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ABSTRACT Fault-tolerant real-time systems for emerging critical applications like wearable electronic
healthcaremonitors, consumer-grade unmanned aerial vehicles, or environmental monitoring have to tolerate
errors during operation. If they fail, the consequences are dire. But often their budgets for error mitigation
capabilities are low, which requires to limit mitigation capabilities to the most critical functions of a
system. Still, less critical functions of a system should operate as long as possible, but current state-of-
the-art scheduling approaches either ignore them or suffer from low acceptance rates. Our fully static and
verification friendly mixed-criticality approach guarantees mentioned systems that the most critical system
functions are always available, and maximizes the time where less critical system functions are operational:
We prove that our approach is feasible, and extends the system operation time while providing full service
by a factor of 1.93 with a probability of 0.92. With 1.56 higher acceptance rates compared to similar state-
of-the-art approaches, the integration of functionalities of different criticality in one fault-tolerant system
succeeds more and more often, which especially benefits emerging critical applications with limited budgets
for error mitigation.

INDEX TERMS Real-time systems, scheduling algorithms, system recovery.

I. INTRODUCTION
To prevent catastrophic consequences, computer systems
in critical applications have to tolerate faults. Accordingly,
faults have to be considered during the design of such sys-
tems. A major consideration in real-time systems are faults
that result in timing related errors. Their mitigation is of
paramount importance to guarantee that all computations
finish in time, prior to their deadline. But error mitigation
capabilities are costly, as they require additional resources to
provide the necessary redundancy. Therefore, it is beneficial
to limit error mitigation to the highly critical functions of
a system, and to provide lesser guarantees for functions of
lower criticality.

In hard real-time systems, the scheduler is responsible
to build a valid schedule such that all jobs finish before
their deadline. In most applications, the schedulers are non-
clairvoyant, and do not know a job’s execution- or arrival
time beforehand. To still guarantee a valid schedule, they
need guarantees of worst-case execution times [1] and arrival
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times. These guarantees are captured in a task model. Mixed-
criticality task models are the most relatable models for
fault-tolerant hard real-time systems, as they allow to specify
multiple estimates and therefore different levels of assurance
for a job’s execution time [2]. A task’s criticality influences
if and how a job can access the processor, and allows us to
formulate different guarantees for tasks of different criticality.

Arguably the most popular mixed-criticality model, devel-
oped by Vestal [3], differentiates between low- and high crit-
icality tasks, but guarantees execution before their deadline
only for jobs from tasks of high criticality. Jobs from low
criticality tasks can execute as long as the jobs from high
criticality tasks did not exceed their execution time budgets,
else they are discarded. This lowers the quality of service
for low criticality tasks in applications where we expect
execution time budget overruns.

But lowering the quality of service is not always rea-
sonable [2], [4], which requires consideration especially for
modern fault-tolerant hard real-time systems. Instead, we can
strive to provide continuous degraded service, or a grace-
ful degradation, for the low criticality tasks. The provided
degraded service is based on time redundancy sourced from
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spare processing time, or slack, which is the remaining time
after computations of high criticality have been served. Typ-
ically, the slack is insufficient to execute all computations
from all low criticality functionalities with their desired
arrival rate. Therefore, current approaches match the demand
from low criticality functionalities to available slack. This can
be achieved by assigning low criticality tasks a smaller exe-
cution time budget on higher levels [5], [6], or by variable [7]
or scaled [8] periods. But selection of smaller execution time
budgets is not possible if the budget is already at theminimum
time required for the task, and partial execution provides
no benefit. Moreover, variable or scaled periods require a
different task model, which assumes that low criticality tasks
can provide their functionality with varied job frequency.
Depending on the application, this assumption is not always
valid: For example, in control applications, shorter sampling
periods can decrease control performance and system stabil-
ity [9]. Further possibilities are to dynamically adapt tasks
independent of each other [10], schedule only a subset of
tasks in high criticality mode [11], or periodical dropping of
low criticality jobs in high criticality mode [12]. While these
approaches generate slack, they require more computational
resources, due to their elaborate schedulers, compared to
simpler mode-switched earliest deadline first (EDF) sched-
ulers. Moreover, the lack of resources in deeply embedded
systems rules out dynamic slack monitoring approaches [13],
or to precompute proper schedules for all scenarios at design
time [14]. Therefore, approaches which emphasize static
design time decisions over elaborate dynamic decisions dur-
ing system operation are preferable, but verification-friendly
state-of-the-art approaches, which resort to static slack analy-
sis during design time [15], [16], suffer from low acceptance
rates. Hence, there is a strong need for a mixed-criticality
approach for industrial fault-tolerant systems which provides
degraded service to low criticality tasks, is sensible for verifi-
cation, and likely finds a solution for highly loaded systems.

This work introduces an approach with these desired prop-
erties to target mentioned systems in a straightforward way:
We reserve additional time by virtual deadlines to accom-
modate for the first error, and to guarantee service to high
criticality functionalities beyond the second error.By consid-
ering the system’s work done before an error, we formulate
tighter worst-case bounds, which allows us to find in a wider
set of systems than previous suitable virtual deadline scaling
factors. Furthermore, we formulate the schedulability con-
ditions as an optimization problem, and solve them before
system deployment, resulting in a static, verification friendly
approach called earliest deadline first with improved virtual
deadlines for single errors (EDF-IVD-SE). We show that
• EDF-IVD-SE is feasible (Section V);
• EDF-IVD-SE is capable of tolerating a single error with
affordable costs (Section VI); and

• EDF-IVD-SE doubles on average the quality of serviceQOS
for low criticality tasks (Section X-B).

Our affordable, fault-tolerant and verification-friendly
approach achieves up to 1.56 better acceptance rate compared

to earliest deadline first with allowance (EDF-Allowance),
while doubling the QOS for low criticality tasks on average
compared to optimal traditional mixed-criticality scheduling
approaches like earliest deadline first with virtual deadlines
(EDF-VD).

The remainder of this work is organized as follows: After
reviewing preliminaries in Section III we introduce the theory
of EDF-IVD-SE in Section V. Subsequently, we show how EDF-

IVD-SE can tolerate a single overrun in SectionVI, and howwe
can formulate the search for virtual deadline scaling factors
as optimization problems in Section VII. In Section VIII
we describe the practical implementation of EDF-IVD-SE,
followed by experimental results and conclusion in
Sections X and XI.

II. NOTATION
We use the standard dual-criticality task systemmodel, where
each task τi in a dual-criticality sporadic task set T =

{τ1, . . . , τn} is characterized by
• a criticality χi ∈ {L,H};
• WCET parameters in both criticality modes cLi , c

H
i ;

• a relative deadline di of the jobs of τi; and
• the minimum interarrival time, or period pi between two
jobs of τi.

For our considered implicit deadline dual-criticality task sets
with independent, sporadic tasks WCET parameters, relative
deadlines, and periods are related as follows:

∀τi ∈ T : cLi ≤ c
H
i ≤ di = pi (1)

Each task τi generates an unbounded sequence of jobs. A job
arrives at αij and requires γij execution time. Job arrivals of
sporadic tasks are separated at least by the task’s period; in the
worst case, every period a job is released. Given the WCET

parameter and period, we can define the task utilization as
ui = ci/pi.
Jobs need to finish execution prior to their absolute dead-

lines Dij = αij + di. The execution time of jobs from high
criticality tasks can exceed cLi , but never c

H
i . Low criticality

jobs are not allowed to execute longer than cLi . If every job of
high criticality tasks can execute for γij during [αij,Dij) the
task system is mixed-criticality schedulable [17].

To guarantee that every job of high criticality tasks meets
its deadline, classic dual-criticality schedulers separate the
system operation in two modes: low- and high criticality
mode. As long as no job from a high criticality task executes
longer than cLi , the system stays in low criticality mode, and
deadlines of jobs from low- and high criticality tasks are met.
If a job from a high criticality task exceeds cLi without sig-
naling completion, the scheduler switches to high criticality
mode. In high criticality mode, the scheduler immediately
stops the release of jobs from low criticality tasks, and drops
all unfinished low criticality jobs. This allows to schedule for
the common case according to the optimistic WCET parame-
ters cLi , while guaranteeing correctness in the uncommon case
according to the pessimistic WCET parameters cHi .
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We can express the later using task utilizations by defining
utilizations U for low- and high criticality tasks and their
relation to the uniprocessor’s supply of σ = 1 in both modes:

UL
L =

∑
i:χi=L

cLi /pi (2)

UL
H =

∑
i:χi=H

cLi /pi UH
H =

∑
i:χi=H

cHi /pi (3)

UL
L + U

L
H ≤ σ UH

H ≤ σ (4)

For the reader’s convenience we provide a list of symbols
and abbreviations in Section XI to summarize our notation.

III. PRELIMINARIES
This section presents two state-of-the-art approaches closely
related to EDF-IVD-SE: Earliest deadline first with non-
uniform virtual deadlines (EDF-NUVD) provides high chances
to find schedulable solutions, but does not consider errors
during operation, while EDF-ALLOWANCE accounts for errors,
but only with limited chances to find schedulable solutions.

A. EDF-NUVD
Given a task set, mixed-criticality scheduling can increase the
chance to find a valid schedule. We differentiate EDF-based
mixed-criticality approaches by how they construct their vir-
tual deadline scaling factors, and if they result in uniform- or
non-uniform virtual deadline scaling factors. We reproduce
the original EDF-NUVD schedulability proposition [17] here
for the reader, as our approach in Section V is closely related.
Proposition 1 (EDF-NUVD Schedulability [17]): Let τ be a

[. . .][dual-criticality] task [. . .][set] and let 0 < xi < 1, for
each [. . .][high criticality task]. If

UL
L +

∑
i:χi=H

uLi /xi ≤ 1 (5)

∑
i:χi=H

uHi /(1− xi) ≤ 1 (6)

then τ is schedulable by EDF-NUVD.
Proof: See Section XI-B. �

In essence, by virtual relative deadlines we can reserve time
for execution in high criticality mode, but we need to find a
reservation which is still schedulable. If we choose very small
virtual deadline scaling factors, we get earlier virtual relative
deadlines and therefore higher task utilizations in low critical-
ity mode according to Eq. (5), andminimal task utilizations in
high criticality mode under worst case assumptions according
to Eq. (6). Very large virtual deadline scaling factors result in
nearly no reservation in low criticality mode, and maximum
task utilizations in high criticality mode under worst case
assumptions.

B. EDF-ALLOWANCE
EDF-Allowance is a EDF [18] scheduling approach which can
tolerate up to k execution time budget overruns within a
sliding time window W without deadline violations [15].
Similar to our EDF-IVD-SE, EDF-ALLOWANCE leverages static

slack to account for overruns. For each task, the allowance
is the time beyond a job’s overrun which can be tolerated
without compromising the deadline of any job.
Proposition 2 [15]: With a fault model k/W , which allows

up to k jobs to exceed their worst-case execution time (WCET)
over sliding window W ≤ mini pi, a set of sporadic tasks
T = {τ1, . . . , τn} indexed by increasing period and scheduled
with EDF, a set sp(i, k) of at most k − 1 tasks but τi having
the smallest periods in T, and li(k, t) as the set of k − 1
tasks, excluding τi, with the highest value of 1+b(t−dj)/pjc, the
maximum allowance Aki for any faulty task τi is the minimum
value of Aki satisfying the following equation:

P = lcmipi

U∗ =
∑

τj∈τi∪sp(i,k)

Aki
pj

U + U∗ ≤ 1

Xi,k−1(t) =
∑

dj≤t∧τj∈li(k,t)

(
1+ b

t − dj
pj
c

)

t ≥ h(t)+
(
1+ b

t − di
pi
c

)
Aki + Xi,k−1(t)A

k
i

∀t ∈ S = ∪ {kpi + di, k ∈ N}
∩{l|∀l ∈ [di,U∗P)}

Proof: See [15]. �
The intuition behind Proposition 2 is best explained with

h(t), which describes the work at each point in time if each
task releases jobs with its period synchronously, and is known
as demand bound function DBF [19]. To derive h(t) we can
sum up the product of maximum computation ci and the
maximum number of requests r(i, t) until time t for all tasks:
h(t) =

∑
i cir(i, t). The maximum number of requests until t

is either zero or k + 1 when kpi + di ≤ t is satisfiable. The
largest integer satisfying the former equation is k = bt−di/pic.
This allows to define r(i, t) = max

{
0, b t−dipi

c

}
+ 1.

The set S contains all check-worthy time points where
h(t) ≤ t needs to be evaluated. The check-worthy time points
are the absolute deadlines for minimum spaced requests,
which describe the worst case.

With allowance, h(t) needs to get extended. The term(
1+ b t−dipi

c

)
describes the maximum number of requests of

task τi. The sum in Xi,k−1(t) is a sum over the maximum
number of requests of the tasks in the set li(k, t), with the
maximum number of requests in t . All requests are weighted
with the allowance to contribute to h(t), which contains prod-
ucts of computation and requests.

IV. PROBLEM OVERVIEW
We want to use a fault-tolerant, real-time computer system in
critical applications. Our problem is to verify that no deadline
is missed prior to system operation, given a known scheduler,
all timing-related properties of our application, and a model
of faults and errors.
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In our fault- and error model we consider that jobs from
tasks of high criticality are protected to tolerate faults, but the
protection costs additional execution time. If this additional
execution time results in exceeding a task specific execution
time limit, we have an error. Sometimes we refer to errors as
overruns, if we want to stress the exceeding of task specific
execution time limits, from a viewpoint of our application
model.

A process-based overview of our EDF-IVD-SE approach is
shown in Fig. 1. Given the timing-related properties of our
applicationmodel, we calculate how to account for errors dur-
ing system operation by virtual, earlier deadlines. If a solution
exists, we can deploy the system. During system operation, a
mode-switched EDF scheduler selects which jobs are allowed
to access the CPU. A detailed behavioral description of the
mode-switched EDF scheduler is provided in Section VIII.
The following Sections V to VII show how to solve the

initially stated problem, which is to verify that no deadline is
missed considering errors during system operation.

V. EDF-IVD: REDUCING THE PESSIMISM IN EDF-NUVD
The worst case assumption in Proposition 1 is very conser-
vative, because it assumes that in high criticality mode each
high criticality task needs to execute for cHi . This assumptions
neglects that prior to the mode change some work has already
finished. By taking this prior work into account, we derive
tighter bounds for EDF-NUVD in this section.
Lemma 3 (Last Idle Point): The last point in time where a

job in low criticality mode did not execute is at xiDij − cLi .
Proof: With a supply of σ = 1, the uniprocessor

needs at least cLi time units to finish a job with execution
demand of cLi , as shown in Fig. 2. Jobs that never executed
until later than cLi time units prior to their virtual absolute
deadline would miss their virtual absolute deadline. Because
no absolute deadlines or virtual absolute deadlines are missed
by EDF-NUVD and earliest deadline first with non-uniform
virtual deadlines for single errors (EDF-NUVD-SE) in low criti-
cality mode if Eq. (5) and (22) hold, the jobs can’t miss their
deadlines, therefore the last point in time where a job in low
criticality mode did not execute is at xiDij − cLi . �
With Lemma 3 we can derive an improved version of

EDF-NUVD named earliest deadline first with improved virtual
deadlines (EDF-IVD):
Proposition 4 (EDF-IVD Schedulability): Let T be a dual-

criticality implicit deadline task set and let 0 < xi < 1, for
each high criticality task. If

UL
L +

∑
i:χi=H

uLi /xi ≤ 1 (7)

∑
i:χi=H

uHi /(1− xi + u
L
i ) ≤ 1 (8)

with mode switch from low- to high criticality mode at the
first overrun time, then T is schedulable by EDF-IVD.

Proof: No deadline is missed by EDF-IVD in low crit-
icality mode if Eq. (7) holds. The first time where a job
from a high criticality task exceeds its low criticality WCET

parameter is at t∗. Consider a job Jij of a high criticality task
τi that is active at t∗. The job arrives at αij, and has a absolute
deadline at Dij = αij + di. Before t∗, Jij is EDF-scheduled
according to its virtual absolute deadline D̂ij = αij + xidi.

Since Jij is still active at t∗, its earliest virtual absolute
deadline is at the first overrun time: D̂ij ≥ t∗. Therefore the
duration between the first overrun time and absolute deadline
is larger or equal to the duration between absolute deadline
and virtual absolute deadline, as shown in Fig. 3:

Dij − t∗ ≥ Dij − D̂ij (9)

To derive the worst case assumption considering Lemma 3,
we need to differentiate two cases: 1) first overrun time is
prior to last idle point; and 2) first overrun time is in [D̂ij −
cLi , D̂ij]. If the first case t

∗ < D̂ij− cLi is true, then Dij− t∗ >
Dij − (D̂ij − cLi ). By switch to high criticality mode at t∗, the
job Jij of high criticality task τi has enough time left in this
case to finish prior to its deadline.

In the second case, where t∗ is in [D̂ij − cLi , D̂ij], the job
had to start executing prior to t∗, because Eq. (7) holds. Still
t∗ ≥ D̂ij−cLi , andDij−t

∗
≤ Dij−D̂ij+cLi . But due to the low

mode guarantee Eq. (7) the job executed for t∗ − (D̂ij − cLi ),
and in the remaining time Dij − t∗ only cHi − t

∗
+ D̂ij − cLi

need to be worked on:

uwc
(
t∗
)
=

cHi −
(
t∗ −

(
D̂ij − cLi

))
Dij − t∗

(10)

The derivative of Eq. (10) with respect to t∗ shows that
Eq. (10) has no extrema:

duwc
dt∗
=

cHi − c
L
i(

t∗ − D̂ij
)2 (11)

To identify the worst case utilization uwc we look at both
end points in the range [D̂ij−cLi , D̂ij] for t

∗, because Eq. (10)
declines with t∗ and has no extrema for tasks according to
Eq. (1), as shown in Fig. 4:

uwc
(
D̂ij − cLi

)
=

cHi
Dij − D̂ij + cLi

(12)

uwc
(
D̂ij
)
=

cHi −
(
D̂ij −

(
D̂ij − cLi

))
Dij − D̂ij

(13)

=
cHi − c

L
i

Dij − D̂ij
(14)

Given the utilization for both points, we still need to show
which utilization is larger. A geometric interpretation is to
identify the steeper slope, as shown in Fig. 5.
Lemma 5: The utilization described by Eq. (12) is larger

than the utilization described by Eq. (14):

uwc
(
D̂ij − cLi

)
− uwc

(
D̂ij
)
> 0
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FIGURE 1. Overview of our approach with a task set T = τL ∪ τH containing m low criticality tasks, and n high criticality tasks. Each block represents a
process, which requires the information on the incoming arrows to generate the information on the outgoing arrow. The state machine diagram overlay
on the right indicates when each process is active. During offline preparation, the application model is used to verify schedulability and to calculate the
virtual relative deadlines d̂i for all high criticality tasks by solving our optimization problem. The virtual relative deadlines are, besides schedulability
verification, the key results from the offline calculations, which happen prior to online operation. During online operation, the mode-switched EDF
scheduler uses the virtual relative deadlines to schedule jobs from high criticality tasks. Moreover, the system faces errors, which are considered in the
application model as overruns of WCET parameters. Once the system is in high criticality mode, resembled by switching into state HI, jobs from high
criticality tasks are scheduled by their original relative deadlines.

FIGURE 2. Visualization of Lemma 3 showing the job progression window
W J defined by the choice of a virtual absolute deadline D̂. Job Jij of task
τi arrives at αij . Its fixed absolute deadline Dij is αij + di . Both WCET

parameters are fixed as well, but the virtual absolute deadline is selected
by the scheduling approach. The green shaded area below cL

i and the
purple shaded area between cL

i and cH
i indicate how the job can execute

in low- and high criticality mode. The guarantee that in low criticality
mode no deadline is missed defines the last idle point, which defines the
window of possible progressions in executing a job. By selection of a
virtual absolute deadline, the window can close or open fully to contain
the whole green shaded area.

Proof: We show that Eq. (12) defines the worst case by
contradiction, rewriting the difference as follows:

cHi
Dij − D̂ij + cLi

−
cHi − c

L
i

Dij − D̂ij
≤ 0 (15)

Dij − D̂ij+ ≤ cHi − c
L
i (16)

1 ≤
cHi − c

L
i

Dij − D̂ij
(17)

We can reason about the contradiction in two ways: 1) If
Eq. (16) is true, the reserved time for high criticality work
can be less than actual high criticality work, contradicting

FIGURE 3. Visualization of Proposition 4. For the job to be active, the
latest first overrun time t∗ can be at the job’s virtual absolute
deadline D̂i . Whenever t∗ is, the active job executed according to the
shaded region below cL

i during low criticality mode.

schedulability; or 2) Due to the problem definition in Eq. (1),
where cLi = cHi is possible, the difference in Eq. (17) can
become zero, leading to a contradiction. Therefore the uti-
lization described by Eq. (12) is greater than the utilization
described by Eq. (14). �
With the worst case utilization identified by Lemma 5, we can
rewrite Eq. (12) to get rid of absolute deadlines and virtual
absolute deadlines:

uwc =
cHi

Dij − D̂ij + cLi
=

cHi
Dij
(
1− xi + cLi /Dij

) (18)

Replacing the job’s absolute deadline Dij with αij + di, and
considering a synchronous release pattern of jobs from all
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FIGURE 4. Evaluation of Eq. (10) for example task and corresponding job
with cL

i = 2, cH
i = 5,Dij = 14, D̂ij = 8.

FIGURE 5. The steepest slope is observed at the last idle point, which
corresponds to the largest utilization as described by Eq. (12). Both
slopes start at the boundary of the job progression window W J . In this
example, with cL

i = 2, cH
i = 5,Dij = 14, D̂ij = 8, the slopes are

uwc
(

D̂ij − cL
i

)
= 5/8 and uwc

(
D̂ij

)
= 4/8.

tasks ∀i αi0 = 0 yields:

uwc =
cHi

di
(
1− xi + cLi /di

) = uHi
1− xi + uLi

(19)

Now Eq. (8) regards the task set after t∗ as a single-
criticality task set under the worst case, where each high-
criticality task τi has an increased task utilization as described
by Eq. (19). If the sum over all increased task utilizations
is below the supply of one, this single-criticality task set is
schedulable. �

VI. EXTENSION TO SINGLE OVERRUN TOLERANCE
In our anticipated applications WCET parameter overruns
are expected [16]. As traditional dual-criticality scheduling
discards low criticality tasks upon the first overrun, under
the assumption that overruns are unlikely, we propose the
following extensions for single overrun tolerance to provide
better service to low criticality tasks.

First, we show how EDF-NUVD can be extended to tolerate
a single overrun, which we call EDF-NUVD-SE, then we extend
EDF-IVD to EDF-IVD-SE which can tolerate a single overrun as
well.

A. SINGLE ERROR EXTENSION OF EDF-NUVD
To derive the schedulability conditions for EDF-NUVD-SE we
reserve additional time in low criticality mode to tolerate a
single overrun. We increase the virtual utilization of high
criticality tasks in low criticality mode ÛL

H =
∑

i:χi=H u
L
i /xi

by accounting for cHj instead of cLj :

ÛL
H =

∑
i:χi=H

uLi /xi (20)

≤ uHj /xj +
∑
i:χi=H
i6=j

uLi /xi = ŨL
H (21)

If we replace ÛL
H with the increased virtual utilization ŨL

H in
Eq. (5), task j can use its high criticality WCET parameter in
low criticality mode. To allow any nH high criticality tasks to
overrun, we need to satisfy nH low criticality mode equations,
and the unchanged high criticality mode equation Eq. (6):
Proposition 6 (EDF-NUVD-SE schedulability): Let T be a

dual-criticality implicit deadline task set and let 0 < xi < 1,
for each high criticality task. If

∀j UL
L + u

H
j /xj +

∑
i:χi=H
i6=j

uLi /xi ≤ 1 (22)

∑
i:χi=H

uHi /(1− xi) ≤ 1 (23)

with mode switch from low- to high criticality mode at the
second overrun time, then T is schedulable by EDF-NUVD-SE.

Proof: If Eq. (1) holds, then uHj /xj ≥ uLj /xj and there-
fore ŨL

H ≥ Û
L
H . No deadline is missed by EDF-NUVD-SE in low

criticality mode until the first overrun at t∗ if Eq. (22) holds.
The first overrun stems from a job Jij of a high criticality
task τi that is active at t∗ with γij > cLj . Since we reserved
uHi /xi = cHi /(xidi) and γij ≤ cHi for any task, no deadline is
missed until the second overrun time at t~.
Consider another job Jkl active at t~ which arrives at αkl

and has a absolute deadline Dkl and virtual absolute dead-
line D̂kl . Prior to t~, Jkl is EDF-scheduled according to its
virtual absolute deadline. Since Jkl is active at t~ the virtual
absolute deadline is at or later than the second overrun time
D̂kl ≥ t~. Therefore the duration between absolute dead-
line and virtual absolute deadline is the minimum duration
between absolute deadline and second overrun time:

Dkl − t~ ≥ Dkl − D̂kl (24)

In the worst case each high criticality task has an active
job with execution time equal to WCET parameter in high
criticalitymode, and the execution needs to takes place during
Dkl − D̂kl . Regarding the task set after the second overrun
time as a single-criticality task set under the worst case
assumption, results in Eq. (23). If the worst case utilization
is below the supply of one, this single-criticality task set is
schedulable. Hence, EDF-NUVD-SE can schedule T. �
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B. SINGLE ERROR EXTENSION OF EDF-IVD
Identical to EDF-NUVD-SE we reserve additional time in low
criticality mode to tolerate a single overrun. We increase the
virtual utilization of high criticality tasks in low criticality
mode from ÛL

H to ŨL
H by accounting for cHj instead of cLj as

in Eq. (21).
By replacing ÛL

H with ŨL
H in Eq. (7), task j can use its high

criticality WCET parameter in low criticality mode. Because
it is unknown which task overruns, we need to consider that
any of nH high criticality tasks can overrun. This increases
the number of low criticality mode equations to nH :
Proposition 7 (EDF-IVD-SE schedulability): Let T be a

dual-criticality implicit deadline task set according to Eq. (1),
and let 0 < xi < 1, for each high criticality task. If

∀j UL
L + u

H
j /xj +

∑
i:χi=H
i6=j

uLi /xi ≤ 1 (25)

∑
i:χi=H

uHi /(1− xi + u
L
i ) ≤ 1 (26)

with mode switch from low- to high criticality mode at the
second overrun time, then T is schedulable by EDF-IVD-SE.

Proof: As uHj /xj ≥ uLj /xj the increased virtual utiliza-
tion of high criticality tasks in low criticality mode is larger
or equal than their virtual utilization ŨL

H ≥ ÛL
H . If Eq. (25)

holds no deadline is missed by EDF-IVD-SE in low criticality
mode until the first overrun at t∗. The first overrunning job
Jij is from a high criticality task τi that is active at t∗ with
γij > cLj . Since we reserved u

H
i /xi = cHi /(xidi) and γij ≤ cHi

for any task, no deadline is missed until the second overrun
time at t~.

Consider another job Jkl active at t~ which arrives at αkl
and has a absolute deadline Dkl and virtual absolute deadline
D̂kl . Prior to t~, Jkl is EDF-scheduled according to its virtual
absolute deadline. Since Jkl is active at t~ the virtual absolute
deadline is at or later than the second overrun time D̂kl ≥ t~.
As in Proposition 4, the worst case according to Lemma 3

is where t~ is at D̂kl − cLk :

uwc =
cHk

Dkl − D̂kl + cLk
=

uHk
1− xk + uLk

(27)

Therefore Eq. (26) considers that each task in the task
set has an active job after the second overrun time as
described in the worst case above, which can be successfully
EDF-scheduled if the resulting utilization is below the unipro-
cessor’s supply of one. �

VII. SOLVING FOR VIRTUAL DEADLINE SCALES
In this section we solve the schedulability conditions for
EDF-NUVD-SE, EDF-IVD, and EDF-IVD-SE to get a solution for
the virtual deadline scaling factors. With the virtual deadline
scaling factors we can calculate in advance the virtual relative
deadlines for all tasks, which are required by the scheduler
during operation. Moreover, we are interested in a solution
for the virtual deadline scaling factors which allows the max-
imum amount of low criticality work.

For each approach we formulate an optimization problem
where the schedulability conditions are the constraints, and
the low criticality work defines the objective function to
maximize. For any task set with nH high criticality tasks the
vector of variables is y =

[
x0 x1 . . . xnH−1 U

L
L

]
, and the

objective function is f (y) = UL
L .

For EDF-NUVD-SE the schedulability conditions Eqs. (22)
and (23) are the constraints in our optimization:
Optimization problem 8 (EDF-NUVD-SE):

maximize
y

UL
L

subject to ∀j 1− UL
L − u

H
j /xj −

∑
i:χi=H
i6=j

uLi /xi ≥ 0

1−
∑
i:χi=H

uHi /(1− xi) ≥ 0 (28)

In EDF-IVD the constraints are Eqs. (7) and (8). Note
that EDF-IVD requires fewer constraints than EDF-NUVD-SE or
EDF-IVD-SE, as the low criticality schedulability condition is
the same for all tasks:
Optimization problem 9 (EDF-IVD):

maximize
y

UL
L

subject to 1− UL
L −

∑
i:χi=H

uLi /xi ≥ 0

1−
∑
i:χi=H

uHi /(1− xi + u
L
i ) ≥ 0 (29)

Finally EDF-IVD-SE with its schedulability conditions
Eqs. (7) and (8) results in the following optimization problem:
Optimization problem 10 (EDF-IVD-SE):

maximize
y

UL
L

subject to ∀j 1− UL
L − u

H
j /xj −

∑
i:χi=H
i6=j

uLi /xi ≥ 0

1−
∑
i:χi=H

uHi /(1− xi + u
L
i ) ≥ 0 (30)

Both Optimization problems 8 and 10 have nH + 1 non-
linear inequality constraints and a scalar objective function.
Note Optimization problem 9 has two nonlinear inequality
constraints and a scalar objective function, and all optimiza-
tion problems are solvable by nonlinear programming NLP.

We use sequential least squares programming SLSQP

[20], [21] to solve Optimization problems 8 to 10, as all
functions are twice continuously differentiable. On success,
the resulting virtual deadline scaling factors and maximum
utilization of low criticality tasks can be used to schedule the
task set.

VIII. SYSTEM OPERATION
During system operation, our mode-switched EDF scheduler
is in one of three modes, as shown in Fig. 6: 1) initial low crit-
icality mode; 2) intermediate single error mode; and 3) high
criticality mode. Modes are switched as in earliest deadline
first with virtual deadlines for single errors EDF-VD-SE [16]:
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During the initial low criticality mode, all tasks are allowed
to generate jobs. The jobs arrive at the scheduler’s queue,
and are EDF-scheduled according to their absolute deadlines
or virtual absolute deadlines: Jobs from low criticality tasks
are scheduled according to their absolute deadlines, and jobs
from high criticality tasks are scheduled according to their
virtual absolute deadlines. The mode- and task criticality
dependent deadline selection is also shown in Fig. 7.

FIGURE 6. UML state machine diagram of EDF-NUVD-SE mode switching.

As soon as a job is granted access to the CPU by the sched-
uler, as shown in Fig. 8 it starts to execute, and the scheduler
keeps track of the time since the job started. The scheduler is
unknowledgeable of the time it takes for the job to actually
finish, but theWCET parameter is known. If the time since the
job started is larger than the WCET parameter, the scheduler
kills the job if it is from a low criticality task, or switches
to the intermediate single error mode if it is from a high
criticality task.

During the intermediate single error mode, the scheduler
operates as in the initial low criticality mode, but if a job from
a high criticality task takes longer than the WCET parameter,
the system is switched to high criticality mode.

In high criticality mode, no jobs from low criticality tasks
are generated, as shown in Fig. 7, and jobs from high critical-
ity tasks are scheduled according to their original deadline.

A. ERROR MODEL
Our approach targets emerging critical applications, where
we expect errors, and yet the budget to deal with them is very
limited compared to traditional critical applications. Such
semi-critical applications, like wearable healthcare monitors,
are required to be dependable, while being built from com-
mercial off-the-shelf COTS components.

The key to dependable design with COTS components are
error detection and correction. Both can be implemented in
software by exploiting temporal redundancy. In our model,
the time for error detection is part of the WCET parameter in
low criticality mode for high criticality tasks, and we consider
error correction by recomputing wrong results in theWCET of
high criticality tasks.

Therefore, we model the pessimism in estimating the
task’s WCET for error correction with cHi = zicLi , where
zi ∈ {x ∈ Z : x > 1}.

IX. CASE STUDY
To exemplify the usefulness of EDF-IVD-SE we investigate a
flight management system usecase [22] shown in Table 1.
While the task set is worst-case schedulable with EDF, it is not
schedulable with EDF-Allowance: A worst-case reservation

FIGURE 7. Mode-dependent CPU requests (jobs) from a sporadic task.
If the task is ready, and the last job is at least p time units ago, a new job
can be created where the absolute deadline is selected based on the
task’s criticality and the current system mode. For jobs from tasks with a
high criticality level H , virtual absolute deadlines are used as long as the
system is not in high criticality mode. jobs from tasks with a low
criticality level L use absolute deadlines, as long as the system is not in
high criticality mode. In high criticality mode, no jobs from tasks with low
criticality levels are generated.

results in an utilization of U = 1993/2000 < 1, with nearly
no static slack for any allowance.

But with EDF-IVD-SE the task set is schedulable: Solving the
optimization problem,we find a solutionwith virtual deadline
scaling factors as shown in Table 2 and maximum supported
utilization in low criticality mode of ≈ 0.59. The task set’s
utilization in low criticality mode is 0.62, which guides us
to lower the task set’s utilization by ≈ 0.03. Depending on
the application, it might be sensible to remove low criticality
tasks, extend their period, or reduce their WCET parameter.
For this example, we reduce the WCET parameter of task
9, 10 and 11, as shown in Table 3. Even the adjusted task
set is not schedulable by EDF-Allowance, but successfully
schedulable with EDF-IVD-SE.

TABLE 1. Flight management system usecase [22].
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FIGURE 8. Event-based description of mode-switched EDF scheduler
used in EDF-IVD-SE. The scheduler operates in an endless loop, spanning
line 29 to 44, to react to a stream of events e. Possible events are the
arrival of a new job in the priority queue, the completion of the job
currently running on the CPU, or the detection of a WCET parameter overrun
from a job of a high criticality task. Overruns are handled first, in line
33 to 36, by increasing the criticality mode of the system if it is not yet in
high criticality mode. The response to other events is mode-dependent
and handled in line 37 to 43. In low- and single error mode, all jobs can
access the CPU according to their deadlines. In high criticality mode, jobs
from tasks of low criticality are dropped, and only remaining jobs from
high criticality tasks can access the CPU.

X. EXPERIMENTS
In this section we quantify the amount of schedulable
task systems with EDF-NUVD-SE, EDF-IVD-SE, and the benefit

TABLE 2. EDF-IVD-SE virtual deadline scales for task set in Table 1.

TABLE 3. Adjusted flight management system usecase.

in QOS. To investigate the amount of schedulable task sets
we generate random task sets and solve the corresponding
optimization problem. We report the number of schedulable
task sets over the total number of task sets, or acceptance rate,
over increasing utilization in low criticality mode.

For QOS, we evaluate the additional time the system is
operational after the first overrun time with Thready [23]
by simulating a large set of random task sets.

A. ACCEPTANCE RATE OF UUnifast RANDOM TASK
SYSTEMS FOR DIFFERENT UTILIZATIONS
Reporting the acceptance rate with random task sets
requires to apply the schedulability check, and in case of
EDF-NUVD-SE, EDF-IVD, and EDF-IVD-SE this includes solving
the optimization problems presented in Section VII.

For our investigation we resort to random task sets,
generated with the UUnifast algorithm [24], additional
pessimism [16], and a mostly EDF-VD schedulable parameter-
ization [25]: Periods are uniformly drawn between pl = 50
and pu = 200, and pessimism is uniformly drawn between
zl = 1 and zu = 2. For each utilization in low criticality
mode, we calculate the acceptance rate from 1024 task sets.
Moreover, we compare the acceptance rates for a parameter-
ization typically found in automotive and avionics systems
with periods between pl = 25 and pu = 1000 [13].
In general, a higher acceptance rate is better, because it

indicates a higher chance to accept a task set as schedulable.
As the utilization in low criticality mode UL increases, the
difficulty to find acceptable virtual deadline scaling factors
increases as well.

We compare the acceptance rate in Fig. 9 for approaches
without single error tolerance. All approaches decline in
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acceptance rate with increasing utilization in low criticality
mode. It stands out that EDF-VD dominates both EDF-NUVD

and EDF-IVD despite having only a single deadline scaling
parameter. By intuition, approaches with individual deadline
scaling parameters should be at least as powerful as uniform
deadline scales. But the proof for EDF-VD feasibility [17]
results in tighter bounds for the worst case, which increases
the chance to deem a task set schedulable. Nevertheless,
the acceptance rate of EDF-IVD is at least as good or better
than the acceptance rate of EDF-NUVD. For the avionic- and
automotive-like task sets in Fig. 11 the trends are similar,
although the absolute acceptance rates are lower.

Extending all three approaches to tolerate a single error
drastically changes the acceptance rate as seen in Fig. 10. For
utilization up to 0.65 EDF-IVD-SE provides the best acceptance
rate. Contrary, the uniform deadline scale of EDF-VD-SE pro-
vides less room for the numerical solver to find a solution.
Similar to the approaches without single error tolerance, the
acceptance rate trends for the avionic- and automotive-like
task sets in Fig. 12 are alike, while absolute acceptance
rates are lower. Nevertheless, in terms of acceptance rate
all approaches are sensitive to the composition of their task
sets. Therefore, detailed descriptions about random task set
generation [16] are a necessity for comparable results.

It is fundamental to note that the analytical solution for
EDF-VD is optimal if errors are not considered, but with errors
the analytical solution is not applicable anymore. Moreover,
with just a single free parameter, the numerical solver has less
opportunities to find a solution for EDF-VD-SE, compared to
EDF-NUVD-SE and EDF-IVD-SE, resulting in reduced acceptance
rates.

Comparing the acceptance rates of EDF-IVD to EDF-IVD-SE

in Fig. 13 for the same task sets highlights the cost of tol-
erating a single error in terms of acceptance rate. With a
maximum cost of≈ 0.146 EDF-IVD lends itself for single error
extension. In the same way we can compare the acceptance
rates of EDF to EDF-Allowance. The maximum cost in terms
of acceptance rate is ≈ 0.33, as shown in Fig. 14, instead
of ≈ 0.146 from our approach.

Moreover, utilizations of larger than 0.55 are increasingly
difficult for EDF-Allowance, and the start of a decline in
acceptance rate compared to EDF-IVD-SE. With up to ≈ 1.56
better acceptance rate EDF-IVD-SE can more likely schedule
highly loaded task sets.

B. QUALITY OF SERVICE COMPARISON BY MODE SWITCH
TIME
Both EDF-IVD-SE and EDF-NUVD-SE are designed to tolerate
a single overrun without discarding all low criticality tasks,
prolonging the time when jobs from low criticality tasks
can execute until the second overrun. This prolonged time
results in additional service for low criticality tasks. There-
fore, we define the QOS as the ratio of second overrun time to
first overrun time: t~/t∗.

We investigate the QOS of EDF-IVD-SE and EDF-NUVD-SE by
simulation with Thready, which supports EDF scheduling

FIGURE 9. Acceptance rate for UUnifast random task system. A higher
acceptance rate is better. With increasing utilization on low criticality
mode UL the difficulty to find acceptable deadline scales increases.

FIGURE 10. Acceptance rate of random task sets for approaches with
single error tolerance.

FIGURE 11. Acceptance rate of random automotive-like task sets for
approaches without single error tolerance.

simulations of mixed-criticality task sets with fixed over-
run probabilities. We select EDF-IVD-SE and EDF-NUVD-SE

schedulable dual-criticality task sets which we generate
with the UUnifast algorithm and generation parameters
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FIGURE 12. Acceptance rate of random automotive-like task sets for
approaches with single error tolerance.

FIGURE 13. EDF-IVD-SE lends itself for single error extension. Plot shows
the acceptance rate for UUnifast random task sets with EDF-VD-friendly
parameterization [25]. The acceptance rate of EDF-IVD-SE is only slightly
reduced compared to EDF-IVD. Therefore EDF-IVD-SE makes error tolerance
affordable in most cases.

FIGURE 14. Acceptance rate of random task sets. The acceptance rate of
EDF-IVD-SE is better than the allowance approach.

as described in Section X-A. The random task sets are
simulated with millisecond time step resolution for one
hour.

FIGURE 15. CCDF, or survival function, of EDF-IVD-SE and EDF-NUVD-SE QOS for
error probabilitys p = 0.001 and p = 0.0001. Rows differentiate
pessimism, and columns differentiate error probability. In each plot, the
ordinate abscissa Each plot shows the probability (ordinate) of a system
to survive until t~/t∗ (abscissa).

FIGURE 16. Achievable QoS for EDF-IVD-SE and EDF-NUVD-SE with probability
of 0.8 compared to baseline EDF-VD. Both EDF-IVD-SE and EDF-NUVD-SE can
tolerate a single error, and therefore double on average the QoS for low
criticality tasks.

While all approaches can tolerate the first overrun delib-
erately, it is still interesting to quantify the probabilities to
achieve at least a specific QOS.

In Fig. 15 with an error probability of p = 10−3 and
pessimism of two EDF-NUVD-SE achieves at least a QOS of 1.82
with a probability of 0.8, or a QOS of 2.01 with a probability
of 0.46. For the same scenario, EDF-IVD-SE achieves at least
a QOS of 2.01 with a probability of 0.45, or a QOS of 1.85
with a probability of 0.8. Similar results are achieved for
a pessimism of four, and error probability of 10−5, with
a QOS of 1.93 at a probability of 0.92. Therefore both
EDF-IVD-SE and EDF-NUVD-SE double on average the QoS for
low criticality tasks compared to baseline EDF-VD, as visual-
ized in Fig. 16.

From a global view, both EDF-NUVD-SE and EDF-IVD-SE

provide the same overrun tolerance by design, and are similar
in their capabilities beyond the first overrun. Nevertheless,
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EDF-IVD-SE is preferable, as it is more likely to find valid
virtual deadline scaling factors for a given task set.

Furthermore, if we compare EDF-IVD-SE with
EDF-Allowance, we immediately see that EDF-Allowance has
no service guarantee, which results in rising likelihood of
mission failures with rising utilization as shown in Fig. 17.
Contrary, EDF-IVD-SE has a service guarantee, which guaran-
tees mission success.

FIGURE 17. Time without deadline miss normalized to mission duration
of EDF-IVD-SE and EDF-ALLOWANCE scheduled random task sets. While
EDF-IVD-SE guarantees that the system survives the whole mission duration,
EDF-Allowance can misses a deadline under bad circumstances. The
likelihood that EDF-Allowance misses a deadline increases with utilization,
and with the environment’s error probability. Contrary, the service of
EDF-IVD-SE is independent of the environment’s error probability.

XI. CONCLUSION
Fault-tolerant real-time systems in emerging applications
are not allowed to fail, but their budgets for error mitiga-
tion are minimal. We introduce and prove the feasibility of
EDF-IVD-SE, our verification friendly mixed-criticality
approach, which provides single error tolerance by design and
guarantees that the most critical system functions are always
operational.

By extensive simulation experiments we showed that
EDF-IVD-SE has up to 1.56 better acceptance rate compared
to similar state-of-the-art approaches, and how EDF-IVD-SE

can provide full service to low criticality tasks for 1.93 times
the original duration. Affordable and powerful, EDF-IVD-SE

is a suitable mixed-criticality scheduling approach for fault-
tolerant real-time systems in emerging critical applications.

APPENDIX
A. GLOSSARY
See Table 4.

B. EDF-NUVD PROOF
Proposition 11 (EDF-NUVD schedulability [17]): Let τ be

a [. . .][dual-criticality] task [. . .][set] and let 0 < xi < 1,
for each [. . .][high criticality task]. If

UL
L +

∑
i:χi=H

uLi /xi ≤ 1
∑
i:χi=H

uHi /(1− xi) ≤ 1 (31)

then τ is schedulable by EDF-NUVD.

TABLE 4. Notation.

Proof: No deadline is missed by EDF-NUVD in low
criticality mode if Eq. (5) holds. The first time where a job
from a high criticality task exceeds its low criticality WCET

parameter is at t∗. Consider a job Jij of a high criticality task
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TABLE 4. (Continued.) Notation.

TABLE 5. Abbreviations.

τi that is active at t∗. The job arrives at αij, and has a absolute
deadline at Dij = αij + di. Before t∗, Jij is EDF-scheduled
according to its virtual absolute deadline D̂ij = αij + xidi.

FIGURE 18. Visualization of Proposition 11.

In low criticality mode, all jobs would meet their virtual
relative deadlines. Since Jij is still active at t∗, its earliest
virtual absolute deadline is at the first overrun time: D̂ij ≥ t∗.
Therefore the duration between the first overrun time and
absolute deadline is larger or equal to the duration between
absolute deadline and virtual absolute deadline, as shown in
Fig. 18:

Dij − t∗ ≥ Dij − D̂ij (32)

The worst case assumption is that each high criticality task
has an active job with execution time equal to its WCET

parameter in high criticality mode, and the execution needs
to take place during Dij − D̂ij. Therefore Eq. (6) regards
the task set after t∗ as a single-criticality task set under the
worst case assumption, where each high-criticality task τi has
period Dij − D̂ij = di(1 − xi) and increased task utilization
uHi /(1 − xi). If the sum over all increased task utilizations
is below the supply of one, this single-criticality task set is
schedulable. �
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