is the ordinal number of the chamber, starting from
the axis of rotation of the irrigation system, ri is the distance to
it. The K coefficient is obtained by substituting the number of
chambers involved and the distance from the axis of rotation
to the most distant point of the irrigation system into this
formula. In our case, with a radius of the irrigation system
equal to 370 meters, the coefficient is 95.5 meters.

We used camcorders with a fixed focal length of 3.6 mm,
matrix size 1/2.8, which allowed us to take pictures with
a viewing angle of up to 96 degrees. The protection class
of the camera is ip67. The protection class was fundamen-
tally important because the cells were constantly exposed to
streams of water. The large viewing angle of the video camera
allows you to track the same plant from different angles while
moving it. This allows you to collect much more information
on each object under study, and therefore more accurately
determine its state and phase of development.

We abandoned cameras with a viewing angle greater than
100 degrees because we must perform additional preprocess-
ing methods to correct aberrations that significantly distort
the image. In addition, the greater the angle at which the
plant is located to the vertical, the more overlap of parts of
nearby growing plants on it, and this leads to serious errors in
classification. Considering the height of the cameras above
the ground (in our case, 1 meter, we came to the optimal
sliding window with a size of 1 ∗ 1 m.

Now about the shooting speed. The IP cameras used oper-
ate at a frequency of 30 Fpx. There is no point in processing
all these frames. This would make our computer vision sys-
tem extremely slow. The number of processed frames per sec-
ond depends on the speed of movement of the irrigation unit
and is determined from the following considerations: each
plant that falls into the sliding window must be processed at
least 2 times. For a linear speed of 0.5 m / s, the point farthest
from the bore axis, from the outermost video camera, 1 image
should be processed in 1 second. If you take images from all
8 cameras (the closer the camera is to the axis of rotation, the
fewer shots you need to take per second), you need to process
no more than 5 shots per second. If the number of weeds is
not significant and the rotation speed of the extreme point
does not exceed 1 m/s, the computer vision system works in
real-time.

When setting up the video system, special attention had to
be paid to protecting the camera lenses from water droplets
and fogging. If we use a cone-shaped casing from direct
moisture penetration.

B. IMAGE PROCESSING TECHNIQUES
Initially, the vegetation index was calculated from the pho-
tograph, which was used to obtain a grayscale and binary
image. For further image processing, we tested three high-
performance methods: SIFT-SVM, HOG-BOVW-BPNN,
and binarization by the ExGR - CNN index. For comparison,
the outdated HOG-CNN method was tested along with them.
The first two methods were applied to grayscale images, and

VOLUME 10, 2022 8583



G. Kamyshova et al.: Artificial Neural Networks and Computer Vision’s-Based Phytoindication Systems for VRI Improving

the third to a binary image. All algorithms used in the work
are implemented using the OpenCV Python library.

The classification was made according to the following
criteria: corn Figure 4, weed from the list of indicators
Figure 3, weed. When corn is identified, the stage of growth
is determined. To train the methods, a dataset was used, of
1500 corn plants at different stages of development. The
dataset was marked by agricultural scientists working on the
farm. In addition, a dataset with indicator plants was used
(from 500 to 800 for each variety). The results of the methods
are shown in Tables 3 and 4.

TABLE 3. Results of the work of methods for the determination of
indicator plants and corn plants.

TABLE 4. The results of methods for determining the stage of growth of
corn.

It can be seen from the results obtained that the classical
HOG - CNN method is significantly inferior to any of the
three selected.

SIFT-SVM is not inferior to the other two in terms of
processing speed, but the results of its work are slightly worse
than the other two. We were unable to choose the best among
the two remaining methods. Even though in the CNNmethod
we used 3 x 3 convolutional kernels (this greatly accelerated
it), the HOG-BOVW-BPNN method is 20% faster, but its
classification results are slightly lower in sunny conditions.
In cloudy weather, the results are reduced for both methods,
but the HOG-BOVW-BPNN method is more stable in reduc-
ing the illumination level [54]. We assume that it makes sense
to use both methods depending on the conditions.

The results of these methods (tables 3 and 4) significantly
exceed the results presented in works on computer vision

in recent years [48]–[50]. This is merit not only of modern
methods of computer vision but also of successful shooting
conditions. The sprinkler removes dust from plant leaves and
the ExGR imaging method works most efficiently.

C. DYNAMIC MAPS OF IRRIGATION PRESCRIPTIONS
A schematic representation of the key algorithm is shown
in Table 5:

TABLE 5. Algorithm.

In the previous works of the authors, a program [55]
was developed for determining the optimal parameters of
humidification in the calculated soil layer for the main crops,
including corn, for a given region. This system also considers
the phases of growth and development of the crop, the type,
and the granulometric composition of the soil. Climate data is
one of the main parameters, both in classical models such as
AQUACROP and in models using artificial neural networks
to predict crop water demand and water availability. In the
developed system, a multilayer neural network model with
input, hidden, and output layers were used. For training, the
Resilient Propagation method was used, which has proven
itself well in this kind of problem.

Ourwork considers several criteria when creating an irriga-
tion map. In addition to the standard ones, such as humidity,
temperature, etc. we consider the current state of the crop
itself relative to the planned one and the presence of indicator
plants. The neural network we use (Figure 7) was trained
using a sample labeled by agronomists based on many years
of research on the dependence of the state of the crop on the
moisture deficit for a given climatic zone. For each specific
case from the sample, they compared the irrigation correction
factor. The HOG descriptor in the monitoring system was not
chosen by chance in our work. One of the main advantages
over other descriptors is that it is very resistant to lighting
changes. Its performance changes slightly in the conditions
in which shooting is usually done.

Based on the results obtained using the HOG -
BOVW - BPNN method and binarization according to the
ExGR - CNN index, the growth stages of plants caught in the
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camera lens are determined. These data are comparedwith the
planned indicators for the given area. Figure 7 (a) presents
the results of the deviation in development from the
planned indicators for 10-15 days of growth (6 plant’s leaf).
Figure 7 (a) shows the center of the reference scale. Each new
division differs from the previous one by 1 day of vegetation.
The scale is not limited to five values and extends both in
one direction and in the other direction. The yellow area is
normal, the red area indicates a lag in plant development from
the norm, and the green areas are ahead.

Our model also considers the distribution of indicator
plants over figure 7 (b). The yellow area corresponds to an
area with an undetected predominance of plants that prefer
moist soils and dry-loving ones. In terms of numbers, this
is either a complete absence of both types of plants or, the
overweight of one of the types is no more than two times.
This corresponds to a value of 3 on the scale figure 7 (b).
Other values are determined according to the principle:

FIGURE 7. The process of obtaining a map of irrigation of crops for corn:
a) map of deviation of the real development of corn plants from the
norm; b) a map of the location of indicator plants; c) current NDWI;
d) water availability variability map; e) maps of irrigation of crops
for corn.

4 - prevalence of moisture-loving over dry-loving in the
range from 2 to 4 times;

5 - prevalence of moisture-loving over dry-loving in the
range from 4 to 8 times;

etc.
Similarly, zones with a predominance of dry-loving plants

are determined.
Another element that we will consider when planning the

irrigation of the field is NDWI figure 7 (c). We receive the
current value of this indicator once every 10 days. To establish
the correct irrigation regime, we created a neural network
that, using previous NDWI results and weather reports, pre-
dicts the dynamic variability of water availability for some
time ahead.

All parameters supplied to the neural network are presented
in numerical values:

• NDWI color gradations are set according to the standard.
They are converted into numerical values in the range
from 0 to 1, where 0 is white (lack of moisture in

the soil), 1 is dark blue (wetland). Intermediate values
are calculated according to the shades of blue.

• Cloudiness is determined by discrete values from
its absence - 0, to complete obscurity of the sun’s
clouds - 3.

• Air humidity - relative humidity ranging from 0 to 100%
• Temperature is measured in degrees Celsius.
• Wind speed is measured in meters per second.

When training the neural network, we used NDWI data in
size (100 images), data from weather stations for the period
of the NDWI study. The neural network was trained using the
Resilient Propagation method [56].

At the final stage of obtaining a map of watering corn,
data from steps 1 and 2 are passed through the second neural
network, which determines the lack of moisture in the soil.
This neural network was trained using the Resilient Prop-
agation method [55] Based on the dataset obtained in the
experimental farm�Povolgy� of the Saratov State Agrarian
University in 2020 and previously marked by agronomical
scientists.

The result of the network is a map of the field, divided into
sections, indicating the amount of water required to irrigate
1 square meter of this section of the field.

Considering the peculiarities of the sprinkler system, the
whole field was divided into sectors figure 7 (e). The param-
eters of each sector were determined based on the parameters
of the sections of which it consists of. On this map, the yellow
area is the base area. It determines the average amount of
moisture required for a given field. The red area means that
this sector requires more moisture than average, the green
area requires less moisture relative to the norm.

The distribution of percentages of the total area under
the influence of the prescription in each irrigation plan with
a dynamic prescription for 6 irrigation actions is shown
in Figure 8.

Computer vision’s-based monitoring allows for a dynamic
assessment of the actual state of culture and depending on the
stage of development. Along with the forecast of water avail-
ability, this makes it possible to overestimate the irrigation
rate.

So, for example, for irrigation actions 5-6, which corre-
sponded to August-September, zones were identified where
the culture reached late stages of growth and, as a result,
a decrease in the amount of irrigation is possible, in contrast
to standard prescriptions, as can be seen in Figure 8.

We carried out a comparative analysis of water consump-
tion when implementing a standard irrigation strategy and
a variable irrigation strategy based on dynamic prescription
maps. Let us introduce the notation:
Pi− standard irrigation rate corresponding to the i-th irri-

gation action.
S – the area of irrigation plot, Sj – part of the area of the

irrigation plot under the influence of the prescription j.

S =
∑5

j=1
Sj (11)
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FIGURE 8. Distribution of percentages of the total area under the
influence of the dynamic prescription.

Then the irrigation amount with standard irrigation, corre-
sponding to the i-th irrigation action.

IAist = SPi (12)

Irrigation amount with dynamic prescription, corresponding
to the i-th irrigation action.

IAiD =
∑5

j=1
Sj(k ijP

i), (13)

where k ij – irrigation correction factor for Sj, corresponding
to the i-th irrigation action, k ij = {0, 8; 0, 9; 1; 1, 1; 1, 2} .
Irrigation correction factor k ij is a numerical expression of

the dynamic prescription map obtained as a result of the third
step of the algorithm. Further development of the method
involves an increase in the set of k ij values, which will lead
to an improvement in the efficiency of irrigation water use
and productivity.

The decrease in the amount of irrigation water (in%)
because of the implementation of a variable irrigation strategy
instead of the standard one can be calculated because of maps
of dynamic prescriptions, the number of irrigation measures,
and the established correction factors based on (11) - (13).

The data of experimental studies of the volume of irrigation
with standard irrigation and the volume of irrigation with
dynamic irrigation for the purpose show an increase in this
indicator in each irrigation action from 0.3% to 1.8%, which
gives an increase in total for all irrigations of 7.4%. At the
same time, the efficiency of the use of irrigation water, which
links the yield of crops per unit of water used, increases due
to an increase in yield by 8.9%.

IV. DISCUSSION
The irrigation technique plays an important role both in the
condition of irrigated land and in improving the efficiency of
agricultural production on irrigated land. In Russia, as well as
on a global scale, about 22 -23% of CPI systems are used. One
method for irrigation management is VRI, but the high imple-
mentation and management costs limit its application. On the
one hand, the recently appeared agribusiness management
systems such as ‘‘Agrosignal’’ allow collecting huge amounts

of data, and on the other hand, even the simplest analogs of
CPI systems have control panels with speed control modules,
which makes it possible to implement inexpensive irrigation
control systems . . .For this, it is necessary to develop maps
of irrigation prescriptions that consider the spatial-temporal
variability of the irrigation site. The purpose of this study was
to develop neural network methods for determining dynamic
maps of irrigation prescriptions for automatic speed control
using 1) phytoindication based on computer vision of the
states of crops; 2) phytoindication based on computer vision
of the state of the soil by plants - indicators; 3) intellectual
analysis of data from monitoring systems of environmental
conditions, the water indices, as well as the knowledge base
of the optimal parameters of irrigation of crops in the region.

The question of defining irrigation zones is fundamental
in this kind of research [13], [14]. From a formal point of
view, the difference in approaches depends on the sets of
available data, methods, and tools for their analysis. In [12],
three main areas are indicated: measurements of soil elec-
trical conductivity, monitoring of vegetation indices based
on satellite images, and data on yield. The study [12], was
based on mapping the NDVI at a certain time for different
purposes. From the point of view of methods, artificial intel-
ligence methods were used to calculate important parameters
of irrigation, such as soil moisture and salinity, modeling
the water-soil regime and the transfer of solutes [41]–[44].
However, all these approaches have drawbacks and require
further research. There is an acute issue of the need to create
maps of prescriptions in dynamics since the state of plants
and the environment has a high dynamic of changes. The so-
called dynamic spatial-temporal adaptation is needed. And
the accuracy of such adaptation can be achieved only by using
a combination of artificial intelligence methods.

In our study, to determine dynamic maps of irrigation pre-
scriptions for automatic speed control, we used the methods
of artificial neural networks, data mining, and phytoindi-
cation based on computer vision of the state of crops and
the state of the soil by plants - indicators. Our model is
field-tested in 2020. The key factors in assessing the impact
of an irrigation strategy are crop yields and the amount of
irrigation water used. An 8.9% increase in corn yields was
recorded compared to a plot using conventional irrigation.
In addition, the data indicate an improvement in the effi-
ciency of irrigation water use. The limitation of this study
is the impossibility of assessing the productivity of each site
through the yield map, which will be done in the future.

Phytoindications based on computer vision of the state of
the soil by plants - indicators can be an additional simple and
cheap tool for analyzing the state of the soil in contrast to the
rather expensive and not always available to farmers methods
of chemical analysis. This study demonstrates the possibility
of widespread use of artificial intelligence methods, contrary
to the opinion about the complexity and high cost of such
solutions. Further researchwill focus on scaling the results for
different farms and climatic conditions with a full assessment
of economic efficiency.
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V. CONCLUSION
Climate change has direct implications for the availability
of water, which requires the development of strategies to
optimize its use. Conventional irrigation systems are based on
the application of a uniform flow across the field, considered
as a single spatial unit. However, fields can often have spatial
heterogeneity in soil characteristics, relief, microclimate, and
crop development. Improving the efficiency of water use is
one of the main tasks facing the heads of farms today. A large
area of crops with a pivot irrigation system both in Russia and
in the world requires a differentiated response to irrigation
management. The study is focused on the development of
neural network methods (from multilayer artificial neural
networks to pattern recognition and convolutional neural net-
works) to optimize irrigation by creating dynamic maps of
irrigation prescriptions using 1) regular monitoring of the
state of crops and the environment through phytoindication;
3) predicting the dynamic variability of the state of water
supply, as well as a knowledge base on the optimal parameters
of irrigation of crops in the region. Since agribusiness man-
agement systems, such as the ‘‘Agrosignal’’ system we use,
are now often used by farmers, the use of complex methods
of artificial intelligence is becoming more accessible. The
results of the implementation showed a positive trend in
decreasing spatial variability and increasing corn yields in
this field. Sensor information, remote sensing, and neural
network techniques have proven to be effective in defining
dynamic control zones and are attractive due to the ease
with which they can be implemented at the field scale. This
relatively simple approach is quite inexpensive for the farmer
and can be implemented on a large scale, which represents
an important and sustainable contribution to improving water
use efficiency in agriculture, especially in the current sce-
nario of global warming and decreasing available water for
agriculture.
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