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ABSTRACT Capnogram signal analysis has received considerable attention owing to its important
applications in assessing cardiopulmonary functions. However, the automatic elimination of deformed
parts of a capnogram waveform remains an open research problem. Herein, we introduce an automatic
classification approach for discriminating artefact-free (regular) and distorted (irregular) segments of
capnogram signals. The proposed features include Hjorth parameters and mean absolute deviation (MAD).
The main advantage of these features is their simplicity, such that they can be employed in a computationally
efficient machine learning algorithm. MATLAB simulation is conducted on 100 regular and 100 irregular
segments of capnogram to extract the proposed and existing features, which are ranked based on the Pearson
correlation coefficient, p-value and area under receiver operating characteristic (ROC) curve. The naive
Bayes, decision tree, random forest and support vector machine (SVM) classifiers are fed by the relatively
highly ranked features, and the classification performance is assessed via ten-fold cross-validation. Besides
the linear kernel SVM, the radial basis function (RBF) and polynomial kernel functions with different orders
are also included in the current experiment. Results revealed the effectiveness of the Hjorth activity and
MAD attributes when used with the fourth-order polynomial kernel-SVM classifier. The achieved accuracy,
precision and specificity are 89%, 92.1%, and 91% outperforming the existing method by 2.5%, 5.6% and
7%, respectively. The simplicity of the proposed time-domain features is confirmed by the average total
computational time of features extraction and classification phases which is only 13 ms instead of 19 ms in
the case of incorporating both time- and frequency-domain features, indicating a reduction of 31.6%. It is
envisaged that the proposed approach can be valuable if implemented with capnography devices for real-time
and fully automated capnogram-based respiratory assessment. Even so, further research is recommended to
enhance the classification performance through exploring more features and/or classifiers.

INDEX TERMS Hjorth parameters, mean absolute deviation, capnography, support vector machine,
pulmonary diseases, carbon dioxide, clinical monitoring.

I. INTRODUCTION
The human respiratory system consists of linked organs and
tissues responsible for taking in oxygen and letting out carbon
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dioxide (CO2). Proper functioning of this system ensures that
different body parts get the energy they need to carry out
different activities [1]. Capnography is widely considered
a recommended effort-independent method to monitor
respiratory conditions through recording the so-called
capnogram signal. This non-invasively recorded capnogram
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waveform shows the variation of the partial pressure of CO2
in the flowing air through the nose during inspiration and
expiration [2]–[4]. It thereby provides valuable physiologic
information about the functioning of the cardiopulmonary
system, which is beneficial in airway management. Hence,
capnography has been used by physicians in the subjective
assessment of lung diseases, such as chronic obstructive
pulmonary disease (COPD), congestive heart failure (CHF),
asthma and pulmonary edema [5], [6]. Nevertheless, the
existing demand for automatic objective assessment of such
lifelong respiratory distress conditions has invited researchers
to develop computer-aided diagnosis systems for this task
[7]–[16]. The primary purpose of these computerized
algorithms is to extract and analyze capnogram features with
the ultimate goal of controlling life-threatening pulmonary
diseases in clinical and home environments.

Despite the effectiveness of these capnogram features,
they are clinically interpretable and purposeful if and only
if quantified from the clean segments of the recorded
capnogram signal. Hence, the identification of capnogram
segments which are not deformed by artefacts is the first
and foremost step in capnogram signal analysis, as pointed
up in [17]. We refer to these artefact-free portions as
regular capnogram segments in which the different phases of
respiration, such as the alveolar plateau phase [3], are clearly
defined. On the other side, the irregular capnogram segments
are those parts of the CO2 signal that are distorted by clinical
and/or mechanical artefacts [14], [18]. Even though selecting
the regular capnogram segments and discarding the irregular
ones is an essential prerequisite for capnogram-based lung
diseases detection and classification, the automatization of
this step using machine learning techniques has not yet
received the attention it deserves in the literature. That being
the case, the present study is mainly concerned with bridging
this research gap.

The rest of the article is organized as follows. Section II
discusses the previous related work. Section III presents the
material and methods in which the existing and proposed
features as well as the employed classifier and features
ranking metrics are explained. Section IV includes the results
and discussion. Finally, Section V concludes the paper.

II. RELATED WORK
In [7], [8], the authors introduced different time-domain
features to discriminate asthmatic and non-asthmatic
capnograms. The significant features included Hjorth
parameters, particularly mobility and activity, and gradients
of expiratory upstroke and plateau phases. However, the
selection of regular capnogram segments was performed
manually by means of visual scanning. In like manner, this
manual cropping of regular capnograms was carried out in
other studies [9], [10], which proposed frequency-domain
features, such as position and strength of spectral components
in addition to linear predictive coding (LPC) coefficients,
for capnogram-based asthmatic conditions classification
using radial basis function neural network. Also, the

capnogram segments with anomalies in their morphology
(i.e., irregular segments) were excluded manually in [11],
before extracting wavelet-based features for classifying chest
oppression and normal breathing cases using support vector
machine (SVM). The major problem with this primitive
way of visually choosing the regular segments is that it
is time-consuming and tedious, making it inappropriate
for fully automated capnogram signal analysis over long
time intervals. To overcome this issue, template matching
and thresholding were alternatively used in [12], [14].
In [12], the authors analyzed the morphological variations
of the capnogram signals to distinguish CHF and COPD
using quadratic discriminant analysis. Mainly, the employed
features were related to the exhalation phase, such as
its slope and time duration in addition to end-tidal CO2
(EtCO2) and the time spent at this signal peak. These
features were extracted from the regular capnogram segments
selected using the template matching method. In this method,
a capnogram segment is labelled as regular or irregular
based on its degree of matching with a reference capnogram
template. The construction of this template is a challenging
task, as it is necessary to involve various shapes of valid
breath cycles; otherwise, the reference template may be
biased giving rise to misleading results. In [14], the proposed
capnogram features for SVM-based asthma classification
included the area under certain portions of inspiratory and
expiratory capnogram phases. Differing from the template
matching method, the authors in [14] checked the regularity
of capnogram segments based on comparing statistical
parameters, such as standard deviation, with a predefined
threshold. In the face of being simple, threshold-based
methods in general, have a limitation regarding the hardness
of determining the optimal threshold value that can work
effectively with unseen data [19], [20]. Other applications
of artificial intelligence and machine learning techniques for
classifying and predicting different chronic airway diseases
can be found in [13], [21], [22].

The aforementioned limitations have given us themotive to
introduce a machine learning-based approach recently in [23]
for classifying regular and irregular capnogram segments.
In this lately proposed approach, the employed features
included both time- and frequency-domain features, and the
achieved classification performance was limited, especially
the specificity that was only 84%. In addition, the SVM
classifier was deployed with only the simple linear kernel
function [24], [25]. Finding significant yet simple features
along with an effective model to classify regular and irregular
capnogram segments is apparently a challenging task given
that the distortions experienced by capnogram signals have
wide morphological variations [18]. In the current work,
we propose the mean absolute deviation (MAD) [26] in
addition to the Hjorth parameters [27], [28] as features
for classifying regular and irregular capnograms. Hereby,
we avoided using frequency-domain features which impacted
the features computation time and the simplicity of the built
classification model. We also included other non-linear SVM
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kernel functions that can deal with non-linearly separable
data conveniently [29]. Furthermore, we used the naive
Bayes, decision tree and random forest classifiers [30]–[33]
besides the SVM to test the effectiveness of the proposed
features with various classification models. In order to assess
the performance of the proposed approach, we conducted
MATLAB simulation on 100 regular and 100 irregular
15-seconds capnogram segments. The obtained results
showed the potential of the currently proposedMAD attribute
together with the Hjorth activity when fed to the SVM
classifier with the polynomial kernel function.

III. MATERIAL AND METHODS
The block diagram shown in Fig. 1 illustrates the four main
stages of the employed methodology, and the following
subsections discuss each of these stages.

A. CAPNOGRAM DATA ACQUISITION
Thirty-five subjects consented to participate in this project
which is under consideration of National Medical Research
Register-Malaysia; research ID 41357. All subjects were
adults between 17 and 33 years of age. Each subject
was instructed to respire normally for five minutes, after
being seated and connected by a nasal cannula to the
capnography monitor CapnostreamTM20 Model CS08798.
The capnography device acquired capnogram signals, from
the participating subjects, at a sampling rate of 20 Hz (i.e.,
20 samples/second). Next, cropping of the recorded data
was performed with the aim of preparing 100 regular and
100 irregular capnogram segments for our experiment. Each
segment comprises 300 CO2 samples (i.e., the time duration
of a capnogram segment is 15 seconds). We chose this length
for each segment to make sure that it includes a minimum
convenient number of complete breath cycles [23].

B. FEATURES EXTRACTION
Starting from this stage onwards, we used MATLAB
(R2015a) as the simulation tool on a computer with an
Intel R©CoreTM i7 processor, 2.5 GHz speed and 16 GB
RAM. The amplitude of the incorporated capnogram
segments is normalized [34] ahead of features extraction.
This normalization step is performed as the main focus,
herein, is on classifying regularly- and irregularly-shaped
capnograms regardless the actual amplitude values.

1) EXISTING FEATURES
Recently, we proposed in [23] a number of time- and
frequency-domain features for classifying regular and
irregular capnogram segments. Among these features, the
relatively most substantial ones were found to be the area
under normalized magnitude frequency spectrum and the
signal’s variance.

The frequency content (spectrum) of a waveform refers
to its constituent sinusoids [35], [36]. The zero-frequency
component is insignificant in performing the classification
of regular and irregular capnogram segments [23]. Thus, the

FIGURE 1. Block diagram illustrating the stages of the employed
methodology.

signal’s amplitude is shifted by subtracting the mean value,
as given below, to eliminate the zero-frequency component:

x(n) = c(n)− c (1)

where the mean value c of an amplitude-normalized
capnogram segment ‘c(n)’ is calculated as:

c =
1
N

N−1∑
n=0

c(n) (2)

and N is the segment’s length (i.e., N = 300). Subsequently,
the frequency spectrum of ‘x(n)’ is calculated using the
discrete Fourier transform as follows [35], [36]:

X (k) =
N−1∑
n=0

x(n)e−j(2π/N )nk
∀ k = 0, 1, . . . ,N − 1 (3)

where the whole number ‘k’ is related to the signal’s
frequency ‘f ’ and sampling frequency ‘fs’ as given below:

k = f (N/fs) (4)

The normalized magnitude frequency spectrum, in which
the magnitude of any frequency component ranges from
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0 to 1 is then used to compute frequency-domain features.
According to the reported findings in [23], the area under
normalized magnitude spectrum is a more relevant feature
than the number of relatively high spectral peaks for
distinguishing regular and irregular capnogram segments.
Therefore, in this work, we chose this feature which is
calculated as follows:

A2 =
fs
N

2(N/fs)∑
k=0

∣∣X (k)∣∣ (5)

where the subscript 2 denotes the upper frequency bound,
in hertz, for which the area is computed. That is, the lower and
upper limits of ‘k’ are 0 and 2(N/fs), respectively, because the
frequency band 0 ≤ f ≤ 2 Hz contains the major portion of
the capnogram signal power [23].

The variance of ‘c(n)’ is calculated by squaring the
standard deviation as given below [35], [37]:

σ 2
c =

1
N

N−1∑
n=0

(
c(n)− c

)2
(6)

The variance (also referred to as Hjorth activity [27], [28])
measures the signal’s variability about its average value.
A relatively large variance indicates a wide spread of the
signal’s amplitude around the mean value, while the opposite
is indicated by a small variance [37].

2) PROPOSED FEATURES
Together with the lately proposed features, here we propose
the Hjorth mobility and complexity parameters [27], [28]
in addition to the MAD as features for enhancing the
performance of regular/irregular capnogram classification.

The Hjorth mobility parameter is defined as the reciprocal
ratio between the standard deviations of the signal and its first
derivative [27], [28]:

Mobility
[
c(n)

]
=
σc′

σc
(7)

where c′(n), the first derivative of a capnogram segment,
is computed as follows [38]:

c′(n) =
1
Ts

[
c(n+ 1)− c(n)

]
(8)

and Ts is the sampling time interval:

Ts = 1/fs (9)

The Hjorth mobility parameter gives an indication of the
standard deviation of the signal’s power spectrum over the
entire frequency range [27], [28]. That is to say, a signal
with focused frequency content in a narrow range has a lower
mobility than that of another signal with a widely spread
power spectrum.

The Hjorth complexity parameter is computed by dividing
the signal’s first derivative’s mobility by the signal’s
mobility [27], [28]:

Complexity
[
c(n)

]
=
mobility

[
c′(n)

]
mobility

[
c(n)

] = σc′′/σc′

σc′/σc
(10)

and thereby,

Complexity
[
c(n)

]
=
σc′′ × σc

σ 2
c′

(11)

where c′′(n), the second derivative of a capnogram segment,
is computed in a way analogous to (8) [38]:

c′′(n) =
1
Ts

[
c′(n+ 1)− c′(n)

]
(12)

The Hjorth complexity is a dimensionless parameter which
indicates the similarity between the signal’s morphology and
that of a sinusoidal waveform [27]. The complexity value
converges to one as the signal’s shape gets more like a pure
sine wave. In other words, the minimum signal’s Hjorth
complexity value is one which is obtained in the case of a
pure sine wave [27], [28].

The MAD evaluates the average absolute difference
between CO2 samples and the mean CO2 value of the entire
capnogram segment [26], as given below:

MAD =
1
N

N−1∑
n=0

∣∣c(n)− c∣∣ (13)

The power of a signal, such as a capnogram segment,
is proportional to the average absolute deviation of its
amplitude from the mean amplitude. Hence, the signal’s
MAD serves as an index of its power [39]. This means that a
wide signal swing causes the signal’s power and MAD value
to be higher than those of a signal whose amplitude variation
is narrow around the mean.

C. FEATURES EVALUATION AND SELECTION
In this work, we made use of the Pearson correlation
coefficient, receiver operating characteristic (ROC) curve
and p-value to evaluate the relevance of the extracted
features [40]–[46].

The Pearson correlation coefficient ‘ρ’, which indicates
the linear relationship between a featureFj = [fj1, fj2, . . . , fjM ]
and target class labels L = [l1, l2, . . . , lM ], is defined as their
covariance divided by the square root of the product of their
variances as given below [40], [41], [47]:

ρ(Fj,L) =
cov(Fj,L)√

var(Fj)× var(L)
(14)

That is,

ρ(Fj,L) =

∑M
i=1(fji − Fj)(li − L)√∑M

i=1
(
fji − Fj

)2∑M
i=1

(
li − L

)2 (15)

where the mean values Fj and L of Fj and L, respectively, are
calculated as:

Fj =
1
M

M∑
i=1

fji (16)

L =
1
M

M∑
i=1

li (17)
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andM represents the number of capnogram segments that are
used in our experiment (i.e., M = 200). The range of the
Pearson correlation coefficient is as follows [40], [41]:

0 6
∣∣ρ(Fj,L)∣∣ 6 1 (18)

The larger the value of
∣∣ρ(Fj,L)∣∣, the more the efficacy

of the jth feature [47], [48]. That is, features with high
correlation values (close to ‘1’) contribute more towards
performing accurate classification than those features with
low correlation values (close to ‘0’). Similar to what
is reported in [49], we categorized the relevance of the
extracted features based on the associated Pearson correlation
coefficients as follows:
• Weakly relevant 0.3 6

∣∣ρ(Fj,L)∣∣ < 0.5

• Moderately relevant 0.5 6
∣∣ρ(Fj,L)∣∣ < 0.7

• Strongly relevant
∣∣ρ(Fj,L)∣∣ > 0.7

Besides the Pearson correlation coefficient, the ROC curve
is another tool for assessing the effectiveness of features.
Particularly, the area under the ROC curve (AUC) is reported
as a reliable features ranking metric [43], [44]. This features
ranking method is referred to as feature assessment by sliding
thresholds (FAST) [44]. FAST considers each individual
feature as the input of a single feature classifier that performs
the classification based on a decision threshold. At any
arbitrary decision threshold, true and false positives in
addition to true and false negatives are counted according
to the confusion matrix shown in Table 1 [42]. By sliding
the decision threshold, the true positive rate (TPR) and false
positive rate (FPR), at each decision threshold, are calculated
as follows [42], [44]:

TPR =
TP

TP+ FN
(19)

FPR =
FP

FP+ TN
(20)

Hence, the obtained TPR and FPR values are used as y- and
x-coordinates, respectively, to build the ROC curve for each
individual feature. Subsequently, the AUC values (that range
from ‘0.5’ to ‘1’ [44]) are found for all extracted features.
In this work, we used the trapezoidal rule for computing the
AUC [50]. It can be inferred from (19) and (20) that the
optimum TPR and FPR values are ‘1’ and ‘0’, respectively.
Thus, the larger the AUC value, the more relevant is the
feature [43], [44].

In addition to Pearson correlation coefficient and
AUC, we also employed the probability-value (known as
p-value [45]) to examine the feasibility of the proposed
features. For each feature, the p-value helps determine
whether to accept or reject the so-called null hypothesis that
assumes no significant difference between classes. In other
words, the p-value indicates the statistical significance
of interrelationship between classes for an individual
feature [45], [46]. If the p-value is below a pre-determined
significance level (usually 5 × 10−2 [45], [46]), the

null hypothesis is rejected and accordingly the feature is
considered acceptable in the context of differentiating both
classes.

Based on the aforementioned features ranking metrics, the
relatively least relevant features are eliminated by using the
filter-based feature selection method [47], [51].

D. CLASSIFICATION AND PERFORMANCE EVALUATION
Herein, we employed the SVM classifier to discriminate
between regular and irregular capnogram segments. The
SVM is a popular supervised machine learning method
that uses hyperplanes to distinguish between different
classes [24], [25]. The main idea of constructing a SVM
classification model is based on choosing a separating
hyperplane (i.e., decision boundary) that is located in between
and as far as possible from the data points of both classes.
For linearly separable data, it is convenient to use the linear
SVM that employs a linear decision hyperplane. On the other
hand, the non-linear SVM is recommended for classifying
non-linearly separable data. The non-linear SVM uses a
kernel function with the aim of transforming the input data
into a higher-dimensional feature space in which data points
of the two classes are linearly separable [52]. Besides the
SVM, we also deployed the naive Bayes, decision tree
and random forest classifiers [30]–[33]. The naive Bayes
classifier is built, during the learning process, by constructing
a Bayesian probabilistic model that aims to assign a posterior
class probability to a sample capnogram segment, and hence
classification is performed [30]. On the other hand, the
basic strategy of the decision tree depends on classifying
an unknown data sample by using one or more decision
functions in a hierarchical manner. This is carried out through
a number of computations performed at the set of nodes and
branches of the decision tree that is constructed in the learning
phase [31]. Despite its simplicity, a main drawback of the
decision tree classifier is the propagation of the error that may
occur in a node close to the root. This disadvantage is avoided
by the random forest, which performs the classification
through an ensemble of decision trees [32], [33].

In this study, we trained and tested SVM classification
models with linear, radial basis function (RBF) and
polynomial kernel functions [29], [53] in addition to the
naive Bayes, decision tree and random forest classifiers.
For m selected features, 90% and 10% of the data set
{(fi1, l1), (fi2, l2), . . . , (fiN , lN )} are used for training and
testing the classifier model, respectively, where i ∈

{1, 2, . . . ,m}. Training and testing are repeated through
performing ten-fold cross-validation [25]. The results of the
testing phase are used to compare the classifier’s decisions
with the ground truth and find the components of the
confusion matrix (See Table 1). This is to assess the
classification performance of each model based on (19) and
(20) in addition to the following evaluation metrics [42]:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(21)
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TABLE 1. Confusion matrix.

Precision =
TP

TP+ FP
(22)

Sensitivity = TPR (23)

Specificity = 1− FPR (24)

where the accuracy indicates the proportion of correct
classifier’s detections to all tested capnogram segments,
while the precision represents the fraction of classifier’s
positive predictions that actually belongs to regular
capnogram segments [23]. Sensitivity is the same as the TPR,
and specificity is the complement of the FPR referring to
the proportion of the irregular capnogram segments that are
successfully identified by the classifier.

IV. RESULTS AND DISCUSSION
A. FEATURES ANALYSIS
We computed and evaluated the existing and proposed
features, described in the methodology section, for all
capnogram segments in the employed dataset. Figures
2 and 3 show sample regular and irregular capnogram
segments, respectively, and their magnitude frequency
spectrum. Table 2 lists the mean ± standard deviation of
the previously and currently proposed features in addition
to the corresponding features ranking metrics. The ROC
curves for all extracted features are plotted in Fig. 4. Overall,
the results revealed that the relatively most relevant and
powerful features are the MAD, Hjorth activity and area
under normalized magnitude frequency spectrum. On the
flip side, the relatively least relevant features are the Hjorth
mobility and complexity.

As depicted in Fig. 2, the single significant spectral
peak reflects the consistent periodic pattern of the regular
capnogram segment. Particularly, this peak is observed at
0.2 Hz which indicates the approximate time duration of one
breath cycle (i.e., 1/0.2 Hz = 5 s) for this sample segment.
On the other side, more significant peaks at relatively higher
frequencies are observed in the spectrum of the irregular
capnogram segment (See Fig. 3) due to the chaotic signal’s
amplitude. Hence, as shown in Table 2, lower values of
area under normalized magnitude spectrumwere obtained for
regular capnogram segments (0.2534 ± 0.0569), compared
to those of irregular segments (0.3745 ± 0.09). Besides,
the existence of more significant harmonics in the irregular
capnogram segment’s frequency spectrum is expressed by

FIGURE 2. Normalized regular capnogram segment (top) and its
normalized magnitude spectrum excluding the zero-frequency
component (bottom).

FIGURE 3. Normalized irregular capnogram segment (top) and its
normalized magnitude spectrum excluding the zero-frequency
component (bottom).

a relatively higher Hjorth mobility parameter (3.1256 ±
0.5164) compared with that of a regular segment (2.7556
± 0.3996) which usually has a focused frequency spectrum.
In consistency with the findings reported in [23], the area
under the normalized magnitude spectrum is considered
a moderately relevant feature according to its Pearson
correlation value which is 0.6285. In addition, the feature’s
AUC is 0.8634 and the p-value is as low as 2.2 × 10−23

which shows that the distinction between both classes, based
on this feature, is statistically significant. For the Hjorth
mobility, although the p-value is below 5 × 10−2, a low
Pearson correlation of 0.3735 is exhibited by this feature
which suggests that it is a weakly relevant feature. This is
also confirmed by the AUC, which is only 0.6988, indicating
that achieving low FPR and high TPR simultaneously is not
possible using the Hjorth mobility attribute (See Fig. 4). The
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TABLE 2. Summary of feature values and associated evaluation metrics.

FIGURE 4. ROC curves for all extracted features.

weak relevance of the Hjorth mobility is seemingly due to the
erratic width of the frequency spectrum of irregular segments,
which depends on the degree of random variations of the CO2
signal level. That is, some irregular segments have higher
Hjorth mobility because of their broader frequency spectrum,
while other segments have lower mobility values like those
of regular segments whose frequency spectrum is focused
within a narrow range.

Contrary to irregular capnogram segments, the different
phases of a regular segment are clearly defined in accordance
with the description of the typical capnogram signal’s
morphology [3]. In other words, the signal’s amplitude
of regular segments is consistently fluctuating and the
dead space lasts for a shorter period than that of other
phases in which the CO2 samples have higher values
(See Fig. 2) [3], [23]. This leads to an increased signal
power, which justifies the higher Hjorth activity and MAD
values exhibited by most regular capnograms compared with
irregular ones. In particular, as listed in Table 2, the mean
values of the Hjorth activity and MAD features for regular
segments are 0.1931 and 0.4258, with standard deviations

of 0.0094 and 0.0119, respectively. On the other hand, for
irregular segments, the mean values of the Hjorth activity
and MAD features are 0.1521 and 0.3561, with standard
deviations of 0.0289 and 0.0529, respectively. The Hjorth
activity and MAD are not far from being considered strongly
relevant features, as they exhibit Pearson correlation values of
0.6917 and 0.6744, respectively. In addition, the highest AUC
and least p-values are associated with these two features,
as shown in Fig. 4 and Table 2.

The Hjorth complexity feature is employed, in this
work, to reflect the oscillations in the CO2 signal level
and consequently distinguish between regular and irregular
capnogram segments. However, the obtained complexity
values for regular and irregular capnogram segments are
4.9196 ± 0.8863 and 4.8892 ± 1.0566, respectively, which
shows that the two groups are highly overlapped. This implies
that the difference between the two classes, with respect to
this feature, is not statistically significant (p-value > 5 ×
10−2, as shown in Table 2). Moreover, the feature’s AUC and
Pearson correlation are only 0.5334 and 0.0157, respectively,
thereby indicating that it is an extremely weakly relevant
feature. Hence, the Hjorth complexity is not a significant
feature for the task of discriminating regular and irregular
capnogram segments. One possible reason is that both the
systematized and inconsistent amplitude’s fluctuations of
regular and irregular segments, respectively, do not resemble
the sinusoidal signal, and therefore the complexity values for
both classes were found to be approximately five times the
complexity value of a pure sine wave.

B. CLASSIFICATION PERFORMANCE ANALYSIS
In order to exclude the least powerful features, we employed
the filter-based feature selection method [47] by setting a
filtering threshold of ρ(Fj,L) = 0.5. Accordingly, the Hjorth
mobility and complexity parameters were ruled out and
the remaining highly-ranked features were grouped together
in feature set A, as illustrated in Table 3, to be utilized
in the classification stage. Besides, other feature sets B,
C and D, which comprise all pairwise combinations of the
three features in set A, were investigated for the purpose of
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TABLE 3. SVM test results for different feature sets.

achieving the best possible classification performance using
a lower-dimension feature space. This aimed at minimizing
the computational time of features extraction in addition
to building a less complex classification model. By using
each feature set, the SVM with linear, RBF and fourth-order
polynomial kernel functions, was trained and tested via
ten-fold cross-validation [25]. The detailed classification
performance results are listed in Table 3.

Unlike manual selection, template matching and
threshold-based methods utilized in [7]–[12], [14], the
classification of regular and irregular capnogram segments
was performed lately in [23] by using a machine
learning-based approach in which the two features included
in set B (i.e., area under normalized magnitude spectrum and
Hjorth activity) have been employed with the linear SVM
classifier. The current results showed that using non-linear
kernel functions with the same feature set B did not offer
a notable improvement over the reported results in [23],
as shown in Table 3. For instance, the FPR is still quite
high ranging between 15% and 18%. Additionally, the
accuracy, TPR and precision are all below 90%. This limited
performance is likely due to the overlap between the two
classes in the feature space formed by the components
of set B, as highlighted in [23]. Whereas, when the area
under normalized magnitude spectrum is used along with
the proposed MAD attribute (i.e., feature set C), a relatively
better classification performance was obtained, especially
in terms of the TPR that reached 92% in the case of using
the RBF kernel function. This positive impact of involving
the MAD is consistent with being the feature that exhibited
the highest AUC value of 0.9558 (See Table 2 and Fig. 4).
A more enhanced performance was observed when feature

sets A andDwere employedwith the fourth-order polynomial
kernel function. However, feature set D has the advantage of
including a reduced number of features compared to set A.
Furthermore, both Hjorth activity and MAD; the members of
feature set D, are time-domain features which implies that
the required processing time for transforming the capnogram
signal into the frequency-domain will be saved. In other
words, making use of the proposed MAD feature rather than
the area under normalized magnitude spectrum in performing
regular/irregular capnogram segment classification will
contribute to building a more computationally efficient
system.

We further investigated the efficacy of the proposed
features by feeding them into three different classifiers other
than the SVM. Table 4 shows the classification performance
of these classifiers; naive Bayes, decision tree and random
forest, when each of the four feature sets was employed.
By comparing the results obtained when feature sets A and
D were employed, it is reassured that the extraction of
the traditional area under normalized magnitude spectrum
feature, which necessitates transforming the capnogram
signal into the frequency-domain, can be avoided while
maintaining almost the same classification performance.
The results also confirmed the feasibility of the MAD and
Hjorth activity features through achieving the relatively best
accuracy (87%) when these features were fed to the decision
tree and random forest classifiers. Furthermore, among the
three classifiers, the random forest classifier provided the
least FPR (11%) and the highest precision (90.45%). The
largest TPR (93%) was observed when the naive Bayes
classifier was fed by any of the four feature sets. However,
we do not recommend this classifier as it showed a poor FPR
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TABLE 4. Classification performance results for the naive Bayes, decision
tree and random forest classifiers when different feature sets were
employed.

with all the feature sets; that is, the lowest FPR was as high
as 19% in the case of using feature set C. Moreover, the
achieved precision was always below 85% regardless of the
employed features, as shown in Table 4. Although the overall
performance of the random forest classifier is better than that
provided by the naive Bayes and decision tree classifiers, the
SVM with fourth-order polynomial kernel function is still
comparatively superior (See Table 3). Additionally, the SVM
would be more convenient and strongly preferred over other
classifiers if the number of features and/or data samples is
increased, as highlighted in [54].

In order to justify the reason behind choosing the
polynomial kernel function of order four, we investigated the
SVM classification performance when different polynomial
orders are employed with feature set D. The results are
listed in Table 5 and illustrated graphically in Fig. 5. For
higher polynomial orders, a better performance was observed
because the constructed non-linear decision boundary is more
appropriate for separating the non-linearly separable data of
the two classes. However, increasing the polynomial order
above four caused a performance degradation due to the over
fitting problem which makes the built classification model
unable to deal properly with unseen data [55]. The highest
accuracy (89%) and precision (92.1%) were achieved by
using the fourth-order polynomial. Although the relatively
highest TPR (89%) was provided by the first and second
orders, the least FPR (9%) was obtained when the third-,
fourth- and fifth-order polynomials were used. Achieving
a low FPR is more crucial than a high TPR, in this
study, because misclassifying a distorted capnogram segment
as a regular one may lead to misleading results in the
capnogram-based cardiopulmonary assessment which is not
the case when some regular capnogram segments are falsely
discarded. Therefore, the obtained results revealed that the

TABLE 5. SVM test results for different polynomial orders in case of
employing feature set D.

FIGURE 5. Graphical illustration of the achieved accuracy and FPR when
different polynomial orders were employed with feature set D.

fourth-order polynomial kernel function is recommended for
the current classification task.

Table 6 summarizes the best classification performance
achieved by each of the deployed classification models
with the presented features in this study. Among these
classifiers, the best performance in terms of accuracy,
specificity and precision was provided by the SVM with
the fourth-order polynomial kernel function. In addition,
the trained SVM model performed the classification of a
capnogram segment within only 1 ms on average, which
is the least classification time compared to that of the
random forest, decision tree and naive Bayes classifiers,
as shown in Table 6. The naive Bayes classifier outperformed
the other classifiers only in terms of sensitivity, achieving
93%, at the expense of spending a longer classification
time five times that of the SVM. Furthermore, obtaining
this relatively high sensitivity required the employment of
a frequency-domain feature instead of the Hjorth activity,
which extended the time taken for features extraction to be
18 ms rather than 12 ms. Table 6 also highlights the achieved
performance enhancement in the current work through a
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TABLE 6. Comparison of the relatively best achieved performance against that of the existing method.

comparison against the lately reported results in [23]. Herein,
we suggested extracting simple time-domain features from
a capnogram segment, requiring less computational time.
In particular, the average computational time for features
extraction and classification per segment is considerably
reduced by 31.6% compared to incorporating both
time- and frequency-domain features (13 ms instead of
19 ms). Moreover, the accuracy and precision were increased
from 86.5% each to 89% and 92.1%, respectively, indicating
a more accurate discrimination between regular and irregular
capnogram segments. Further, employing the proposedMAD
feature along with the Hjorth activity could yield a specificity
of 91%which is 7% higher than the existing approach in [23].
Nevertheless, these improvements were achieved at the
expense of the classification sensitivity that decreased by 2%.
Additionally, the proposed SVM-based classification method
employed the fourth-order polynomial kernel function, which
is relatively more complex than the simple linear kernel
function used in [23], affecting the classifier’s training time.

V. CONCLUSION
The objective of this study was to present a powerful
classification approach for the discrimination of regular
and irregular capnogram segments using simple features.
For this purpose, we employed the SVM, naive Bayes,
decision tree and random forest classifiers along with the
Hjorth parameters and MAD features. Based on our results,
we conclude that the relatively highly ranked features;
Hjorth activity and MAD, are capable of achieving the
objective when fed to the SVM classifier with fourth-order
polynomial kernel function via ten-fold cross validation.
In particular, the achieved classification accuracy, precision
and specificity by the proposed approach are 89%, 92.1%

and 91%, outperforming the lately reported results by
2.5%, 5.6% and 7%, respectively. Moreover, using only
time-domain features rather than involving both time- and
frequency-domain features contributed to reducing the total
computational time of features extraction and classification
substantially by 31.6%. Thereby, the propriety of deploying
the proposed methodology in real-time capnogram signal
analysis is assured. Despite the potential of the presented
approach, the sensitivity is slightly decreased by 2%. Looking
forward, further research is advocated to enhance the
classification performance through exploring more features
and/or classifiers.
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