
Received December 22, 2021, accepted January 10, 2022, date of publication January 14, 2022, date of current version January 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3143804

Efficient Homomorphic Encryption Accelerator
With Integrated PRNG Using Low-Cost FPGA
INFALL SYAFALNI 1,2, (Member, IEEE), GILBERT JONATAN2,
NANA SUTISNA 1,2, (Member, IEEE), RAHMAT MULYAWAN 1,2, (Member, IEEE),
AND TRIO ADIONO 1,2, (Member, IEEE)
1Electrical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
2University Center of Excellence on Microelectronics, Bandung Institute of Technology, Bandung 40132, Indonesia

Corresponding author: Infall Syafalni (infall@ieee.org)

This work was supported by the Indonesian Ministry of Research and Technology/National Agency for Research and Innovation
(Kemenristek/BRIN) under National Competition Research Grant (Program Penelitian Kompetitif Nasional).

ABSTRACT With recent development in internet speed and reliability, cloud computing has become
a more reliable solution for the user. In many cases where data privacy is critical, fully homomorphic
encryption (FHE) can be a security solution for securing cloud computing. FHE enables computation on
encrypted data, hence it ensures data privacy in case of cloud computing. One popular scheme of FHE is the
BFV homomorphic encryption scheme, which is based on ring learning with error (RLWE) computation.
The BFV scheme uses ring polynomials as the main object, hence its encryption, decryption, and evaluation
require high-degree polynomial multiplication. In this paper, we present comprehensive design and imple-
mentation of a hardware architecture to accelerate encryption and decryption in BFV scheme. Our accelerator
uses convolution approach for calculating a polynomial multiplication. To implement the convolution,
we use a systolic array to calculate polynomial convolution followed by a simple delayed subtraction to
calculate polynomial modulo reduction inside our accelerator’s core. Moreover, we use a built-in Gaussian
pseudo-random number generator (PRNG) to generate Gaussian noise in the encryption operations. Finally,
we implement the 1024 degrees BFV accelerator on the Xilinx PYNQ Z1 board and compare the encryption
and decryption performances to other methods as well as a software implementation on Intel Core i7 with
8GB memory. Experimental results show that our accelerator outperforms the clock cycles of other methods
with the same polynomial degrees 1024 up to 22×. Moreover, our proposed Gaussian PRNG has better
2× correlation compared to the rotation-only-based PRNG. Finally, our accelerator accelerates up to 9× for
encryption and 3.5× for decryption as well as 6.8× for overall compared toMicrosoft SEAL on Intel Core i7
processor with 8GB memory. The proposed design is scalable for higher degrees polynomial multiplication
and useful for security technology such as high-speed secure cloud computing, blind computing, and secure
communication.

INDEX TERMS BFV scheme, fully homomorphic encryption, Gaussian PRNG, hardware accelerator,
systolic array.

I. INTRODUCTION
Recent development in internet speed and reliability around
the world enables cloud computing to be a reliable and con-
venient solution for our software and computation needs.
By relying on the internet connection, users can run software
that requires more computing power by using services from
cloud computing providers, instead of resources on their

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

device. Cloud computing has many uses [1] and is considered
more secure in terms of data recovery in an unwanted event.
In most cloud computing, the user data privacy is only limited
by term and agreement between the two parties. In some cases
where data confidentiality is critical even towards the cloud
service provider, cloud computing can be inconvenient for
clients. One solution to this problem is fully homomorphic
encryption.

Fully homomorphic encryption is a new technology in
cryptography that enables computation on encrypted data.

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 7753

https://orcid.org/0000-0001-9922-5688
https://orcid.org/0000-0002-8435-9242
https://orcid.org/0000-0002-3009-0022
https://orcid.org/0000-0003-4808-9254
https://orcid.org/0000-0003-3181-4480

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 1. Cloud computing with FHE.

The computation can be performed without the need of
decryption, hence FHE can ensure the security of the data
not only from an attacker, but also from the cloud service
provider. Although the concept has been around for a while,
the first FHE scheme was proposed in 2009 by Gentry [2].
His breakthrough work enables arbitrary computation in FHE
with expense of computing power. After Gentry’s scheme,
new FHE schemes keep emerging ever since [3]–[8]. One of
the well known schemes was proposed by Fan [7] by extend-
ing the Brakerski’s LWE scheme [4] into its ring variation.

Figure 1 shows a cloud computing scheme using FHE as
the encryption method choice of both sides. The encryption
and decryption operation only happens on the client side
hence the actual data only visible to the client. The cloud
service provider only performs computation in the ciphertext
domain, theoretically with arbitrary computation depth, most
operations can be performed in the ciphertext domain. The
result of the computation will still be encrypted with the
user’s secret key. All of these computations can be achieved
at the expense of computing power.

In this work, we focus on the BFV homomorphic encryp-
tion scheme, one of the most well known schemes that exist
today. The main object of the BFV scheme is ring polynomial
and a lot of its operations are based on polynomial multi-
plication and addition on a predefined ring. The polynomial
multiplication usually took longer to calculate compared to
polynomial addition hence most of the existing work focuses
on accelerating this operation using a hardware accelerator.

There are several existing works related to hardware accel-
erator design to accelerate polynomial multiplication in the
BFV homomorphic encryption scheme. To the best of our
knowledge, the first one came in 2016 [9] they use the Karat-
suba algorithm [10] to calculate the polynomial multiplica-
tion in the homomorphic multiplication. At the time one of
the most promising schemes was YASHE [6], but its security
was reduced due to a recent attack [11], especially on deci-
sion small polynomial ratio (DSPR) assumption [12]. Hence
some recent works start to focus more on a less efficient

BFV scheme. The authors in [9] show that Karatsuba can
be an alternative to FFT, despite their design having some
constraint and requiring large amounts of resources. Another
work to accelerate BFV homomorphic multiplication came
in 2018 [13], they use CRT and NTT for fast polynomial
multiplication.

On the high performance side, the NTT method is often
used to calculate polynomial multiplication. Instead of using
real numbers like the FFT algorithm, NTT algorithm only
uses integer number arithmetic, hence making it easier
to implement in hardware. In 2019, in more recent work
from [14], they designed a custom co-processor for the BFV
homomorphic encryption scheme. Lastly at the time of writ-
ing this paper, themost recent work came fromMert et al [15],
they utilized their NTT-based polynomial multiplier architec-
ture in [16] to accelerate encryption and decryption of BFV
scheme. The hardware accelerator is designed to accelerate
the encrypt and decrypt function in Microsoft SEAL [17].

In this work, we use optimized polynomial multiplica-
tion is proposed. Our work aims to accelerate encryption
and decryption operation of BFV homomorphic encryption,
especially for the python environment using Xilinx’s Python
productivity for Zynq (PYNQ). Our contribution in this paper
is listed as follows:

1) We design and implement comprehensively a hardware
accelerator for encryption and decryption of the BFV
homomorphic scheme on a low cost FPGA. The hard-
ware accelerator is implemented as an overlay for the
Xilinx PYNQ environment.

2) We propose an efficient systolic array to calculate poly-
nomial convolution with all processing elements are
optimized for the BFV scheme.

3) We propose a ring polynomial multiplication core with
a FIFO and a subtractor to perform the polynomial
modulo reduction.

4) We design and implement a hardware of Gaussian
pseudo-random number generator for encryption mode
by using hybrid rotation and split methods.

5) Our accelerator outperforms other methods with the
polynomial degrees 1024 up to 22×. Our proposed
PRNG has better 2× randomness factor compared to
rotation-only PRNG. Moreover, our accelerator accel-
erates up to 9× for encryption and 3.5× for decryption
compared to Microsoft SEAL on Intel Core i7 proces-
sor with 8GB memory.

This paper is organized as follows: Section I introduces the
work. Section II explains the definitions and basic properties
for FHE. Section III shows the proposed BFV scheme and
the methods used in the accelerator. Section IV shows the
hardware architecture of our accelerator. Section V shows
memory configuration for encryption and decryption mode.
Section VI shows implementation results and comparison
for our hardware Gaussian pseudo-random number genera-
tor and our accelerator. Finally, Section VII summarizes our
conclusion.

7754 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

II. DEFINITIONS AND BASIC PROPERTIES
A. FULLY HOMOMORPHIC ENCRYPTION (FHE)
Fully Homomorphic Encryption is a new technology in
cryptography that enables computation to be performed on
encrypted data without decryption. This concept has been
around for a while since its first introduction by Rivest [18]
under the name privacy homomorphisms. However, the oper-
ation is limited to only addition or multiplication in the
plaintext space. This limitation remains unsolved until a
breakthrough result from Gentry [2] in 2009, in which he
presented a scheme that allows arbitrary computation on
the ciphertext by showing how to modify his scheme to
make it bootstrappable or self evaluating its own decryption
circuit. In his work he also shows that any bootstrappable
somewhat-homomorphic encryption scheme can be trans-
formed into a fully homomorphic encryption.

A fully homomorphic encryption (FHE) scheme theoret-
ically can perform a limitless number of additions or mul-
tiplications in the plaintext space, this is done cleverly by
‘‘refreshing’’ the noise or using a self-referential property to
evaluate its own decryption circuit. There are several types of
homomorphic encryption based on supported operation and
evaluation depth:
• Partially Homomorphic Encryption: Only one opera-
tion can be done, either addition or multiplication in the
plaintext domain.

• Somewhat Homomorphic Encryption: Both addition
and multiplication in the plaintext domain, but have a
limited number of operations depending on the operation
and noise.

• LeveledHomomorphic Encryption:Both addition and
multiplication in the plaintext domain on a limited eval-
uation circuit depth.

• Fully Homomorphic Encryption: Both addition and
multiplication in the plaintext domain with arbitrary
circuit depth.

Fully homomorphic encryption scheme can be considered
ring homomorphic. A ring in mathematics is a set R equipped
with two operations+ and× satisfying the ring axioms [19].
Given R and S are two rings, then a ring homomorphism can
be explicitly express as a function

f : R→ S

such that

f (a+ b) = f (a)+ f (b)

f (a× b) = f (a)× f (b)

for all a and b in R. Figure 2 shows graphical interpretation
of ring homomorphism.

B. BFV HOMOMORPHIC ENCRYPTION SCHEME
In this section, we presented the BFV scheme from Fan
and Vercauteren [7], they extended Brakerski’s scheme [4]
to the ring learning with error (RLWE) variation, which
is an algebraic variant of learning with error (LWE) [20].

FIGURE 2. Ring homomorphism in fully homomorphic encryption.

Before presenting the proposed scheme, we start with a brief
explanation for the basic notations and processes in the BFV
Homomorphic Encryption scheme as presented in [7].
Definition 2.1: A ring of modulo polynomial is repre-

sented as R = Z [x]/(f (x)), where Z [x] is a polynomial
and f (x) is a cyclotomic polynomial φm(x), i.e. the minimal
polynomial of the primitive m-th roots of unity, and x is a
variable. In this work, we use f (x) = xn + 1 with n = 2d .
Definition 2.2: Let a be uniformly sampled from the set S

that is indicated by

a
χ
←− S,

where χ indicates the discrete Gaussian distribution.
Definition 2.3: Let n, q, and t be integers representing

the degrees of polynomial modulus, the ciphertext coefficient
modulus, and the plaintext coefficient modulus, respectively.
Suppose that Zq denotes the set of integers (−q/2, q/2], thus
Rq is the set of polynomials in R with coefficient Zq. The
plaintext and ciphertext spaces are in the rings Rt and Rq,
respectively, for q > t > 1. Neither q nor t have to be prime
or coprime.
Definition 2.4: The ratio between the ciphertext coeffi-

cient modulus q and the plaintext coefficient modulus t is
defined as 1 = q/t .
Definition 2.5: Let b·c, b·e, and [·]q be the flooring oper-

ation, the rounding operation to the nearest integer, and the
coefficient reduction operation by modulo q, respectively.
Definition 2.6: Secret key generation is defined by n sam-

ples of spaces in the rings R2 as follows

s← Rn2.

In this case, we can see a secret key s is in the form of
binary numbers in n arrays.
Lemma 2.1: Public key generation is represented by the

following

(p0, p1) = ([−(a · s+ e)]q, a),

where p0 and p1 are the public keys, a← Rnq and e← χ .
Lemma 2.2: Encryption is represented by the following

(c0, c1) = ([1 · m+ p0 · u+ e1]q, [p1 · u+ e2]q),

VOLUME 10, 2022 7755

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

TABLE 1. BFV parameter selection in this work.

where c0 and c1 are the ciphertexts, p0 and p1 are the public
keys, m ∈ Rt , u← Rn2, e1, e2← χ , and 1 = q/t .
Lemma 2.3: Decryption is represented by the following

m =
[⌊

[c0 + c1 · s]q
1

⌉]
t
,

where c0 and c1 are the ciphertexts, s is the secret key, q is the
ciphertext coefficient modulus, t is the plaintext coefficient
modulus, and 1 = q/t .

Fan and Vercauteren [7] remark that neither q or t have
to be a prime, nor that t and q are coprime. In this work,
we propose a hardware architecture to accelerate encryption
and decryption operation of BFV scheme. Our parameter
selection is shown in Table 1. To optimize the hardware
implementation, we choose q and t as a power of 2, where
q = 232 (32-bit) and t = 28 (8-bit). Lastly, we also choose
n = 2d = 1024, where d = 10.

III. PROPOSED BFV HOMOMORPHIC ENCRYPTION
USING CONVOLUTION WITH INTEGRATED PRNG
This section explains our exploration of the proposed BFV
homomorphic encryption and decryption using convolution.
Moreover, we optimize the design by considering the pattern
on the encryption and decryption calculations, minimizing
the multiplication operations on the convolution, applying
polynomial modulo optimization, and finally designing the
Gaussian pseudo-random number generator (PRNG) using
linear feedback shift registers (LFSR).

A. POLYNOMIAL MULTIPLICATION PATTERN ON
ENCRYPTION-DECRYPTION IN THE BFV SCHEME
The BFV scheme has several polynomial multiplications.
In the encryption process, to produce the ciphertexts (c0, c1),
two polynomial multiplications are required. Moreover,
in decryption process, one polynomial multiplication is
required. These polynomial multiplications follow a simple
computation pattern as shown in Figure 3, which is a multi-
plication between an Rq polynomial and an R2 polynomial,
followed by addition with an Rq polynomial. Note that Rq
and R2 can be seen as arrays of the polynomial coefficients
in q-field and 2-field (binary), respectively.

In this work, we optimize our proposed accelerator’s core
by performing the computation pattern as shown in Figure 3.
The accelerator’s core computes the multiplication followed
by the polynomial reduction by the polynomial modulus that
defines the ring and performs polynomial addition at the end.
We use convolution approach for the polynomial multipli-
cation operations while we implement a simple subtractor

FIGURE 3. Computation pattern.

for the polynomial reduction. Both techniques will be further
discussed in the next subsections.

B. POLYNOMIAL MULTIPLICATION AND CONVOLUTION
One way to evaluate polynomial multiplication is through
a convolution method. It can be proven intuitively by mul-
tiplying, sliding, and adding two polynomials or formally
with mathematical proof. In this section, we will show a
formal proof from [21] that a polynomial multiplication can
be seen as a convolution, which is necessary to understand
our proposed accelerator.
Lemma 3.4: Polynomial multiplication can be seen as a

convolution [21]. Supposed that G(x) and H (x) are polyno-
mial of degrees n−1 in x, where x is the polynomial variable.
We have

G(x) =
n−1∑
i=0

gix i, (1)

and

H (x) =
n−1∑
i=0

hix i, (2)

such that

Y (x) = G(x) · H (x)

=

2n−2∑
k=0

ykxk , (3)

where yk =
∑k

i=0 gihk−i.
Proof: The multiplication results of Eq. (3) will be a

polynomial degree of 2n − 2. In polynomial multiplication,
each coefficient x is obtained by summing all products gihk−i,
where k is the degree of x. Hence, by multiplying Eq. (1) and
Eq. (2), we form a discrete convolution for finding coeffi-
cients of the multiplied polynomials yk as follows:

yk = g0hk + g1hk−1 + . . .+ gk−1h1 + gkh0

=

k∑
i=0

gihk−i

= (g ∗ h)[k], (4)

7756 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 4. 2D systolic array for (N − 1)-degree polynomial multiplication.

where [∗] is the convolution operation, and k is the degree of
the corresponding variable x in the multiplied polynomials.
This means that the multiplication of two polynomials can be
treated as the convolution of two polynomials and vice versa.
Thus, we have the lemma. �
By using this method, in the next subsection, we will

explain a 2-dimensional systolic array to calculate polyno-
mial multiplication. Later, we optimize the design into one
dimensional systolic array and the systolic cells for BFV
scheme.

C. 2D SYSTOLIC ARRAY FOR POLYNOMIAL CONVOLUTION
This subsection previews the basic of polynomial convolution
to accelerate the polynomial multiplication presented in [22]
that uses systolic arrays as the core architecture. The illustra-
tion of a 2-dimensional systolic arrays is shown in Figure 4.

A set of cells in each diagonal line (i.e. lines pointing to
northeast) is responsible to calculate the sum of all products
of gihk−i as described in Eq. (4) in the previous subsection.
In other words, the output of each diagonal line is coefficient
yk for xk . At every clock cycle, the input and output of the
systolic cells are moving as indicated by the arrows. The
right arrows forward the input to the next right cell and the
diagonal arrows send the output diagonally to the next cell.
The horizontal input will change, while the vertical input is
static for the entire computation.

The output function of the systolic cell or processing ele-
ment is out = (a × b) + sum as shown by Figure 5. The
processing element has 3 inputs, consisting of 2 polynomial
coefficients and 1 sum input from another cell. Moreover,
it consists two registers to store the sum of the product and the
forward of the horizontal coefficient. The processing element
multiply the 2 polynomial coefficients and then sum the result

FIGURE 5. Processing element or systolic cell of 2D systolic array.

with the sum input from another cell, before producing the
output in the next clock cycle. In the diagonal line, every cell
will calculate one product of gihk−i and sum it with the result
of the previous cells. The top-most or right-most cells will
generate all the coefficients of y after N clock cycles.
Theorem 3.1: Suppose that we have integers i and j with

[0, 1, . . . ,N], where N > 0, and (i, j) is the row and column
of the systolic array as shown in Figure 4. The first row is
denoted by i = 0 and the first column is denoted by j = 0.
The output of a systolic cell that is located in ith row and jth
column is denoted as out(i, j). The output of each cell can be
obtained from the following recursion

out(i, j) = gihj + out(i+ 1, j− 1), (5)

where g is the horizontal input coefficient and h is the ver-
tical input coefficient. The out(0, j), for all j < N, and the
out(i,N − 1), for all i < N, calculate the coefficient yk
according to Lemma 3.4, where k = i+ j.

Proof: It is clear that the summed coefficient is found
from the systolic index (i+1, j−1) by maintaining k = i+ j,
while the current product is found by coefficient gi and hj.
The output of the calculation out(i, j) is indicated by i = 0 or
j = N − 1. Thus, by maintaining k = i + j, we have the
following:

out(i, j) = gihj + gi+1hj−1 + . . .

out(i, j) =
k∑
i=0

gihk−i.

And, we have the theorem. �
Example 3.1: In Figure 6, we provide an example of how

the 2D systolic array works for 3-degree polynomial multi-
plication. The diagram simulates a multiplication between
G(x) = 1+ 2x + x2+ 3x3 and H (x) = 2+ 5x + 3x2+ x3 in
4 clock cycles. In this case, we have 4 coefficients for each
polynomial, one polynomial assigned as the horizontal input
while the other as the vertical input. Each blue cell shows the
computation result of the corresponding cell, while the green
cells show the multiplication result which is the polynomial
Y (x) = 2+ 9x + 15x2 + 18x3 + 20x4 + 10x5 + 3x6.
Each blue column shows the computation result depicted

for different clock cycles. The computation propagates to the

VOLUME 10, 2022 7757

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 6. 2D systolic array for 3-degree polynomial multiplication.

FIGURE 7. Stretched 2D systolic array to show convolution.

right as the clock increases. It produces one output each
clock cycle with 3 additional outputs at the final clock cycle.
Figure 7 shows the systolic array that has been rotated and
stretched. In this figure, the systolic array is performing
convolution between two polynomials.

D. POLYNOMIAL MODULO REDUCTION
The ring polynomial R = Z [x]/(f (x)) as described in the
previous subsection is specified by the polynomial modulus
f (x) = xn + 1. In our design, we utilize a simple pattern
occurring on polynomial reduction by the polynomial modu-
lus. The following lemma is to show the reduction:
Theorem 3.2: The polynomial modulus f (x) = xn + 1 of

Y (x) with polynomial degrees of 2n−1 can be represented in
n− 1 multiplications as follows

Y (x)/f (x) = yn−1xn−1 +
n−2∑
i=0

(yi − yn+i) x i, (6)

where Y (x) is the polynomial with coefficient yi.
Proof: Suppose we have a 2n − 2 degree polynomial

Y (x) with polynomial degrees of 2n− 1, which is a multipli-

FIGURE 8. Extracted bit from
[⌊

t
q (·)

⌉]
t

operation in the decryption
operation in Lemma 2.3.

cation result between two n− 1 degrees polynomials.

Y (x) =
2n−2∑
i=0

yix i (7)

Now, we reduce the result by modulo the polynomial mod-
ulus. We subtract Y (x) with yix i−n(xn + 1) for every i larger
than n − 1. Hence, the polynomial reduction can be written
as follows.

Y (x)/f (x) =
2n−2∑
i=0

yix i −
2n−2∑
i=n

yix i−n
(
xn + 1

)
(8)

From i = 0 to i = n− 2, the coefficient yi will be reduced by
yn+i and by rearranging (8), we have the theorem. �

Equation (6) shows we can perform polynomial reduction
by simply subtracting the i-th coefficient with the (n + i)-th
coefficient while ignoring the n-th coefficient.

After the polynomial reduction, we can reduce the coeffi-
cient by modulo q. In this case, we have q = 2d , where d is
a positive integer. We can simplify this by only taking d least
significant bits (LSB) of the coefficient.

E. COEFFICIENT MODULO REDUCTION AND DIVISION
The encryption and decryption in BFV homomorphic encryp-
tion scheme require reduction by modulo q or t . This
operation is denoted by [·]q as explained in BFV scheme
subsection. In our design, we use a power of 2 as q and t ,
thus the reduction can be easily performed by only taking a
certain number of bits and ignoring the rest. For [·]q and [·]t ,
we only care for 32-bit and 8-bit results, respectively.

As a consequence, q/t is a power of 2. Therefore, we have
the following:
Lemma 3.5: The bit extraction for the coefficient modulo

division [⌊
t
q
(a)
⌉]

t

can be calculated by [a] � log2(q/t), where a is an integer,
q is the ciphertext coefficient modulus, and t is the plaintext
coefficient modulus.

Proof: As Definition 2.3 and Table 1, we have t =
28 and q = 232 thus t

q (a) can be performed by [a] �
log2(q/t) = [a]� 24. �

In practice, we just take the 8-bits of the most significant
bits as shown in Figure 8. The similar idea also was applied

7758 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 9. Fibonacci linear feedback shift registers.

in an existing work [9]. They use t = 2, while in our case,
we use t = 28.

F. LINEAR FEEDBACK SHIFT REGISTERS
In the encryption operation, the ring polynomial e is a poly-
nomial with all of its coefficients uniformly sampled from
a discrete Gaussian distribution as indicated by e ← χ .
In order to improve the encryption time, we also design a
stream Gaussian pseudo-random number generator (PRNG)
that will be integrated with our accelerator. The Gaussian
pseudo-random number generator (PRNG) was implemented
using linear feedback shift registers (LFSR) and central limit
theorem (CLT) as presented in [23].

In this subsection, we will provide a basic knowledge for
linear feedback shift registers (LFSR) as described in [24].
LFSR is the most common method to generate pseudo-
random numbers. It requires low resources to implement,
yet it can produce large pseudo-random period sequences
with good statistical properties and can be analyzed using
algebraic techniques.

An LFSR of lengthm hasm stages indexed from 0 tom− 1
as shown in Figure 9, each stage is a register containing one
bit value with an input and an output controlled by a clock.

In an LFSR in Figure 9, the following operations are
performed at each clock cycle:

1) The content of stage 0 (s0) forms the output sequence.
2) The content of stage imoves to stage i− 1 for each i in

[1,m− 1]; and
3) The new content of stage m − 1 is the feedback bit sj

which is modulo 2 the addition result of the previous
contents where qm−i = 1.

Lemma 3.6: Let the initial state of the LFSR is
[sm−1, . . . , s1, s0] and s = s0, s1, s2, . . . , sm−1 is the LFSR’s
output sequence, as a consequences, the following recursion
will uniquely determined the output sequence s:

sj =
(
q1sj−1 + q2sj−2 + . . .+ qmsj−m

)
mod 2, (9)

where j is an integer and j ≥ m. The LFSR is usually denoted
as 〈m, c(x)〉, where c(x) = 1 + q1x + q2x2 + . . . + qmxm ∈
Z2[x] is the connection polynomial.

Proof: As shown in Figure 9, it is clear that the output
sj is determined by the values of qi based on the connection
polynomial c(x). �

It is important to acknowledge that sj and c(x) are different.
sj represents the recursion function for an output at a certain
time, while c(x) represents the hardware or physical connec-
tion in Figure 9.

The LFSR, that we show in Figure 9, is a Fibonacci LFSR.
There also exists a different LFSR architecture called Galois
LFSR which can generate the same output bit sequence s
when the same connection polynomial c(x) is used. Despite
generating the same output bit stream, Galois LFSR has
a different internal state sequence and theoretically have a
lower critical delay path by only applying an XOR gate for
an output si.

In this work, we implement a 20-bit LFSR with c(x) =
1+ x17+ x20, thus the feedback connections only formed for
q17 and q20, which belong to stage s0 and s3. The maximum
output sequence period is 2m − 1, and can be achieved if
and only if the connection polynomial is a primitive poly-
nomial [25]. In this case, the LFSR will always produce the
maximum length sequence despite the non-zero initial state.
The LFSR will simply cycle throughout all possible non-zero
states.

G. CENTRAL LIMIT THEOREM
The LFSR explained in the previous subsection will be used
to generate several uniformly distributed pseudo-random
samples, to modify this into Gaussian or normally distributed
numbers we use central limit theorem.

According to the central limit theorem (CLT) the mean
µ of a random sample of size n drawn from independent
random variables will approach a Gaussian distribution as the
sample size increases, regardless of the original shape of the
sample distribution [26]. The formal mathematics definitions
and proof are presented in [27]. If the sample distribution
is not terribly skewed, a general rule of thumb is having a
sample size greater than 30.
Lemma 3.7: By using Lindeberg-Levy CLT [28], the

following:
√
n
σ

(X̃n − µ),

converges to the normal distribution, where n is the number
of inserted samples, µ is the overall samples mean, σ is the
standard deviation, and the average of inserted samples X̃n is
calculated as follows:

X̃n =
X1 + . . .+ Xn

n
.

where X1, . . . ,Xn represented the samples.
Proof: The lemma can be derived by using characteristic

functions [29] and levy’s continuity theorem [30]. �
According to the work in [31] that compares three con-

ventional algorithms for generating Gaussian distributed ran-
dom numbers, CLT is an extremely efficient method by
simply sampling enough identical and independent uni-
form distributions. However, the Gaussian random numbers
from CLT are lower quality compared to other conventional
algorithms. Thus, in this work, we improve the quality of
PRNG by applying rotation instead of only applying CLT
in the LFSR.

VOLUME 10, 2022 7759

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 10. Processing system and programmable logic interface.

FIGURE 11. Hardware accelerator abstraction.

IV. PROPOSED HARDWARE ARCHITECTURE OF BFV
HOMOMORPHIC ENCRYPTION ACCELERATOR USING
INTEGRATED PRNG
This section explains the proposed hardware architecture
of the BFV homomorphic encryption accelerator with inte-
grated Gaussian pseudo-random number generator (PRNG)
in details. First, we will explain about the accelerator archi-
tecture. After that, ring polynomial multiplication core, sys-
tolic array module and optimization, polynomial modulus
reduction, Gaussian PRNG architecture, and control of the
architecture will be presented.

A. PROPOSED ACCELERATOR ARCHITECTURE
The accelerator has several inputs namely plaintext or cipher-
text, public key or secret key, and control signals. The acceler-
ator will produce encrypted or decryptedmessages depending
on the operation mode. The control signal consists of start
signal, number of inputs, reset signal, initial seed, and accel-
erator mode signal.

Figure 10 shows the diagram block of the processing
system (PS) and the programmable logic (PL). The yellow
colored modules are the interface between the accelerator and
the processing system of PYNQ Z1 CPU. Our accelerator
requires two input BRAMs to store public key and plain-
text in encryption mode or ciphertexts in decryption mode.
Moreover, it has one output BRAM to store ciphertexts in
encryption mode, or plaintext in decryption mode. All the
BRAMs store theRq polynomials values. TheR2 polynomials
have 3 possible values (−1, 0, 1). These values will be con-
nected directly from the axi control module to the accelerator.

FIGURE 12. The proposed hardware accelerator architecture.

The axi control module is also responsible for sending the
start signal and other control signals. The abstraction of our
accelerator is shown in Figure 11.

The more detail architecture of the proposed accelerator
is depicted in Figure 12. The polynomial inputs are stored
in BRAM multiplicand and BRAM polyAdd, which can
store multiple plaintexts or ciphertexts. The lowest degree
coefficient is stored in the lowest address. The memory
configuration for each mode can be found in the memory
configuration section. The computation result is stored in the
BRAM output. All read and write addresses are controlled by
the accelerator’s address generator when the start signal has
been given by the axi control module.

The accelerator is constructed from several modules with
the ring polymult core as the main module for calculating
the ring polynomial multiplication and addition. The poly-
mult core produces a stream output at constant period. This
stream has two possible operations before being stored into
the BRAM output depending on the accelerator mode. In

7760 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 13. The ring polymult core.

encryption mode, the output stream is added with the Gaus-
sian PRNG output. However, in decryption mode, the divi-
sion and rounding are carried out in the coefficient modulo
reduction and division as presented in Figure 8.
The control and address generator modules produce the

address and control signals for the accelerator. Thesemodules
start producing periodic signals after the start signal has been
given by the axi control module. After the computation is fin-
ished, the control module sends a done signal to indicate that
the computation is finished for all plaintexts or ciphertexts.
The outputs are stored in the memory (BRAMs).

B. RING POLYMULT CORE
Algorithm 1 explains the inner workings of the ring polymult
core module as depicted in Figure 13. The stream multipli-
cand input will first enter the systolic array module, where the
R2 polynomial multiplier (i.e. 1024 2-bit weights) is already
connected to the module. The multiplication output is then
reduced inside the polynomial reduction module as described
in Equation (6). The reduced polynomial will be added with
the additional input stream (i.e. polyAdd) before exiting the
accelerator core.

The polynomial reduction module causes the first
1024 outputs to wait for the higher degrees stream output,
thus lowering the module throughput by almost half. This
introduces 1024 clock cycles output latency to the polymult
core module. The systolic array and the polynomial reduction
module will be explained in detail on the next subsections.

C. SYSTOLIC ARRAY MODULE
The systolic array presented in the previous section has
a two-dimensional array architecture that requires a lot of
resources. Naively, to implement 1024-degree polynomial
multiplication, we need a 1024 × 1024 systolic array, which
is not practical. In this subsection, we present the reduced
systolic array by using a systolic array with the number of
arrays is n = 1024. The implementation is reduced to 1 ×
1024 arrays equipped with processing element that has been
optimized for multiplication between Rq and R2 polynomials.

Algorithm 1: Ring Polymult Algorithm
Input:Multiplicand, A(x) ∈ Zq[x]/(xn + 1), where ai is

the i-th element of matrix A.
Input: PolyAdd, B(x) ∈ Zq[x]/(xn + 1), where bi is the

i-th element of matrix B.
Input:Multiplier, C(x) ∈ Zq[x]/(x2 + 1), where ci is

the i-th element of matrix C .
Output: P(x) ∈ Zq[x]/(xn + 1)
begin

P = [p0, p1, . . . , pn−1] = [0, . . . , 0];
Y = [y0, y1, . . . , y2n−2] = [0, . . . , 0];
for i = 0 to n− 1 do

for j = 0 to n− 1 do
yi+j← yi+j + ajci;

for i = 0 to n− 2 do
pi← yi − yn+i + bi;

pn−1← yn−1 + bn−1;
return P;

FIGURE 14. Polynomial multiplication from the moving input perspective.

The optimization can be obtained from the Algorithm 1.
If we parallel the inner loop of the multiplication of ajci,
we have the following theorem:
Theorem 4.3: The run time of ring polynomial multipli-

cation in Algorithm 1 can be reduced from O(n2) to O(n)
by paralleling the additions and the multiplications using n
processing elements.

Proof: As shown in Algorithm 1, we can get the proof
directly. By paralleling the n processing elements for addi-
tions and multiplications of A × ci, we can reduce the inner
n-loop executions becomes only an execution. �
Figure 14 highlights the computation in Figure 6 that shows

the propagating of input perspective. Notice that as the hori-
zontal input propagates, the vertical input is changing while
the horizontal input is fixed. If we ignore the column shifting,

VOLUME 10, 2022 7761

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 15. One dimensional systolic array for 3-degree polynomial
multiplication in Figure 14.

FIGURE 16. One dimensional (1D) systolic array.

the result is only forwarded to the cell above. Thus, the only
modification needed for the systolic array is each cell output
needed to be connected to the cell above it. After applying
the modifications by changing the vertical input starting from
the lowest degree coefficient and fixing the horizontal input,
we can achieve the same multiplication result by using only
one modified systolic array shown in Figure 15.
The same principle is scalable for larger systolic array

sizes. Therefore, the systolic array in Figure 4 can be reduced
into a one dimensional systolic array. Instead of diagonally
connected output, the output is rerouted to the systolic cell
above it. By reducing into a one dimensional array and rotat-
ing the reduced array, we obtained a design presented in
Figure 16.

D. OPTIMIZED PROCESSING ELEMENT
The optimized version of the systolic cell presented in the
previous section is shown in Figure 17. In order to signifi-
cantly reduce the resources utilization, we replace the multi-
plier with two multiplexers, with each multiplexer basically
performing an if-else operation. As discussed before, the
R2 polynomial (−1, 0, 1) can be represented with a 2-bit
number. This is why the multiplication operation can be
substituted with only two if-else statements.

The mode signal will control the operation of the cell.
The systolic cell generates multiplication results or forwards
the output from the previous cell. The output table for the
processing element is shown in Table 2. The table shows the
cell output for every possible multiplier input and it’s input
mode. The value of multiplier input represents one of possible
values in R2, 00 represents 0. Any multiplication result with

FIGURE 17. Optimized processing element for multiplication between Rq
and R2.

TABLE 2. Processing element’s output table.

FIGURE 18. Hardware for polynomial reduction in Theorem 3.2.

0 is 0, thus the output is the sum input. 01 represents 1, hence
the output is sum + multiplicand. 10 is not used as an input
but it will produce sum + 1. Lastly, 11 represents −1, hence
the output is sum − multiplicand.

E. POLYNOMIAL REDUCTION MODULE
The output of the systolic arraymodule is the unreduced poly-
nomial multiplication result between R2 and Rq. To reduce
the multiplication result, we simply subtract two output coef-
ficients according to Theorem 3.2 presented previously. The
systolic module generates an output stream starting from
lowest coefficient, thus there is a time delay before we can
start subtracting between two coefficients. To reduce the
polynomial output, we design a polynomial reductionmodule
shown in Figure 18.

Themodule has shift registers to delay the output and a sub-
tractor to perform subtraction as described in Theorem 3.2.

7762 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 19. Timing diagram example for 3-degree polymod with the
multiplication result from Figure 14.

The first 1024 output will be stored inside the shift registers.
In Figure 18, the datapath is determined by the sel signal. The
left path is a direct bypass to the subtractor while the right one
has shift registers for storing or delaying the output. In the
first 1024 clock cycles, this module will not produce any
output until the high degree coefficient is ready for reduction.

Figure 19 shows the reduction illustration for the polyno-
mial multiplication result for 3-degree polynomials as shown
before in Figure 6. The input is the output stream from the
systolic array module. ui represents the output of the stage i
shift register. In Figure 19, only the first 4 inputs are stored
into the shift registers. As the sel signal changes to 1, the
subtraction process begins resulting the reduced polynomial
modulus in the output signal. This module can be scaled
to reduce larger degree polynomial multiplication results by
addingmore shift registers and adjusting the sel signal timing.
The coefficient modulo q will transform the negative results
into positive results by adding 2q. The addition does not
change the 32-bit binary result, thus this operation can be
ignored.

F. POLYNOMIAL MODULUS DIVISION PROCESS
Polynomial modulus division is used for decryption process
as described in Lemma 3.5. It involves division, rounding to
the nearest integer, and coefficient modulo reduction by t .
Our parameter selection enables the division to be performed
by using right shifting, to round to the nearest integer we only
need to add the 23rd bit to the shifting result, then reduction
by modulo t is simply taking the first 8-bit number from
the result. This series of actions has been shown before in
Figure 8 and the hardware representing this process is shown
in Figure 20. The data will only enter this module when the
accelerator is performing decryption.

G. GAUSSIAN PRNG
The encryption of the BFV scheme requires a discrete random
Gaussian number to be added to the plaintext as a noise.
We have tried using software to generate Gaussian random
numbers, which increases the pre-processing time and the
total encryption time. This is also worsened by the data
transfer time from PS to PL that is required to store the
pre-processed inputs. Therefore, it is necessary implement

FIGURE 20. Hardware representation for polynomial modulus division
(decryption process) in Lemma 3.5.

a low-cost Gaussian pseudo-random number generator using
LFSR and CLT as presented in [23] to eliminate data transfer
from PS to PL while the accelerator is running. The generator
used in this work is presented in Figure 21.

In [23], we combine two existing methods to generate a
stream of low variance Gaussian distributed pseudo-random
numbers with longer pseudo-random periods compared to the
existing works [32], [33]. The splitting internal state method
is similar to the decimator presented in [32] and the rotation
method is similar to the rotation presented in [33]. The split
method is performed by split adder module as shown in
Figure 21(b). This module will calculate the mean of two split
numbers from Lemma 3.7 as follows:

X̃n =
X1 + X2

2
,

where X1 = X/2N , X2 = X mod 2N , and X is the split
adder input. The division by 2 is obtained from a right shift
denoted by�. Moreover, we perform the following processes
to randomize the samples as shown in Figure 21(a):
Lemma 4.8: The cyclic rotation method can be expressed

as follows

Rot(k)(s(t)) = Rot(k)([sm−1+t , . . . , s1+t , st])

= [sk−1+t , sk−2+t , . . . , st , sm−1+t , . . . , sk+t],

where k is the number of cyclic rotation and s(t) =
[sm−1+t , . . . , s1+t , st] is the LFSR internal state.
Definition 4.7: The concat operator inside the generator

joins two previous N-bit outputs into 2N-bit numbers or
simply

concat(a, b) = (2N × a)+ b,

where a and b are N-bit outputs from previous stage.
Figure 21(a) shows the Gaussian PRGN used in this work.

It utilizes rotation and split of a 20-bit LFSR internal state
to generate 8 samples, then it applies CLT by simply adding
and shifting by 2. The split adder module that is shown in Fig-
ure 21b, receives 2N -bit input from the previous stage. After

VOLUME 10, 2022 7763

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 21. Gaussian pseudo-random number generator (PRNG) design.

that, it splits the input into two equal sizes and adds them
together. The module was created to simplify the Verilog
implementation and code reusability. The generator requires
a 20-bit non-zero initial state and generates a sequence with
a pseudo-random period of 220 − 1.

H. CONTROL AND ADDRESS GENERATOR
The accelerator can read and store the I/O from and to the
memory. As explained before in previous sections, the timing
of addresses and control signals is crucial to ensure the com-
putation is correct. In this section, we present our control and
address generator, which generates a set of periodic signals to
meet all the timing requirements in the accelerator. We split
the explanation into two parts. The first one is the equivalent
hardware architecture for this module and the second one is
the signal and address finite state machine (FSM).

1) CONTROL AND ADDRESS GENERATOR EQUIVALENT
HARDWARE ARCHITECTURE
Figure 22 shows equivalent hardware architecture for the
control and address generator. Only four main signals are
generated from the finite state machine in Figure 23, namely
17-bit main address, 1-bit mode, 1-bit BRAM reset and 1-bit
done signal, the rest of the signals are a delayed or shifted
version of the main signals. The 16-bit address has a minimal
bit size to access 128K memory.

The address signal is used to generate three BRAM
addresses (i.e. two input BRAMs and an output BRAM).
The address signal requires to be zero padded into 32-bit
before being used for the BRAM address. The number of
zero needed is 15 zeros for all BRAM addresses, except for
the multiplicand BRAM in encryption mode. In encryption
mode, the multiplicand BRAM only stores the public key,
thus the accelerator only requires to access periodically from
0×0 to 0×2000 (8188 in decimal) with an increment of 0×4.
A simple solution for this is only by using the first 13-bit of
the main 17-bit address as the multiplicand address and zero
padding the 13-bit address to 32-bit. Therefore, the range of
output addresses is between 0 and 8191.

The unshifted main address will be used as the multi-
plicand BRAM address with the number of zero padding

FIGURE 22. Control and address generator equivalent hardware
architecture.

depending on the accelerator operation mode. In Figure 22,
there is a selector to select which padded address will be
used for the multiplicand BRAM address, where E stands for
encryption andD stands for decryption. The polyAdd BRAM
address requires to be shifted by 1025 clock cycles to adjust
for the polynomial reduction module latency. On the other
side, the output BRAMaddress needs to be shifted 1027 clock
cycles. Two additional clock cycles were added to account for
one clock cycle memory read delay and one clock cycle from
the polymult core output register between the core output and
the demultiplexer.

The mode signal is used to generate systolic array mode
signal, selector signal inside the polynomial reduction mod-
ule, and output BRAM’s write enable signal. The sel signal is
a one clock cycle delayed inverted mode signal and the write
enable signal is 1025 clock cycles delayed mode signal. The
write signal requires to be copied into a 4-bit signal where
each bit is responsible for each Byte in the memory.

2) CONTROL AND ADDRESS GENERATOR FINITE STATE
MACHINE (FSM)
The FSM in Figure 23 has four states and is responsible for
generating the main signals. The first state is idle state. At this
state, the accelerator is not working and waiting for the start

7764 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 23. Control and address generator finite state machine (FSM).

FIGURE 24. Control register bitmap.

signal. The input memories also can bewritten before the start
signal is given. As the start signal changes to 1, the current
state changes to count state. In this state, the address generator
will generate addresses for the first 1024 coefficients, thus it
generates an input stream for the systolic array module.

After generating addresses for the first 1024 coefficients,
the FSM current state changes to hold state and waits for the
polynomial reduction process to finish. Once the polynomial
reduction is finished, the FSM current state will return to the
count state to generate addresses for the next 1024 coeffi-
cients. The cycle of counting and waiting will repeat for the
number of inputs available in the BRAM.

When the counting and the waiting cycles completed, the
FSM state moves to the done state and triggers the finish flag
or done signal. For the next encryption or decryption, the PS
must send the reset signal to reset the FSM back to the idle
state and empty the BRAMs before reusing the accelerator.

I. CONTROL REGISTER
The control register is the first register inside the axi control
module. The axi control module stores control signals and
the R2 polynomial for multiplication weight. The control
register is a 32-bit register storing control signals such as start
signal, number of inputs, operation mode (i.e. encryption or
decryption), reset signal, LFSR’s initial seed, and done signal.
The bitmap for the control register is shown in Figure 24.
The detail for each field in the control register is explained

as follows:

• Number of input: Number of data stored inside the
inputmemory. For decryptionmode, the number of input
is equal to the number of ciphertext inside the memory.

FIGURE 25. BRAM configuration for encryption mode.

However, for encryption mode, the number of input
doubles for each plaintext.

• Start signal: The rising edge of start signal will trigger
the FSM to start the accelerator.

• Operation mode: Choosing between encryption (0) or
decryption (1) mode.

• Reset:To reset the accelerator and thememorymodules.
• Initial seed: LFSR’s initial state. Any non-zero 20-bit
number can be used.

• Done: Only turns into 1 when the encryption or decryp-
tion has finished for every input.

V. MEMORY (BRAM) CONFIGURATION AND DATAFLOW
The proposed accelerator works by reading the input that
is already stored inside the input memory and then storing
the output inside the output memory. All memories have the
same sizes. However, they are used and arranged differently
depending on the operation modes. The datapath also has a
slight difference in each mode. In this section, we provide the
memory configuration and datapath for both encryption and
decryption modes.

A. ENCRYPTION CONFIGURATION
Figure 25 shows the memory configuration for encryption
mode. The multiplicand memory stores the public keys start-
ing from pk[0] and then followed by pk[1]. In encryption
mode, the rest of the memory is empty. The address generator
will generate only 13-bit addresses, thus only the first 2048
32-bit data will be cycled. The polyAdd memory stores the
scaled encoded message and the Gaussian noise. Finally, the
output memory stores ciphertexts as shown in Figure 25.
Figure 26 shows dataflow for encryption mode. The red

arrows indicate path the data will take in encryption mode.
Each I/O arrow is also labeled with the input or output name
(e.g., public key, plaintext, etc). In encryption mode, the data
will take the left path and will be added with Gaussian noise
generated from the Gaussian PRNG module.

B. DECRYPTION CONFIGURATION
Figure 27 shows memory configuration for decryption mode.
The multiplicand memory stores the ciphertext element 1.
The polyAdd memory stores the ciphertext element 0, and

VOLUME 10, 2022 7765

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 26. Datapath in encryption mode.

FIGURE 27. BRAM configuration for decryption mode.

the output memory stores encoded plaintexts. In this config-
uration, all memories use the same sizes.

Figure 28 shows dataflow for decryption mode. The red
arrows indicate path the data will take in decryption mode.
Each I/O arrow is also labeled with the input or output name
(e.g., secret key, ciphertext, etc.). In decryptionmode, the data
will take the right path and will enter the decryption process
until it produces the plaintext.

VI. IMPLEMENTATION RESULTS AND COMPARISONS
We implemented our proposed accelerator on a low-cost
xilinx’s PYNQZ1 FPGA (price $199, in 2021). The available
resources are 53,200 LUTs, 106,400 flip-flops, and 630KB
memory (BRAM). We use xilinx’s Vivado IDE to synthe-
size our project. Our project consists of multiple Verilog
modules that each module represents as described in the
hardware architecture section previously. As a consequence
of using xilinx’s PYNQ environment, the processing system
was implemented using embedded Python Jupyter Notebook
IDE.

Figure 29 shows our experimental setup. We can use a 5V
USB connection to our computer or a 12V and 3A voltage
regulator to power up the FPGA PYNQ-Z1. The FPGA and
the PC is connected to the same router. In this case, we use
a PC with an Intel Core i7 processor with 8GB memory.

FIGURE 28. Datapath in decryption mode.

FIGURE 29. Experimental Setup.

The PS of the FPGA can be accessed by connecting to
http://pynq:9090/ via browser.

A. BUILT-IN GAUSSIAN PRNG RESULT
The built-in generator was implemented and simulated using
Verilog HDL. The simulation generates a pseudo-random
number period or 1,048,575 data. Next, we plot a histogram
of the result in Figure 30. Clearly, the histogram in Figure 30
resembles normal distribution, to show this statistically we
plotted a quantile-quantile (QQ) plot of our result compared
to a normal distribution plot. The QQ plot is shown in Fig-
ure 31. The blue marks represent our result and the green line
is the normal distributed numbers. Majority of the blue marks
match the green line which means our result fit the normal
distribution.

To observe randomness, we perform auto-correlation test
for k = 1 to k = 30. Figure 32 shows the performance of
randomness by auto-correlation. In this case, since the corr
values are small, we use auto-correlation factor 10 log |corr|
to measure the correlation between two random variables.

7766 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

FIGURE 30. Comparison of PRNG output distribution.

FIGURE 31. Generator output quantile-quantile plot compares to normal
distribution.

Moreover, the correlation corr is calculated by [34]:

corr(X ,Y) =
E((X − µx)(Y − µy))

σxσy
,

where E is expected value, X and Y are the random variables,
and σx and σy are the standard deviations of X and Y , respec-
tively.

For k < 10, our proposed PRNG has similar correlation
with the rotation-only design. However, for 10 < k <

20, auto-correlation of the rotation-only has better perfor-
mance. Finally, our proposed Gaussian PRNG outperforms
2× (around -30 vs. around -60 of auto-correlation factor)
better randomness factor from that of the rotation-only [33].

For the implementation, the proposed PRNG requires a
20-bit LFSR with an XOR gate. The extension for 60-bit
LFSR is also provided in Table 3. The number of XOR gates
depends on the connection polynomial. The more coefficient
used in the connection polynomial, the more XOR gates are
required. The more XOR gates will increasing delay and
critical path area. The problem is solved by implementing the
Galois LFSR in the architecture. In fact, the Galois LFSR

FIGURE 32. Auto-correlation comparison.

TABLE 3. FPGA resource utilization and performance comparison for
Gaussian PRNG using LFSR.

generates the same bit pattern in certain period. However,
the different internal state by applying bit splitting and bit
rotation also change the pseudo-random in the Galois LFRS.

Table 3 shows the resource utilization and performance
comparison for some PRNGs using linear LFSR methods.
The area is defined as [38]:

(Number of LUTs+ Number of FFs)× 8.

The clock cycle indicates the number of clocks to generate
a random number in certain bits and the #Bits indicates the
size of the LFSR in bits. Some implementations of 32 and

VOLUME 10, 2022 7767

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

TABLE 4. NIST test for proposed Gaussian PRNG.

64 bits of extended period of LFSR are shown in [35], [36].
FPGA implementation of an LUT-based LFSR is presented
in [37]. The rotation-only has a smallest area because it does
not require additional XORs and registers to perform the
method [33]. As shown in Table 3, compared to the other
LFSRs, the proposed Gaussian PRNGs (20-bit and 60-bit
LFSRs) have relatively smaller area ratios up to 1.6× and
have a faster clock cycle to generate a random number that
can output a random number in a clock.

Moreover, we tested the proposed Gaussian PRNG using
the NIST test suite [39] as shown in Table 4. First, we gen-
erated 1 million random bits using the proposed PRNG as
an input of the NIST test suite. The P-values, which indi-
cates how likely it is that the data could have occurred
under the null hypothesis, is then measured in the range
from 0 to 1 [39]. The proposed Gaussian PRNG passed
10 of the NIST tests. There are a few scenarios which
are not passed, due to the proposed Gaussian PRNG uses
only linear method i.e., LFSR that is combined by rotation
and split.

Some previous PRNG methods also use nonlinear circuits
or algorithms to increase the degree of randomness such as
chaotic PRNGs. For instance, the works in [40] and [41]
use analog approaches for generating chaotic maps. However,
using a special analog circuit for a system-on-chip in FPGA
implementation is expensive.

Although nonlinear, such as chaotic, PRNGs can achieve
higher degree of randomness, they suffer from additional
latency due to much higher number of iterations, compared to
the linear PRNGs. Moreover, nonlinear PRNGs require spe-
cial circuits or higher complexity algorithms such as chaotic
logistic map, negotiation, permutation, reseeding, andmixing
algorithms as described in [38], [40]–[43].

Since our aim is to achieve a satisfactory degree of random-
ness with the limitation of targeted FPGA resources, we focus
on the linear type of efficient Gaussian PRNG. The main
objective of the proposed work is to have a high-throughput
Gaussian PRNG that can output a random number in a

clock. Thus, the Gaussian noise on the BFV, as explained in
Section III-F can be implemented efficiently.

B. PROPOSED BFV ACCELERATOR EXPERIMENTAL
RESULTS AND COMPARISONS
In our design, we are dealing with 1023-degree polyno-
mials which have 1024 coefficients in each polynomial.
Thus, it requires 1024 × 32 × 3 bit memory for each
ciphertext. Our FPGA board has 630KB memory size. This
means we can perform decryption up to 51 ciphertexts,
with each BRAM having the size of 204KB. The closest
block memory size available is 128KB or 256KB, for this
implementation we limit our use to 128KB per block mem-
ory. As a consequence, we can only store a maximum of
32 ciphertexts.

First, we test our accelerator for both encryption and
decryption and compare to well-known homomorphic
encryption library project called Microsoft SEAL [44] on
Intel Core i7 CPU with 8GB memory. Tabel 5 shows the
performance of our accelerator compared to the BFV on
Microsoft SEAL (with newest update ver 3.7 on Sept.
2021). As shown in the table, the Microsoft SEAL’s BFV
has average time executions; 371.85 µs for encryption,
73.27 µs for decryption and 419.83 µs for the both encryp-
tion and decryption for the same parameters in Table 1.
We record the time execution in the accelerator and it
turns out that our accelerator accelerates up to 9× for
encryption, 3.5× for decryption, and 6.8× for both than to
that of the Microsoft SEAL’s BFV [44]. This is to show
that by the proposed design, the hardware implementation
of BFV accelerator is very promising for embedded plat-
form in the form of FPGA or ASIC implementation in
the future.

Table 6 shows the comparison to the other previous works
with similar schemes in FPGAs. The table shows the polyno-
mial multiplication method, the platform (FPGA), the BFV
parameters, the resources utilization, the clock speed, and the
polynomial multiplication latency. We compare with simi-
lar algorithms such as iterative NTT, Karatsuba, FFT-based,
and somewhat-homomorphic encryption (SHE). We do not
compare our design to the parallel implementation of NTT
algorithm such as in [15], because our proposed accelerator
is targeted for a low-cost FPGA. It is possible to further
parallel our proposed design for the future research, because
it has iterative pattern in the polynomial calculation as shown
in Algorithm 1. However, the parallel implementation will
require much larger FPGA that consume more areas of
utilization.

The polynomial multiplication time is the time of the
accelerator doing a polynomial multiplication operation
inside the accelerator. In [9], Karatsuba algorithm is used
to calculate homomorphic multiplication. The rest of the
work presented in Table 6 implements various similar
methods implementing the polynomial multiplication such
as iterative NTT-based polynomial multiplication [13],

7768 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

TABLE 5. Running time comparison to Microsoft SEAL [17], [44].

TABLE 6. Resource and polynomial multiplication comparison to other methods in FPGA.

[14], [16], FFT-based polynomial multiplication [46], and
somewhat-homomorphic encryption (SHE) [47]. As shown
in Table 6, for n = 1024, our proposed accelerator
outperforms the polynomial multiplication clock cycle up
to 22× compared to the other methods. This means that
the proposed design can finish the multiplication with
smaller clock cycle and suitable for ASIC implementa-
tion. For future work, the design can be implemented in
a larger FPGA by implementing more optimizations and
parallelizations.

VII. CONCLUSION
In this paper, we presented comprehensive design and imple-
mentation of a hardware architecture to accelerate encryp-
tion and decryption in BFV scheme. Our accelerator used
convolution approach with for calculating a polynomial mul-
tiplication. To implement the convolution, we used a sys-
tolic array to calculate polynomial convolution followed by
a simple delayed subtraction to calculate polynomial modulo
reduction inside our accelerator’s core. Moreover, we used a
built-in Gaussian pseudo-random number generator (PRNG)
to generate Gaussian noise in the encryption operations.
Finally, we implemented the 1024 degrees BFV accelerator
on the Xilinx PYNQ Z1 board and compared the encryption
and decryption performances to other methods as well as a
software implementation on Intel Core i7 with 8GB memory.
Experimental results showed that our accelerator outperforms
the clock cycles of other methods for the polynomial multi-
plication operation with degrees 1024 up to 22×. Moreover,
our proposed PRNG has better 2× correlation compared
to the rotation-only-based PRNG. Furthermore, our accel-
erator accelerates up to 9× for encryption and 3.5× for
decryption as well as 6.8× for overall compared to Microsoft
SEAL on Intel Core i7 processor with 8GB memory. The
proposed design is scalable for higher degrees polynomial
multiplication and useful for security technology such as
high-speed secure cloud computing, blind computing, and
secure communication.

REFERENCES
[1] (2020). IBM Top 7 Most Common Uses of Cloud Computing. Accessed:

Aug. 2, 2021. [Online]. Available: https://www.ibm.com/cloud/blog/top-
7-most-common-uses-of-cloud-computing

[2] C. Gentry, ‘‘Fully homomorphic encryption using ideal lattices,’’ in
Proc. 41st Annu. ACM Symp. Symp. Theory Comput. (STOC), 2009,
pp. 169–178.

[3] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Proc. Annu. Int. Conf. Theory
Appl. Cryptograph. Techn., 2010, pp. 24–43.

[4] Z. Brakerski and V. Vaikuntanathan, ‘‘Fully homomorphic encryption from
ring-LWE and security for key dependent messages,’’ in Proc. Annu.
Cryptol. Conf., 2011, pp. 505–524.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1–36, Jul. 2014.

[6] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, ‘‘Improved security for
a ring-based fully homomorphic encryption scheme,’’ in Proc. IMA Int.
Conf. Cryptogr. Coding, 2013, pp. 45–64.

[7] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ IACR Cryptol. ePrint Arch., Tech. Rep. 2021/144, 2012,
p. 144. [Online]. Available: https://ia.cr/2012/144

[8] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur., 2017, pp. 409–437.

[9] V. Migliore, M. M. Real, V. Lapotre, A. Tisserand, C. Fontaine, and
G. Gogniat, ‘‘Hardware/software co-design of an accelerator for FV homo-
morphic encryption scheme using Karatsuba algorithm,’’ IEEE Trans.
Comput., vol. 67, no. 3, pp. 335–347, Mar. 2018.

[10] A. Karatsuba and Y. Ofman, ‘‘Multiplication of multidigit numbers on
automata,’’ Sov. Phys. Doklady, vol. 7, no. 7, pp. 595–596, Jan. 1963.

[11] M. Albrecht, S. Bai, and L. Ducas, ‘‘A subfield lattice attack on over-
stretched NTRU assumptions,’’ in Proc. Annu. Int. Cryptol. Conf., 2016,
pp. 153–178.

[12] D. Stehle and R. Steinfeld, ‘‘Making NTRUEncrypt and NTRUSign
as secure as standard worst-case problems over ideal lattices,’’ Cryp-
tol. ePrint Arch., Tech. Rep. 2013/004, 2013. [Online]. Available:
https://ia.cr/2013/004

[13] S. S. Roy, K. Järvinen, J. Vliegen, F. Vercauteren, and I. Verbauwhede,
‘‘HEPCloud: An FPGA-based multicore processor for FV somewhat
homomorphic function evaluation,’’ IEEE Trans. Comput., vol. 67, no. 11,
pp. 1637–1650, Nov. 2018.

[14] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
‘‘FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,’’ in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), Feb. 2019, pp. 387–398.

[15] A. C. Mert, E. Ozturk, and E. Savas, ‘‘Design and implementation of
encryption/decryption architectures for BFV homomorphic encryption
scheme,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 2,
pp. 353–362, Feb. 2020.

VOLUME 10, 2022 7769

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

[16] A. C. Mert, E. Ozturk, and E. Savas, ‘‘Design and implementation of
a fast and scalable NTT-based polynomial multiplier architecture,’’ in
Proc. 22nd Euromicro Conf. Digit. Syst. Design (DSD), Aug. 2019,
pp. 253–260.

[17] H. Chen, K. Laine, and R. Player, ‘‘Simple encrypted arithmetic library–
SEAL v2.1,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur., 2017,
pp. 3–18.

[18] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[19] E. W. Weisstein. ‘Ring’ Mathworld–A Wolfram Web Resource.
Accessed: Jul. 9, 2021. [Online]. Available: https://mathworld.wolfram.
com/Ring.html

[20] V. Lyubashevsky, C. Peikert, and O. Regev, ‘‘On ideal lattices and learning
with errors over rings,’’ in Proc. Annu. Int. Conf. Theory Appl. Crypto-
graph. Techn., 2010, pp. 1–23.

[21] H. J. Nussbaumer, ‘‘Elements of number theory and polynomial alge-
bra,’’ in Fast Fourier Transform and Convolution Algorithms. Berlin,
Germany: Springer-Verlag, 1982, pp. 4–31.

[22] N. Sutisna, G. Jonatan, I. Syafalni, R. Mulyawan, and T. Adiono, ‘‘Poly-
nomial multiplication systolic array for homomorphic encryption in secure
network communications,’’ in Proc. IEEE Int. Conf. Commun., Netw.
Satell. (Comnetsat), Dec. 2020, pp. 390–394.

[23] G. Jonatan, I. Syafalni, N. Sutisna, R. Mulyawan, and T. Adiono,
‘‘Gaussian pseudo-random number generator using LFSR’s rotation
and split,’’ in Proc. Int. Symp. Electron. Smart Devices (ISESD),
Jun. 2021, pp. 1–5.

[24] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 2018.

[25] S. W. Golomb, Shift Register Sequences: Secure and Limited-Access Code
Generators, Efficiency Code Generators, Prescribed Property Generators,
Mathematical Models. Singapore: World Scientific, 2017.

[26] R. E.Walpole, R. H.Myers, S. L. Myers, and K. Ye, Probability and Statis-
tics for Engineers and Scientists, vol. 5. New York, NY, USA: Macmillan
1993.

[27] E. W. Weisstein. Central Limit Theorem. Mathworld–A Wolfram
Web Resource. Accessed: May 28, 2021. [Online]. Available:
https://mathworld.wolfram.com/CentralLimitTheorem.html

[28] S. D. Chatterji, ‘‘Lindeberg’s central limit theorem à la Hausdorff,’’ Expo.
Math., vol. 25, no. 3, pp. 215–233, 2007.

[29] D. S. Lemons, An Introduction to Stochastic Process in Physics. Baltimore,
MD, USA: Johns Hopkins Univ. Press, 2002.

[30] D. Williams, Probability With Martingales. Cambridge, U.K.: Cambridge
Univ. Press, 1991.

[31] Y. Hu, Y. Wu, Y. Chen, G. C. Wan, and M. S. Tong, ‘‘Gaussian random
number generator: Implemented in FPGA for quantum key distribution,’’
Int. J. Numer. Model., Electron. Netw., Devices Fields, vol. 32, no. 3,
p. e2554, May 2019.

[32] M. Kang, ‘‘FPGA implementation of Gaussian-distributed pseudo-random
number generator,’’ in Proc. 6th Int. Conf. Digit. Content, Multimedia
Technol. Appl., Aug. 2010, pp. 11–13.

[33] G. Cotrina, A. Peinado, and A. Ortiz, ‘‘Gaussian pseudorandom number
generator based on cyclic rotations of linear feedback shift registers,’’
Sensors, vol. 20, no. 7, p. 2103, Apr. 2020.

[34] D. C. Howell, Statistical Methods for Psychology, 7th, ed.Wadsworth, OH,
USA: Cengage Learning, 2010.

[35] P. L’Ecuyer, ‘‘Tables of maximally equidistributed combined
LFSR generators,’’ Math. Comput., vol. 68, no. 225, pp. 261–269,
1999.

[36] P. L’Ecuyer, ‘‘Maximally equidistributed combined tausworthe
generators,’’ Math. Comput., vol. 65, no. 213, pp. 203–213,
1996.

[37] D. B. Thomas and W. Luk, ‘‘The LUT-SR family of uniform
random number generators for FPGA architectures,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 761–770,
Apr. 2013.

[38] M. Bakiri, J.-F. Couchot, and C. Guyeux, ‘‘CIPRNG: A VLSI family of
chaotic iterations post-processings for F2-linear pseudorandom number
generation based on Zynq MPSoC,’’ IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 65, no. 5, pp. 1628–1641, May 2018.

[39] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, ‘‘A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications,’’ NIST Special Publication, Gaithersburg, MD, USA,
Tech. Rep. 800-22, 2010.

[40] P. S. Paul, M. Sadia, and M. S. Hasan, ‘‘Design of a dynamic
parameter-controlled chaotic-PRNG in a 65 nm CMOS process,’’ in
Proc. IEEE 14th Dallas Circuits Syst. Conf. (DCAS), Nov. 2020,
pp. 1–4.

[41] C.-Y. Li, Y.-H. Chen, T.-Y. Chang, L.-Y. Deng, and K. To, ‘‘Period
extension and randomness enhancement using high-throughput reseeding-
mixing PRNG,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20,
no. 2, pp. 385–389, Feb. 2012.

[42] M. Bakiri, C. Guyeux, J.-F. Couchot, L. Marangio, and S. Galatolo,
‘‘A hardware and secure pseudorandom generator for constrained
devices,’’ IEEE Trans. Ind. Informat., vol. 14, no. 8, pp. 3754–3765,
Aug. 2018.

[43] J. Černák, ‘‘Digital generators of chaos,’’ Phys. Lett. A, vol. 214, nos. 3–4,
pp. 151–160, 1996.

[44] (Sep. 2021).Microsoft SEAL (Release 3.7). Redmond,WA,USA. [Online].
Available: https://github.com/Microsoft/SEAL

[45] X. Li, A. Jain, D. Maskell, and S. A. Fahmy, ‘‘An area-efficient FPGA
overlay using DSP block based time-multiplexed functional units,’’ 2016,
arXiv:1606.06460.

[46] T. Pöppelmann and T. Güneysu, ‘‘Towards efficient arithmetic for lattice-
based cryptography on reconfigurable hardware,’’ in Proc. Int. Conf. Cryp-
tol. Inf. Secur. Latin Amer., 2012, pp. 139–158.

[47] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. C. Cheung,
D. Pao, and I. Verbauwhede, ‘‘High-speed polynomialmultiplication archi-
tecture for ring-LWE and SHE cryptosystems,’’ IEEE Trans. Circuits Syst.
I, Reg. Papers, vol. 62, no. 1, pp. 157–166, Jan. 2015.

INFALL SYAFALNI (Member, IEEE) received
the B.Eng. degree in electrical engineering from
the Institut Teknologi Bandung (ITB), Bandung,
Indonesia, in 2008, the M.Sc. degree in elec-
tronic engineering from the University of Sci-
ence Malaysia (USM), Penang, Malaysia, in 2011,
and the Dr. (Eng.) degree in engineering from
the Kyushu Institute of Technology (KIT), Iizuka,
Fukuoka, Japan, in 2014. From 2014 to 2015,
he has held a research position with KIT.

From 2015 to 2018, he has held an ASIC Engineer with the ASIC Devel-
opment Group, Logic Research Company Ltd., Fukuoka. In 2019, he joined
the ITB, where he is currently an Assistant Professor with the School of
Electrical Engineering and Informatics and a Researcher with the University
Center of Excellence onMicroelectronics, ITB. His current research interests
include logic synthesis, logic design, VLSI design, and efficient circuits and
algorithms.

GILBERT JONATAN received the B.Eng. degree
(cum laude) in electrical engineering from the
Institut Teknologi Bandung (ITB), Indonesia,
in 2020. He is currently pursuing the M.S.
degree with the Graduate School of Electrical
Engineering, Korean Advanced Institute of Sci-
ence and Technology (KAIST), South Korea.
From 2020 to 2021, he worked as a Researcher
with the University Center of Excellence on
Microelectronics, ITB. His current research inter-

ests include computer architecture, hardware accelerator, homomorphic
encryption, and artificial intelligence.

7770 VOLUME 10, 2022

I. Syafalni et al.: Efficient Homomorphic Encryption Accelerator With Integrated PRNG Using Low-Cost FPGA

NANA SUTISNA (Member, IEEE) received
the B.Eng. degree in electrical engineering and
the M.Eng. degree in microelectronics from the
Bandung Institute of Technology, Indonesia, in
2005 and 2011, respectively, and the Ph.D.
degree in computer science and electronics from
the Kyushu Institute of Technology, in 2017.
From 2017 to 2020, he was a Postdoctoral Fellow
with the Department of Computer Science and
System Engineering, Kyushu Institute of Technol-

ogy. He is currently with the Institut Teknologi Bandung as a Lecturer. His
research interests include VLSI design, baseband wireless system design,
AI processor design, and HW/SW co-design and co-verification.

RAHMAT MULYAWAN (Member, IEEE) received
the B.Eng. degree in EE from ITB, Indonesia,
in 2008, and the M.Sc. degree in EE from TU
Delft, The Netherlands, in 2011. He is currently a
member of the Microelectronics Center, ITB. His
research interests include intelligent signal pro-
cessing, MIMO systems, and transceiver design
for optical wireless communications.

TRIO ADIONO (Member, IEEE) received the
B.Eng. degree in electrical engineering and the
M.Eng. degree in microelectronics from the Insti-
tut Teknologi Bandung, Indonesia, in 1994 and
1996, respectively, and the Ph.D. degree in VLSI
design from the Tokyo Institute of Technology,
Japan, in 2002. He holds a Japanese Patent on
a high quality video compression system. He is
currently a Professor with the School of Electrical
Engineering and Informatics and also works as

the Head of the IC Design Laboratory, Microelectronics Center, Institut
Teknologi Bandung. His research interests include VLSI design, signal and
image processing, VLC, smart cards, and electronics solution design and
integration.

VOLUME 10, 2022 7771

