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ABSTRACT Available data may differ from true data in many cases due to sensing errors, especially for
the Internet of Things (IoT). Although privacy-preserving data mining has been widely studied during the
last decade, little attention has been paid to data values containing errors. Differential privacy, which is the
de facto standard privacy metric, can be achieved by adding noise to a target value that must be protected.
However, if the target value already contains errors, there is no reason to add extra noise. In this paper, a novel
privacy model called true-value-based differential privacy (TDP) is proposed. This model applies traditional
differential privacy to the ‘‘true value’’ unknown by the data owner or anonymizer but not to the ‘‘measured
value’’ containing errors. Based on TDP, the amount of noise added by differential privacy techniques can
be reduced by approximately 20% by our solution. As a result, the error of generated histograms can be
reduced by 40.4% and 29.6% on average according to mean square error and Jensen–Shannon divergence,
respectively. We validate this result on synthetic and five real data sets. Moreover, we proved that the privacy
protection level does not decrease as long as the measurement error is not overestimated.

INDEX TERMS Data mining, data privacy, differential privacy, Internet of Things.

I. INTRODUCTION
Significant amounts of IoT data are generated every day by
many different sensors, such as thermal cameras, home appli-
ance sensors, automotive sensors, and smartphone-equipped
sensors. These IoT data can be used for health monitor-
ing [1], context-aware recommendation (or recommender)
systems [2], navigation [3], and other applications.

However, sensing people or their surrounding environment
might involve information that identifies an individual [4].
Thus private information is at risk of leakage. By anonymiz-
ing data based on ε-differential privacy [5], [6], which is the
de facto standard privacymetric (ε represents the privacy bud-
get), privacy leakage can be controlled. Differential privacy
has been used in many studies, such as [7]–[9], as it is one
of the most critical privacy metrics [10]. It is considered an
important concept for data analysis [11], [12].
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Local differential privacy is a specialized concept of differ-
ential privacy especially for data collection from each person.
In this paper, ‘‘differential privacy,’’ refers to ‘‘local differ-
ential privacy.’’ A differential private value can be obtained
by adding Laplace noise to a target value, which must be
protected with respect to numerical values [5]. For categorical
values, a differential private category ID can be obtained by
disguising the sensed category ID with a certain probabil-
ity [13], [14]. These methods are widely used to achieve
ε-differential privacy. However, they do not consider errors
in values.

In this paper, an original value with no error is referred to
as a ‘‘true’’ value; the owner or anonymizer might not know
these values. Alternatively, sensed values that might have
errors are referred to as ‘‘measured’’ values. Existing studies
regarding differential privacy do not consider true values but
only measured values. Our study aims to determine whether
additional noise should be added to protect privacy if the
target value already contains errors. This research proposes
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FIGURE 1. Concept of true-value-based differential privacy (TDP).
Traditional differential privacy adds differential privacy noise to the
measured value. However, TDP tries to add noise to the true value.

TABLE 1. Relationship between the error distribution knowledge and
the TDP.

a new privacy model, protecting the true value as opposed to
the measured value. Since the data owner might not know the
true value, the true data is assumed to have a specific probabil-
ity distribution, such as a normal distribution. This probability
distribution is based on the data owner’s or anonymizer’s
knowledge or the theory of errors [15], [16]. The differ-
ence between the traditional approach and the proposed true-
value-based differential privacy (TDP) is described in Fig. 1.
According to the TDP concept, the amount of noise added to
the measured value can be reduced.

We assume that the anonymizer can estimate the distri-
bution of measurement errors to some extent. Therefore,
TDP can be achieved even if the anonymizer is incorrect,
as long as they do not overestimate the amount of sensing
errors. The relationship between the anonymizer’s error dis-
tribution and the TDP is listed in Table 1. Therefore, if the
anonymizer cannot be certain about the error distribution,
they can guarantee TDP by conservatively estimating the
amount of error. If the error amount is predicted to be zero,
we get the same result as traditional differential privacy. Thus,
TDP can reduce the amount of error introduced compared
to traditional differential privacy and still achieve the desired
privacy protection level specified by ε.
If we have no information about the error distribution,

we cannot use the proposed method in this paper. However,
we believe that there are many situations where it is possible
to make estimates under the condition that we can underes-
timate the amount of error. An additional discussion on this
point is given in Section VI.

In Section IV, we have conducted experiments using three
synthetic datasets and three real datasets. We compared our
method with the other three methods for numerical datasets
and four methods for categorical datasets. The experimental
results show our solution could reduce the amount of noise
by approximately 20% and reduce the amount of error of
generated histograms from 20% to 40% on average.

In recent years, several methods for LDP have been
proposed. These LDP methods primarily estimate the

distribution underlying the user data and federated
learning [17]–[20]. They put noise on the values to satisfy
differential privacy or randomly vary the category values.
They proposed variousmethods to reduce the amount of noise
in the differential privacy to have as little negative impact
on the statistical analysis as possible. However, they do not
consider sensing errors in IoT environments.

The authentication protocols for IoT are organized in detail
in a survey paper by Ferrag et al. [21]. This survey paper cat-
egorized IoT environments into Machine-to-Machine Com-
munications, Internet of Vehicles, Internet of Energy, and
Internet of Sensors. The advantages and disadvantages of
authentication protocols in each environment were summa-
rized. One of the main objectives of an authentication pro-
tocol is to send each data to the correct entity correctly.
It cannot directly solve the purpose of statistically correct
analysis without sending the correct information of each data
to anyone. Note that this objective is not a special objective
of our study but a common objective in existing studies that
collect data using differential privacy.

Badun et al. surveyed security and privacy issues on IoT
platforms [22]. They state that most IoT platforms do not
inform users about the type of information they collect and
where it is shared. Therefore, some IoT platforms use new
technologies that still put the data stored in the cloud under
the user’s control. Such techniques can protect user data;
however, they do not provide a mechanism to analyze the data
of many users across the board statistically.

Husnoo et al. organized the techniques of differential pri-
vacy in IoT environments [23]. They categorized two major
usage scenarios for differential privacy: (1) a scenario where
a trusted server holds the true data and only shares the sta-
tistical analysis results with third parties and (2) a scenario
where data is collected on an untrusted server. Our study
and several studies in literature focus on the second scenario.
The disadvantage of the latter scenario is that the cumulative
amount of noise added to each data becomes larger and affects
the usefulness of the data [23]. Using our proposed method
considering measurement errors, the cumulative amount of
noise can be reduced as shown in our experimental results.

Ma et al. proposed an algorithm based on stochastic influ-
ence perturbation to satisfy differential privacy [24]. They
assumed that a trusted central server has a whole raw dataset,
and their aim was to generate a private version of the dataset.
They proposed a framework for network traffic tensor data
privacy protection. They used multiple-strategy differential
privacy for network traffic tensor data. Their mechanism also
assumed a central trusted server, although they partly used
local differential privacy.

Onesimu et al. proposed a novel privacy protection data
collection scheme for IoT-based healthcare service sys-
tems [25]. Their method uses a clustering-based anonymous
model to develop an efficient privacy protection scheme that
satisfies privacy requirements and protects a healthcare IoT
from various privacy attacks. The proposed scheme can effi-
ciently deal with privacy attacks such as attribute, identity,
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and membership disclosure; and sensitivity, similarity, and
skewness attacks. However, their method does not ensure
differential privacy. Thus, techniques on security and privacy
in IoT environments do not often mention sensing noise. Our
work is positioned as an important and pioneering effort to
consider sensing noise in addressing privacy.

The motivation, the research gap, and contribution to this
study are summarized below.

A. MOTIVATION
This study aims to estimate the distribution of personal data
sensed in IoT environments while protecting user data by dif-
ferential privacy. We assume the sensed data contains sensing
noise.

B. RESEARCH GAP
Existing methods do not consider the sensing noise. There-
fore, they add a lot of extra privacy noise to the sensed data.

C. CONTRIBUTION
First, we propose true-value-based differential privacy
(TDP), which is a novel concept of differential privacy
considering sensing noise. Second, we proposed anonymiz-
ing algorithms for numerical data and categorical data to
satisfy TDP. Third, we prove that the proposed algorithms
ensure TDP. Fourth, we show that the proposed algorithms
can reduce the amount of differential privacy noise using
synthetic and real datasets. Fifth, we show that the proposed
algorithms can reduce errors in the estimated distribution of
personal data using the same datasets.

The rest of the paper is structured as follows. First, the
application and assumptions, along with the definition of
privacy, are presented in Section II. Then, the proposed design
and its mechanisms are introduced in Section III. Next, the
simulation results using synthetic and five real data sets are
presented in Section IV. The related methods are discussed in
Section V, and several design issues of the proposed method
are mentioned in Section VI. Finally, the conclusions of this
work are presented in Section VII.

II. MODELS
A. APPLICATION MODEL
Currently, IoT devices can collect and estimate people’s
attribute information, such as location, heartbeat, health con-
dition, age, and moving behavior. Based on these attribute
data, people can use various services such as recommender
systems. In addition, the data collector can also serve as a
data anonymizer, anonymizing the obtained data and sending
it to the data receiver (see Fig. 2).

Two kinds of attribute data are considered: The first is
a numerical attribute, such as heartbeats per minute, while
the second is a categorical attribute, such as a disease name
(e.g., COVID-19).

The collected attribute data usually have some sensing
errors since it is difficult to sense and estimate people’s

FIGURE 2. Application scenario. The data receiver, an attacker, collects
user data from the data owner and data collector using privacy
techniques differentially.

attributes with complete accuracy. In the worst-case scenario,
some attribute data cannot be collected at all. Missing data
can be estimated through multiple imputations or predictions
based on regression models [26]. These estimated values
exhibit a large number of errors.

B. ASSUMPTIONS
Anonymizers may not know the true attribute values, but
they can estimate them. However, these estimated values
might contain errors. Anonymizers can estimate the error
distribution of numerical attribute values. A normal distri-
bution is considered an error model for numerical attributes
since the measurement errors follow normal distributions in
many cases [27]. A normal distribution is characterized by
the parameter σ , which represents the standard deviation.
Section VI-A contains further discussion about assuming a
normal distribution. However, please note that the concept of
TDP can be applied to other error models.

The wrong classification probability pi→j is considered
with reference to categorical attributes. This probability sig-
nifies that the true category ID is i. However, the anonymizer
is unaware of the true category ID and assumes that the
category ID is j.

In this paper, parameters σ and pi→j for all i, j are referred
to as ‘‘error parameters.’’ Three scenarios are assumed.

1) SCENARIO I
The anonymizer knows the exact error parameters.

2) SCENARIO II
The anonymizer does not know the exact error parameters.
The estimated parameters might differ from the actual param-
eters; however, they are not pessimistic about the degree
of error. The mathematical definitions of the numerical
attributes are described in Section III-A, and those of the
categorical attributes are described in Section III-B.

3) SCENARIO III
The anonymizer does not know the exact error parameters and
has no estimate for them.

In this paper, we do not target Scenario III. Instead,
we mainly target Scenario II because Scenario I is relatively
unrealistic.
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C. ATTACK MODEL
The receiver of anonymized data is considered an attacker,
and the attacker is considered a semi-honest entity; that is, the
attacker follows the given protocol of anonymized IoT data
collection. However, the attacker might try to extract individ-
ual information from each anonymized datum. Furthermore,
each anonymized datum contains errors based on original
sensing errors and intentionally added noise; therefore, the
attacker cannot accurately estimate people’s true data, but
the attacker can estimate them as a particular probability
distribution.

D. PRIVACY METRIC
In a privacy-preserving data mining community, differential
privacy [5] is considered the most important privacy metric.
Although differential privacy was originally used in a query-
response database, recent studies have used it for anonymized
data collection.

Suppose that a person has an attribute value and the person
or anonymizer who collects the attribute value anonymizes its
value. Let ε be a positive real number. The differential privacy
is defined as follows:
Definition 1 (ε-Differential Privacy): Let D and D′ be

databases differing on one record at most. A randomized
mechanismA satisfies ε-differential privacy if and only if for
all Y ⊂ Range(A), the following equation holds:

P(A(D) ∈ Y ) ≤ eεP(A(D′) ∈ Y ) for all D,D′.

Kasiviswanathan et al. [28] established that this definition
could be applied to anonymized data collection.
Definition 2 (Local Privacy): Let x and x ′ be a database

of size= 1, and let ε be a positive real number. A randomized
mechanismA satisfies ε-differential privacy if and only if for
any output y, the following equation holds:

P(A(x) = y) ≤ eεP(A(x ′) = y) for all x, x ′. (1)

In this paper, it is considered that a value of x might contain
sensing errors. Therefore, the focus must be placed on the
true value of x, which is an unknown value, even for the data
owner and the anonymizer. TDP is proposed to handle the
privacy of unknown values.
Definition 3 (TDP): Let x and x ′ be a true value, and let

ε be a positive real number. A measurement function M
acquires an input x and outputs a measured value. A random-
ized mechanism A satisfies TDP if and only if for any output
y, the following equation holds:

P(A(M(x)) = y) ≤ eεP(A(M(x ′)) = y) for all x, x ′.

(2)

Theorem 1: In an anonymized data collection scenario,
Definition 2 is the same as Definition 3 when the measured
values contain no errors.

Proof: When the measured values contain no errors, the
equations x = M(x) and x ′ = M(x ′) are hold. Therefore,
in this case, Equations 1 and 2 are equivalent. �

TABLE 2. Notations.

III. TRUE-VALUE-BASED DIFFERENTIAL PRIVACY (TDP)
Existing studies define x and x ′ in Definition 2 as measured
values. In this paper, they are defined as true values. The
anonymization mechanisms for both numerical and categori-
cal attributes are described.

A. NUMERICAL VALUES ANONYMIZATION
The Laplace mechanism [5], which adds noise based on the
Laplace distribution can be used for numerical attributes.
The theorem of the Laplace mechanism for data collection
is introduced.
Theorem 2 (Laplace Mechanism): A randomized mecha-

nism A realizes ε-differential privacy if A adds the Laplace
noise Lap(1/ε), where 1 is the range of possible values of
the target attribute, and Lap(b) returns independent Laplace
random variables with the scale parameter b.

However, the Laplace mechanism does not take into
account sensing errors. As a result, the noise based on the
normal distribution is added to a true value as a sensing
error, and additional noise based on the Laplace mechanism
is added to the noisy value. This is the traditional approach,
which always adds the Laplace noise, and is referred to as
the baseline approach for numerical attributes. The resulting
probability density function, representing the probability of
the distance between the final noisy and true values, can
be calculated by performing convolution of the normal and
Laplace distribution.

Let N (x; σ 2), L(x; b) represent the probability density
functions of the normal distribution, with the standard devi-
ation being σ and the Laplace distribution with the scale
being b. Centered distributions that peak at zero are only
considered without loss of generality.

The convolution of the normal distribution with the stan-
dard deviation being σ and the Laplace distribution with the
scale being b is represented by

U(x; σ 2, b) = N ? L =
∫
∞

t=−∞
N (t; σ 2)L(x − t; b)dt

=

e
σ2−2bx
2b2

(
erfc

(
σ 2−bx
√
2bσ

)
+ e

2x
b erfc

(
σ 2+bx
√
2bσ

))
4b

(3)

where erfc is the complementary error function, which is
represented by

erfc(x) =
2
√
π

∫
∞

x
e−t

2
dt. (4)
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FIGURE 3. Ratio of probability density function values whose distance
is 1 with respect to the normal distribution, Laplace distribution, and the
convolution of the two distributions (σ = ε = 1 = 1).

It is noted that for Scenario II, the value of σ can be wrong,
as long as it is not pessimistic. Let σt and σ represent the true
standard deviation and the standard deviation the anonymizer
believes, respectively. Here, pessimistic means that

σ > σt . (5)

exp(ε), 1/ exp(ε), and the ratio of probability density func-
tion values whose distance is 1 with respect to N (x; σ 2),
L(x;1/ε), and U(x; σ 2,1/ε), where ε and σ are set to one,
are presented in Fig. 3. The ratio of probability density func-
tion values whose distance is 1 with respect to the normal
distribution is calculated by

RN (x;σ 2) =
N (x +1/2; σ 2)
N (x −1/2; σ 2)

= e−
1x
σ2 . (6)

Equation 6, shows that RN (x;σ 2) approaches ∞ when x is
close to -∞. Therefore, even if σ is very large, extra noise
needs to be added to achieve ε-differential privacy.
Similarly, in Fig. 3, RL(x;ε,1) and RU (x;σ 2,ε,1) are defined

as the ratio of the probability density function values whose
distance is 1 with respect to L(x;1/ε) and U(x; σ 2,1/ε),
respectively.

The ratio of the probability density function values whose
distance is 1 should exist between the lines of exp(ε) and
1/ exp(ε), according to the definition of ε-differential privacy.
Fig. 3 shows that RL(x;ε,1) and RU (x;σ 2,ε,1) satisfy this con-
dition; therefore, L(x;1/ε) and U(x; σ 2,1/ε) mechanisms
achieve ε-differential privacy (here σ = 1 = ε = 1).
AlthoughRU (x;σ 2,1/ε) approaches exp(ε) (or 1/ exp(ε)) when
|x| is large, its convergence to exp(ε) (or 1/ exp(ε)) is slower
than that of RL(x;1/ε). Consequently, the mechanism adds
much more noise than required.

The algorithm proposed in this paper is simple but effec-
tive; Laplace noise is not added when the obtained Laplace
noise is smaller than the predefined threshold w. Thus, the
total loss is expected to become smaller (i.e., the ratio of
probability density function values whose distance is 1 is
expected to approach exp(ε) and 1/ exp(ε) faster).
However, the definition of an appropriate value for w

is complex. If the threshold w is very large, the resulting
value cannot achieve either traditional ε-differential privacy
or TDP. Conversely, the resulting value contains unnecessary
noise if the threshold w is very small.

FIGURE 4. RV for various values of w (σ = ε = 1 = 1). It can be seen that
if the value of w is too large, the requirement for differential privacy is
not met. Alternatively, it can be seen that if the value of w is too small,
it adds more noise than necessary.

The probability density function, which adds the Laplace
noise only when the noise x satisfies abs(x) ≥ w1 is repre-
sented by

L̂(x; b,w) =



∫ w
−w L(t; b)dt x = 0

e−x/b

2b
x ≥ w

ex/b

2b
x ≤ −w

0 otherwise.

(7)

Therefore, the probability density function obtained from
the original sensing error and the Laplace noise defined in
Equation 7 can be represented by

V(x; σ 2, b,w)

=

∫
∞

−∞

N (t; σ 2)L̂(x − t; b,w)dt

+N (x; σ 2)
∫ w

−w
L(t; b)dt

=
e−

w+x
b −

x2

2σ2

4bσ
×

{
σe

1
2

(
2bw+σ2

b2
+

x2

σ2

)[
erfc

(
b(w− x)+σ 2
√
2bσ

)
+e

2x
b erfc

(
b(w+ x)+ σ 2
√
2bσ

)]
+ 2

√
2
π
b
(
e
w
b − 1

)
e
x
b

}
.

(8)

The ratio of probability density function values for the
proposed algorithm whose distance is1 is represented by the
following:

RV(x;σ 2,ε,1,w) =
V(x +1/2; σ 2,1/ε,w)
V(x −1/2; σ 2,1/ε,w)

(9)

The aim is to find an appropriate value of w where
RV approximates exp(ε) but does not cause RV to overesti-
mate exp(ε) or 1/ exp(ε).
The following theorem is considered (see Fig. 4);

1More formally, this is a combination of a probability density function and
a probability mass function.
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Theorem 3: If w is near∞, the value of RV approaches the
value of RN . If w is near zero, the value of RV approaches the
value of RU .

Proof: U(x; σ 2,1/ε) (Equation 3) and N (x; σ 2)
(Equation 6) can be obtained by calculating the limit of
V(x; σ 2,1/ε,w) (Equation 8) of w as w approaches zero
and∞, respectively. �
The ratio between x + 1/2 and x − 1/2 is defined in

this study; therefore, the range −w − 1/2 < x < 0 can
be checked considering whether or not the maximum ratio
is greater than exp(ε). It is noted that only the range x < 0
needs to be checked because V is symmetrical with respect
to the point (x, y) = (0, 1), where y represents the ratio of
probability density function values whose distance is 1.
Algorithm 1 describes the method that yields the

anonymized value. In Algorithm 1, the value of w is calcu-
lated in Lines 1–16. erfc(x) can be computed using approxi-
mate equations, such as

erfc(x) = 1− erf(x) ≈ 1−

√
1− e

−x2 4/π+0.147x2

1+0.147x2

(maximum relative error: 1.3 · 10−4) (10)

when x ≥ 0 from [29]. Note that we can obtain an approxi-
mate value of erfc(x) with x < 0 from the property of

erfc(x) = 2− erfc(−x). (11)

After checking the approximate values, precise values need to
be calculated. Mathematical tools such as Maxima,2 which is
a popular free software program, can be employed.

B. CATEGORICAL VALUES ANONYMIZATION
The randomized response mechanism [13], [14] can be used
for categorical attributes. First, a sensed value is catego-
rized into one of the predefined categories. Another category
replaces that category with a certain probability, and then
the resulting category ID is sent to the data receiver. The
randomized response is referred to as the baseline approach
for categorical attributes.

The retention probability of unchanging category ID is pα
and the probabilities of other IDs are (1−pα)/(M−1), where
M is the number of categories. The following equation

max
(

pα
(1− pα)/(M − 1)

,
(1− pα)/(M − 1)

pα

)
≤ eε (12)

should hold to satisfy ε-differential privacy. Therefore, it is
set

pα = eε/(M − 1+ eε). (13)

Since M ≥ 2, pα > 0.5 is obtained.
Let pi→j represent the probability that the true cate-

gory ID Ci is (mis-)classified to Cj due to sensing errors.
It is assumed that the retention probability is greater than

2http://maxima.sourceforge.net/

Algorithm 1 Proposed Randomization Mechanism for
Numerical Attributes
Input: Privacy budget ε, Standard deviation of the normal

distribution for sensing error σ , Range of possible values
1, Measured value vs

Output: TDP value
1: wmax ← sufficient large value
2: wmin← 0
3: while True do
4: w′← (wmax + wmin)/2
5: r ← max

−w−1/2≤x≤0
(RV(x;σ 2,ε,1,w′) − exp(ε)).

6: if r > 0 then
7: wmax ← w′

8: else
9: if w′ − wmin is sufficient small then

10: w← w′

11: Break.
12: else
13: wmin← w′

14: end if
15: end if
16: end while
17: Generate Laplace noise l based on L(0,1/ε).
18: if l < w then
19: Return vs.
20: else
21: Return vs + l.
22: end if

any other probabilities; that is, the following equation
is assumed

pi→i > max
j6=i

pi→j. (14)

It is assumed that the values of pi→j for all i, j can be
estimated. Let

pi = {pi→1, pi→2, . . . , pi→M }. (15)

For Scenario II, these values can be wrong, as long as they
are not pessimistic.

Let pi→j,t and pi→j represent the true probability and the
probability that the anonymizer believes, respectively. Here,
pessimistic estimation means that{

pi→i < pi→i,t for any i,
pi→j > pi→j,t for any i, j(i 6= j).

(16)

First, the situation where the following expression is satis-
fied;

pi→j

pi′→j
≤ eε for all i, i′, j. (17)

This case holds TDP clearly. In this case, the random mecha-
nismA in Definition 3 does not need to do anything. In other
words, the TDP can be satisfied by outputting the input
measured values as they are.
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Algorithm 2 Proposed Randomization Mechanism for
Categorical Attributes
Input: Privacy budget ε, Probabilities pi→j for all i, j, mea-

sured category ID s, IDs of categories K
Output: TDP value Scenarios I and II
1: Calculate pα from Equation 13.
2: if Equation 17 holds then
3: Return s.
4: else
5: Solve simultaneous equations 18 and obtain xi for all

i.
6: Normalize xi using Equation 20.
7: Randomly select j each with a probability xi→j, and

return j.
8: end if

If Equation 17 is not satisfied, the following simultaneous
equations with respect to xi→j for all i and j are solved:

pi · xi = pα for i = 1, . . . ,M ,

pi · xj =
1− pα
M − 1

for i, j = 1, . . . ,M s.t. i 6= j, (18)

where

xi = {x1→i, x2→i, . . . , xM→i} (19)

and · represents the scalar product of two vectors.
The value of xi→i could be greater than one and the value

of xi→j could be less than zero. Therefore, the obtained values
are normalized by

xi→i← min(1, xi→i) for i = 1, . . . ,M ,

xi→j← max(0, xi→j) for i, j = 1, . . . ,M s.t. i 6= j.

(20)

Finally, when the measured category ID is Ci, the
anonymizer generates the anonymized version Cj with
probability xi→j.
Algorithm 2 shows the method which yields the

anonymized category ID.

C. PROOF OF ACHIEVING TRUE VALUE-BASED
DIFFERENTIAL PRIVACY
Next, it is proved that the proposed algorithms (for
Scenarios I and II) realize TDP.

1) NUMERICAL ATTRIBUTES
Initially, Scenario I is considered. Since Algorithm 1 ensures
that 1/ exp(ε) ≤ RV(x;σ 2,ε,1,w) ≤ exp(ε) for the true value if
σ is correct, it is able to achieve TDP based on Definition 3.
Next, Scenario II is considered. It is assumed that the

anonymizer’s knowledge about sensing errors is not correct,
but their knowledge about measurement errors is not pes-
simistic. The concept ‘‘pessimistic’’ is defined in Equation 5
regarding numerical attributes.

Let the ratio of the probability density function values
whose distance is 1 with respect to N (x; σ 2) be RN (x;σ 2).
By differentiating RN (x;σ 2) with respect to σ , it is obtained

∂RN (x;σ 2)

∂σ
=

21e−
1x
σ2 x

σ 3 . (21)

When x is less than zero, the value of the differentiation of
RN (x;σ 2) with respect to σ is always less than zero. There-
fore, if σ becomes larger, the value of RN (x;σ 2) becomes
smaller. It can be concluded that RV(x;σ 2,ε,1,w) becomes
smaller when σ becomes larger, since the proposed prob-
ability density function V(x; σ 2,1ε,w) is a convolutional
function ofN (x; σ 2) and Equation 7, which does not depend
on σ . Therefore, if the knowledge about measurement errors
of the anonymizer is not pessimistic, then RV(x;σ 2,ε,1,w) ≤

RV(x;σ 2t ,ε,1,w)
for x ≤ 0. If the anonymizer sets the value of

error parameters to pessimistic (i.e., set σ to a small value),
the amount of noise added by the proposed mechanism is
larger than the necessary amount. Although the usefulness of
the proposed algorithm becomes worse in this case, the ratio
of the anonymization probabilities generated by the proposed
mechanism from two neighboring databases is within the
range between exp(ε) and 1/ exp(ε), with some extra space
available. However, the total loss of the proposed mechanism
is less than the baseline approach, even in this case. When
x > 0 is considered, the discussion is similar, and then
RV(x;σ 2,ε,1,w) > RV(x;σ 2t ,ε,1,w)

for x > 0.
Since 1/ exp(ε) ≤ RV(x;σ 2t ,ε,1,w)

≤ exp(ε) for σ 2
t , then

1/ exp(ε) ≤ RV(x;σ 2,ε,1,w) ≤ exp(ε) for σ 2. Therefore,
Definition 3 holds.

2) CATEGORICAL ATTRIBUTES
Initially, Scenario I is considered. It is assumed that the
attacker obtains a category ID γ as the anonymized version
of a categorical attribute. Let P(va = γ |vt = i) represent the
anonymized version of the category ID is γ when the proba-
bility that the true category ID is i. The proposed mechanism
ensures that

P(va = γ |vt = i) =


eε

M − 1+ eε
(i = γ )

1− eε
M−1+eε

M − 1
(otherwise.)

(22)

when we ignore the process of Equation 20. The ratio of two
equations of Equation 22 is eε or 1/eε . Therefore, Definition 3
hold. Based on the post-processing property of differential
privacy, the resulted values of the process of Equation 20 also
satisfies TDP.

Next, Scenario II is considered. It is assumed that the
anonymizer’s knowledge about sensing errors is not correct
but their knowledge about measurement errors is not pes-
simistic. Let xi→j,t and xi→j represent the disguising prob-
abilities based on the true error parameters and the believed
error parameters, respectively. If the error parameters are not
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pessimistic, then{
xi→j,t ≥ xi→j (i = j)
xi→j,t ≤ xi→j (otherwise.)

(23)

Therefore
P(va = γ |vt = i) ≤

eε

M − 1+ eε
(i = γ )

P(va = γ |vt = i) ≥
1− eε

M−1+eε

M − 1
(otherwise.)

(24)

From Equations 14 and 24, it is concluded that Definitions 3
hold.

D. ANALYSIS
1) NUMERICAL ATTRIBUTES
The proposed mechanism avoids the addition of Laplace
noise if the generated Laplace noise l is less than
threshold w. Then, the avoidance (or skipping) ratio can be
calculated by∫ w

−w
L(x;1/ε)dx = 1− e−εw/1. (25)

Let ηU and ηV represent the expected values of Laplace
noise addition with respect to the baseline approach and the
proposed mechanism, respectively. The value of ηU can be
calculated by

ηU =
∫
∞

−∞

|x| · L(x;1/ε)dx =
1

ε
, (26)

and the value of ηV can be calculated by

ηV =
∫
−w

−∞

−xL(x;1/ε)dx +
∫
∞

w
xL(x;1/ε)dx

= e−
wε
1 (
1

ε
+ w) (27)

Theorem 4: RV(x;σ 2,ε,1,w) represents the ratio of proba-
bility density function values whose distance is 1 for the
proposed mechanism. It approaches exp(ε) if x is close to
−∞, and approaches 1/ exp(ε) if x is close to∞; that is

lim
x→−∞

RV(x;σ 2,ε,1,w) = eε (28)

lim
x→∞

RV(x;σ 2,ε,1,w) = 1/eε (29)

Proof: RV(x;σ 2,ε,1,w) can be represented by

γ e−
(1+2x)2

8σ2 + εe
ε(εσ2−12

−21x)
212

erfc
[
α−x
√
2σ

]
+e

2εx
1
+εerfc

[
β+x
√
2σ

]
41

γ e−
(1−2x)2

8σ2 + εe
ε(εσ2+12−21x)

212
erfc

[
β−x
√
2σ

]
+e

2εx
1
−εerfc

[
α+x
√
2σ

]
41

,

where

α =
εσ 2

1
+ w−

1

2
, β =

εσ 2

1
+ w+

1

2
,

γ =
1− e−

εw
1

√
2πσ

. (30)

Since the convergence of erfc[x] with x → ∞ to zero is
more rapid than that of exp(x) with x →∞ and since

lim
x→−∞

erfc[x] = 2, lim
x→∞

erfc[x] = 0, (31)

it is obtained

lim
x→−∞

RV(x;σ 2,ε,1,w) = lim
x→−∞

e−ε
e
2εx
1
+ε

e
2εx
1
−ε
= eε . (32)

Next, x → ∞ is considered. Using l’Hopital’s rule, it is
obtained

lim
x→∞

exerfc[x] = lim
x→∞

erfc[x]
e−x

= lim
x→∞

2e−x
2

√
π

e−x
= 0, (33)

since the differentiation of erfc[x] yields − 2e−x
2

√
π

.
From Equations 30, 31, and 33, it is obtained

lim
x→∞

RV(x;σ 2,ε,1,w) = e−ε . (34)

�

2) CATEGORICAL ATTRIBUTES
Let ζU and ζV represent the probabilities that the true category
ID is equivalent to the anonymized category ID correspond-
ing to the baseline approach and the proposed mechanism,
respectively. The baseline approach represents a method
that always adds the Laplace noise with respect to numer-
ical attributes and the randomized response method with
respect to categorical attributes, as described in Sections III-A
and III-B. Assuming that the true category ID is i,

ζU = pi→i · pα +
∑
j

pi→j ·
1− pα
M − 1

, (35)

and

ζV = pi→i · xi→i +
∑
j

pi→j · xj→i. (36)

IV. EVALUATION
A. PARAMETERS SETTING
The value of ε and error parameters σ and pi for all i need to
be set to realistic values.

1) VALUE OF ε
Apple’s deployment ensures that ε is equal to 1 or 2 per each
datum [30]. An Apple’s differential privacy team set ε =
2, 4, 8 for their evaluations [31]. In the paper that proposed
RAPPOR [32], which was developed by Google, ε = log(3)
is used as the main setting. Based on these settings, ε is set
in the range 1–10. For this range, when 1 is equal to 100,
the absolute value of the average noise added by the Laplace
mechanism is in the range 5–50. In this case, privacy can
be considered to be sufficiently protected. It is noted that if
1 is multiplied by a, the average noise is also multiplied by a.
For categorical attributes, when the number of categories M
is 2, the retention probability value ranges between 73.11%
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FIGURE 5. Reduction rate of the proposed mechanism with respect to noise addition counts and amount of Laplace noise. (The results are with 1 = 10.
Results with 1 = 100 and 1 = 1000 are almost the same.)

FIGURE 6. Un results. (The results are with 1 = 10. Results with 1 = 100 and 1 = 1000 are almost the same.)

and 99.996% if ε is set in the range 1–10. A value of 10 for ε
means that when the value ofM is small, we have a situation
where the privacy protection level is very low. Therefore, for
categorical attributes, performance evaluation at small values
of ε is especially important.

2) VALUE OF σ
When the standard deviation is σ , the average sensing error
ASE(σ ) is described as

ASE(σ ) =
∫
∞

x=−∞
|x| ·N (x; σ 2)dx =

√
π

2
σ. (37)

When σ is set to 1/40 of the value of 1 (which is the
range of possible values), ASE(σ ) is 2.0% of the value of
1. In this case, the IoT device sensing the attribute value
is considered to have high accuracy. Similarly, when σ is
set to 1/10, 1/4, and 1/2 of the value of 1, respectively, the
values of ASE(σ ) become 8.0% (relatively high accuracy),
20% (relatively low accuracy), and 40% (low accuracy) of
the value of 1, respectively. Based on this analysis, σ is set
in the range 1/40 to 1/2 of the value of 1.

3) VALUE OF pi
pi→i for all i is set to the same value, which is referred as τ .
τ is set in the range 0.3–0.9. This means that the IoT device
is able to sense a person’s attributes and that it can correctly
judge the attribute category with a probability value from 0.3
(low accuracy) to 0.9 (high accuracy). pi→j for all i, j(i 6= j)
is set to another value, that is,

pi→j =
1− τ
M − 1

. (38)

B. UTILITY METRIC
The data receiver aims to use the anonymized value for sev-
eral services. Therefore, the estimated value should be close
to the true value. LetN represent the number of people whose
attribute values are collected. Let vi and ṽi represent the true
value of person i and an anonymized one, respectively.

The utility is defined below with respect to numerical
attributes:

Un =
1
N

N∑
i=1

(
1−
|vi − ṽi|
1

)
, (39)

While the utility is defined as follows with respect to categor-
ical attributes:

Uc =
1
N

N∑
i=1

δvi,ṽi , (40)

where δi,j is the Kronecker delta

δi,j =

{
1 (i = j)
0 (i 6= j).

(41)

Both metrics are considered superior if their values are
significant.

Some methods can estimate statistical values (e.g., aver-
ages) or generate cross-tabulation from the collected data.
If the aim is to generate cross-tabulation, a total loss, which
compares the true cross-tabulation with the generated cross-
tabulation, should be used. However, in this paper, the aim
is mainly focused on individual data; that is, the aim is not
to do a statistical analysis but to use each person ’s attribute
value because IoT-related services, such as health monitor-
ing, context-aware recommender systems, and navigation
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FIGURE 7. Example of simulation results: the ratio of probability
distributions for numerical attributes (ε = 2,1 = 100, σ = 25).

described in Section I need to analyze an individual’s attribute
value.

C. NUMERICAL VALUE RESULTS
1 is set in the range 10–1,000, ε is set in the range 1–10, and
σ is set in the range 1/40 of the value of1 to 1/2 of the value
of1. The number of times the proposed mechanism avoided
the addition of Laplace noise to a measured value was evalu-
ated. It was also evaluated how the proposed mechanism was
able to reduce the average amount of Laplace noise. Results
with 1 being equal to 10 are shown in Fig. 5. Computed
results based on Equations 25, 26, and 27 are also presented
in Fig. 5. Results with 1 =100 and 1 =1000 are almost the
same as those in Fig. 5; therefore, they are not shown.

Computed results based on Equations 25, 26, and 27 are
in close agreement with simulation results, for all parameter
settings. The proposed mechanism reduced the number of
times Laplace noise is added and the corresponding average
Laplace noise. Large values of σ or ε result in a large reduc-
tion rate. A large value of σ means that a large sensing error
noise is already added to a true value, while a large value of
ε means that the privacy protection level is not high; that is,
a large amount of noise is not needed. Therefore, the proposed
mechanism can reduce additional Laplace noise, especially
when the values of σ and ε are large. From Equation 6, it is
concluded that the addition of noise cannot be completely
avoided. However, Fig. 5 indicates that the noise skipping
ratio approaches one.
Un was evaluated using Equation 39 using the same values

for 1 and ε as above (Fig. 6). Since a large σ results in
a low Un (i.e., high total loss), even if none of the privacy
protectionmechanisms are conducted, the difference between
the proposed mechanism and the baseline approach is small.
This is true not only when the value of σ is minimal but also
when the value of σ is substantial. However, if σ is set to a
medium value, the proposed mechanism can reduce the total
loss Un by 25%–40% compared with the baseline approach.
When ε is set to one, the difference between the proposed
mechanism and the baseline approach is minor. However,
when the value of ε is equal to one, the average absolute

value of the Laplace noise to be added is about 50 when
1 is equal to 100. This amount of noise seems to be very
large. Therefore, in the usual case, the value of ε should be
larger.

The actual ratio of probability density function values
whose distance is 1 was determined by conducting sim-
ulations. True values that should be protected were set to
−1/2 and 1/2. Normal distribution’s noise was randomly
added to the true values independently. The noise-added val-
ues were anonymized by the proposed mechanism and the
baseline approach, respectively. Histograms were created for
the range −31 - 31. The number of bins was 200. This
simulation was repeated 231 times. In Fig. 7, an example of
the average result with ε = 2, 1 = 100, and σ = 25 is
presented. The ratio of the probability density function values
of the normal distribution and the Laplace distribution, along
with exp(ε) and 1/ exp(ε) functions, are also shown as a
reference. The results for both the proposed and the baseline
approach exist within the range exp(ε) - 1/ exp(ε). Therefore,
it is concluded that both mechanisms (for Scenarios I and
II) achieve TDP. The ratio of the probability density function
values of the Laplace distribution is the same as exp(ε) and
1/ exp(ε) in the range x < −1/2 and 1/2 < x; therefore,
the Laplace mechanism is the best if the measured values
have no errors. Regarding the proposed mechanism, the ratio
of the probability density function values reaches exp(ε) and
1/ exp(ε) at about x = −1/2 and x = 1/2. However, this
ratio is a little far from exp(ε) and 1/ exp(ε) at x = −40 and
x = 40. On the contrary, the ratio of the probability density
function values in the baseline approach reaches exp(ε) and
1/ exp(ε) at about x = −30 and x = 30. Note that the values
of the probability density functions are large when x is near
zero; therefore, a high utility can be achieved if the ratio is
near exp(ε) and 1/ exp(ε) when x is near zero. Hence, the
proposed mechanism can achieve high utility (i.e., low total
loss) compared with the baseline approach.
Additional simulations were conducted with other param-

eter settings. As a result, it was confirmed that the ratio of the
probability density function values of the proposed mecha-
nism exists within the range exp(ε) - 1/ exp(ε), except for
those results with considerable variation due to the number
of samples in each bin being too small.

D. CATEGORICAL VALUE RESULTS
The value of ε was set in the range 1–10, the value
of M was set in the range 5–100, and the value of τ was
set in the range 0.3–0.9. A true category ID was set to a
random integer, and the category ID with probability 1 − τ
was changed. Then, category ID was randomized by the
baseline mechanism and by the proposed mechanism. This
simulation was repeated for 231 times. Results with ε being
equal to one are shown in Fig. 8. Simulation results along
with computed results calculated from Equations 35 and 36
are also presented. A close agreement is observed between
simulated and computed results.

VOLUME 10, 2022 8747



Y. Sei, A. Ohsuga: Private True Data Mining: Differential Privacy Featuring Errors to Manage Internet-of-Things Data

FIGURE 8. Uc results.

The values of Uc obtained by the proposed method are
larger than or equal to those obtained using the baseline
approach for all parameter settings. When M is large or ε
is small, the values of Uc are small for both mechanisms
since it is difficult to maintain high accuracy for both mech-
anisms in such cases. However, in other cases, the proposed
mechanism reduces the total loss compared with that of the
baseline approach, especially when ε is small, i.e., the privacy
protection level is high. When ε is large, the experimental
results of the proposed method are similar to those of other
methods. The value of ε is large enough so that the noise
added to achieve differential privacy is very small. This is why
there was no difference in accuracy between the methods.
Therefore, it is more important to experiment when the value
of ε is small.
Next, a true category ID is set to 1, and M is set to 10.

The number of times each category ID was selected as
a randomized category ID was counted. Let cmax and cmin
represent the number of maximum times and the number of
minimum times, respectively. Simulation results for the ratio
cmax/cmin are shown in Fig. 9. exp(ε) is also shown as a
reference. Since the results of both the proposed method and
the baseline approach are equal to or less than exp(ε), it is
concluded that both mechanisms achieve TDP for true data
in Scenarios I and II. Compared with the proposed mecha-
nism, the result based on the baseline approach is far from
the exp(ε) line; therefore, it is concluded that the proposed
mechanism is capable of achieving high utility (i.e., low total
loss).

E. REAL DATA SET RESULTS
Simulations were conducted using a real data set called the
Adult data set [33], which is a widely used benchmark in the
research area of privacy-preserving data mining. It consists

FIGURE 9. Simulation results: the ratio of probability distributions for
categorical attributes (M = 10, τ = 0.6). Since both Proposal and Baseline
are smaller than the value of exp(ε), they both satisfy the requirement of
differential privacy. Furthermore, since the Proposal is closer to the value
of exp(ε) than Baseline, it can put more appropriate noise in terms of
data utility.

of six numerical attributes and nine categorical attributes and
has 30,162 records after eliminating unknown values.

It was assumed that each value of the Adult data set was
true. It was also assumed that IoT devices estimated age, sex,
race, and native country. using estimation methods [38]–[40].
For numerical attributes, σ was set to 0.1 of the value of 1,
and ε was set to 8. For categorical attributes, τ was set to 0.6,
and ε was set to 2.

Simulation results are shown in Table 3. The names of the
attributes along with 1 andM are also shown. The proposed
mechanism was able to increase Un to approximately 92%
from approximately 85% for all numerical attributes and
increase Uc by a maximum of 20% for categorical attributes
compared with the baseline approach. These results showed
that the proposed mechanism could increase the utility (i.e.,
reduce total loss) for real data sets.
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TABLE 3. Adult data set results [33].

TABLE 4. Four real data sets results.

Finally, simulations were conducted using other real data
sets with the same parameter settings as above.

A data set of activities based on multisensor data fusion
(AReM data set) [34] was used corresponding to the numer-
ical attributes. The set consists of 42,239 instances of six
numerical attributes.

A data set of daily living activities recognition using binary
sensors (ADL data set) [35], a data set of healthy older
people activities using a non-battery wearable sensor (RFID
data set) [36], and a data set of localization for people’s
activity (Localization data set) [37] were used corresponding
to categorical attributes. The numbers of instances are 741,
75,128, and 164,860, respectively.

Simulation results are shown in Table 4. These results
showed that the proposed mechanism outperforms the base-
line approach for all data sets used in this study.

F. HISTOGRAM GENERATION
Several studies on local differential privacy have been con-
ducted to generate accurate histograms of attribute values.
In this section, we compare the accuracy of histograms gener-
ated from our proposed method and that from state-of-the-art
methods. Li et al. proposed the square wave (SW) method
for numerical attributes [19], which uses the expectation-
maximization algorithm, and repeats the E-step and M-step
many times. In this paper, we set the number of these iter-
ations as 100,000. Gu et al. [18] proposed IDUE based on
Google’s RAPPOR [32] (IDUE(R)) and IDUE based on
OUE [41] (IDUE(O)) for categorical attributes. Sei and
Ohsuga [42] proposed an algorithm for both numerical

and categorical attributes, referred to as the NuRR method.
Murakami and Kawamoto proposed a utility-optimized RAP-
POR (uRAP) technique for categorical characteristics [17].
uRAP assumes that non-sensitive data exist in personal data
and does not protect them. However, it ensures differential
privacy for sensitive data and can realize high utility. This
paper, like most prior studies, assumes that all data should
be protected by differential privacy; nonetheless, uRAP can
be used in such situations. Zhao et al. proposed several
strategies for differentially private data collection for numer-
ical attributes [20]. For generating histograms, PM-SUB and
PM-OPT can be used. Since PM-SUB is a simple version
of PM-OPT, PM-OPT is used for this evaluation. Zhao et
al. also proposed a Three-Output mechanism with only three
discrete output possibilities. For example, regardless of an
input value, Three-Output outputs −C , 0, or C where the
value ofC is determined based on ε. Therefore, generating an
accurate histogram is challenging, although the performance
of Three-Output is very high to obtain average values from
differentially private data.

In summary, IDUE(R), IDUE(O), NuRR, and uRAP
were compared with our proposed method for categorical
attributes; SW, NuRR, and PM-OPT were compared with our
proposed method for numerical attributes.

In details, we measured the mean square error (MSE)
of the difference between an original histogram and
that generated from anonymized values. We generated
a histogram per attribute for the evaluation. Note that gen-
erating a histogram of multidimensional attributes can eas-
ily be achieved by targeting the power set of attribute
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FIGURE 10. MSEs of generated histograms on numerical datasets with varying the sigma ratio.

FIGURE 11. MSEs of generated histograms on numerical datasets with varying ε.

values. Real datasets have multiple attributes, therefore,
the MSE is calculated by averaging the MSE of each
attribute.

First, we conducted experiments on numerical attributes.
The number of bins of the histogram was set to 100. Three
synthetic datasets (uniform, peak, and normal) and two real
datasets (AReM and Adult) were used. As for synthetic
datasets, the number of records was set to 10,000 and 1 was
set to 1.0. In the uniform dataset, the value of each record
was randomly generated in [0,1]. The values of all records
were set to 0.5 in the peak dataset. For the normal dataset,
each value was sampled as an independent and identically
distributed random variable in a normal distribution with a
mean of 0.5. The value of ε varied from 1 to 10, and the

sigma ratio varied within the set {0.025, 0.1, 0.25, 0.5}.
The default values were set to 7 and 0.25 for ε and sigma
ratio, respectively. The results of varying the sigma ratio and
ε are shown in Figs. 10 and 11, respectively.

In general, MSE for all methods in the peak dataset is
the largest compared to other datasets since MSE calculates
the squared value of the difference between the original and
estimated histograms. Thus, the larger the difference between
the values of the bins of the original histogram, the larger the
MSE. The bin value corresponding to 0.5 in the peak dataset
is 10,000. Suppose the estimated value is 9,000, the MSE
is 10002/100 = 10, 000. However, for the uniform dataset,
the true value of each bin in the original histogram is 100.
If the estimated value for each bin is 90, then the MSE is
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FIGURE 12. MSEs of generated histograms on categorical datasets with varying τ .

100 ∗ 102/100 = 100. Thus, the more variation there is in
the distribution of values, the larger the value of MSE tends
to be.

The larger the sigma ratio, the larger the MSE, which is a
natural result since a large sigma ratio means a large observa-
tion error (Fig. 10). The MSEs of the proposed method do
not vary much on the AReM dataset. Although this result
is unexpected, we consider that the reduction of observation
noise has been successful.

The larger the ε, the smaller the MSEs (Fig. 11). This is
because, in the proposed and NuRRmethods, larger ε implies
smaller Laplace noise. Similarly, for SW, the larger the ε,
the smaller the difference between the privatized and original
values.

Results show that the MSE of the proposed method is the
smallest in all conditions and datasets. MSEs for SW are large
because SW does not consider observation noises. However,
with small observation noise (i.e., small sigma ratios), the
MSEs of SW can be smaller than that of the proposed method
(in the AReM dataset). Authors in [19] highlighted the accu-
racy of SW depends on the characteristics of the datasets. The
accuracy of SW can be worse if the dataset has large spikes
in the distribution. The AReM dataset has larger spikes than
the Adult dataset.

Next, we conducted experiments using categorized
datasets. The synthesized numerical datasets were con-
verted into categorical datasets with 10 categories. Moreover,
we used the ADL and Adult datasets. The results of varying τ
are shown in Fig. 12. The values of ε was set to 7. Similar to
the experimental results on the numerical dataset, the MSE
of the proposed method is the smallest for any parameter
setting. For the uniform dataset, each measured value differs
from the true value, however, the true distribution remains
uniform, implying that the frequency does not change much.
Hence, the MSEs of the proposed method are similar to those

of IDUE(O) (Fig. 12a). Results have shown that IDUE(O)
achieves higher accuracy than IDUE(R) [18]. However, the
effect of the measured value being different from the true
value is more significant in the peak dataset. This is because
the frequency of each value can be different. Therefore, the
MSEs of the proposed method are less than those of other
methods (Fig. 12b.) The degree of variation in the frequency
of each value in the normal dataset is between the degrees
of variation in the peak and uniform datasets, respectively.
Hence, the difference between the MSEs of the proposed
method and those of other methods in the normal dataset
is larger and smaller than that in the uniform and peak
datasets, respectively (Fig. 12c). For categorical attributes,
the distribution of the values of AReM dataset is gentler
than that of the values of Adult dataset. This characteris-
tic is reflected in the results of their MSEs, as shown in
(Figs. 12d and 12e).
The experimental results of uRAP and IDUE(O) are com-

parable because uRAP and IDUE(O) depend on the same
OUE mechanism. The main task of PM-OPT is for federated
learning; therefore, the accuracy of estimating the distribution
of user data is not very high.

The results of varying ε are shown in Fig. 13. In the
peak dataset, MSEs of the proposed method are similar to
those of other methods when ε is large (Fig. 13a.) However,
MSEs of the proposed method are the smallest for all other
datasets (Figs. 13b–13e.) Similar to the results in Fig. 12,
the greater the variations in the dataset, the more pronounced
the effectiveness of the proposed method. This is because the
effect of the measured error is much larger if the variations in
the dataset are large.

MSE is ideal for evaluating errors in large histogram values
since it is highly sensitive to large histogram values. There-
fore, MSE is suitable for the scenario where the analyzer
wants to know the rough distribution of the data. However,
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FIGURE 13. MSEs of generated histograms on categorical datasets with varying ε.

FIGURE 14. JS divergence of generated histograms on numerical datasets with varying the sigma ratio.

there is another scenario where we also want to know the finer
details of the data distribution. In this case, Jensen–Shannon
(JS) divergence [43] is suitable as a utility metric because it
can evaluate the errors in small values of a histogram [44].
The results are shown in Figs. 14-17. The JS divergence
results follow the same pattern as the MSE results. The
JS divergence data, like the MSE results, reveal that our
suggested method outperforms existing methods in terms of
accuracy; however, the advantage of the proposed method has
decreased marginally. In particular, the resulting histogram’s
error can be decreased by 40.4% on average in MSE and
29.6% on average in JS divergence. Therefore, we can infer
that the proposed method is effective for both cases where
a data analyst wants to know the underlying distribution of

user data broadly, and the data analyst wants to know it in a
fine-grained way.

To summarize the findings, the proposed method outper-
forms IDUE(R), IDUE(O), NuRR, uRAP, SW, and PM-OPT
in terms of accuracy. This tendency was noticeable, par-
ticularly when there was a lot of sensor noise. The pro-
posed technique considers sensing noise into account, and
Algorithms 1 and 2 work efficiently limit the amount
of noise imparted while maintaining the level of privacy
protection.

G. CALCULATION COST
Local devices are used to run the anonymizing algorithms
mentioned in Algorithms 1 and 2. We tested them on a laptop
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FIGURE 15. JS divergence of generated histograms on numerical datasets with varying ε.

FIGURE 16. JS divergence of generated histograms on categorical datasets with varying τ .

computer with 8GB of memory and a Core i5 10210U CPU.
The method was executed in less than a second for each data
set. A server is used to estimate the distribution of user data.
We tested it in aworkstationwith 128GBmemory and an Intel
Xeon W-2295 CPU. It took 7.8 seconds on average for the
AReM dataset with 42,239 values. The computation time of
other methods is shorter because their algorithms are simple.
Since the calculation time of our methods is proportional to
the number of users and the number of attributes, it will take
more time if the number of users increases. However, since
collecting user data takes a certain amount of time, even if it
takes a few minutes to estimate the data distribution, it is still
considered practical enough.

V. RELATED RESEARCH WORK
A large number of research studies for anonymized data
collection have been carried out. Wang et al. [45] proposed
a method to identify the top-k most frequent new terms by
collecting term usage data from each person under differ-
ential privacy. Kim et al. [46] derived population statistics
by collecting differential private indoor positioning data.
Anonymized data collection could also be realized based on
encryption approaches [47], [48]. These methods can obtain
aggregation values, and they do not aim to obtain each per-
son’s value. Moreover, these methods do not consider errors
in values. On the other hand, in the proposed scenario, the
aim is to obtain each person’s value with as high accuracy as
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FIGURE 17. JS divergence of generated histograms on categorical datasets with varying ε.

possible since services such as recommender systems need
individuals’ attribute values.

Abul et al. [49] and Sei and Ohsuga [50] proposed location
anonymization methods taking into account location errors.
These methods achieve k-anonymity, which is a basic privacy
metric. However, they cannot be applied to ε-differential
privacy.

Ge et al. [51], and Krishnan et al. [52] proposed methods
to clean ‘‘dirty data’’ privately. They used differential privacy
as a privacy metric and focused on data cleaning for resolving
inconsistent attributes of an extensive database containing
several people’s true data. They assumed that each database
value was true and used the Laplace mechanism without
considering errors in values.

Several studies proposed machine learning methods, such
as deep neural networks (deep learning) for IoT sensing val-
ues with differential privacy. Shi et al. [53] proposed a rein-
forcement technique for transportation network companies
using passengers’ data. Xu et al. [54] focused on mobile data
analysis in edge computing. Guan et al. [55] applied machine
learning for the Internet of medical things. Although they use
differential privacy as a privacy metric, they do not consider
the proposed TDP. By applying TDP, it is believed that the
accuracy of their methods increases while maintaining their
privacy protection levels.

VI. DISCUSSION
A. ERROR PROBABILITY DISTRIBUTION
Because our proposal for numerical attributes assumes that
the error follows a normal distribution, the anonymizer must
check whether the error follows a normal distribution and
obtain the normal distribution’s standard deviation. Notably,
the proposed concept can be applied to the normal distribution
and other distributions.

Many studies are based on the assumption that GPS
location measurement errors follow a normal distribution,

simulating these errors by generating noise that follows a
bivariate normal distribution [56]–[58]. In addition to GPS
measurements, many studies assume that measurement errors
by sensors follow a normal distribution, and many studies
have confirmed that measurement errors follow a normal
distribution using actual data. Ferreira et al. measured var-
ious data from smart meters and generated error values for
voltage and reactive power using a normal distribution in their
experiments [59]. Sun et al. proposed a method to infer user
intentions using spatio-temporal information and user behav-
ior [60]. In their experiments, the measurement noises were
drawn from a normal distribution. Xiao et al. proposed an
RFID-based localization and tracking system, measuring and
analyzing the error of the radar antenna, then describing the
measurement error as following a normal distribution [61].

Many researchers such as [42], [62]–[64] also assume
that sensing errors in IoT devices follow a normal distri-
bution. Moreover, several researchers confirmed that actual
sensing data follows a normal distribution. For example,
Devon et al. collected 29,000 pieces of GPS data and
illustrated that a normal distribution fits the data [65].
Wang et al. [66] observed that the pose tracking accuracy of
the Microsoft Kinect 2, which can perform real-time gesture
recognition, fits a normal distribution. Gao et al. [67] gener-
ated sensing samples based on a normal distribution of their
experiments. Nguyen et al. [68] discussed how the measure-
ment errors of sensing locations could affect mobile, robotic,
and wireless sensor networks. In their proposed algorithm,
the location error is modeled to follow a normal distribution.
Using a real dataset with sensing errors, they showed that their
algorithm achieves high performance.

Therefore, we can assume that the error probability fits a
normal distribution in many cases. Usually, sensor vendors
show a data sheet for each sensor product that contains infor-
mation about the sensor’s accuracy. There are several ways to
express accuracy. Sometimes it is expressed using a standard
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deviation; in this case, the anonymizer uses the standard devi-
ation of the normal distribution. If the accuracy is expressed
using the average error (let m be the average), we can obtain
the standard deviation of the normal distribution using the
following equation:

standard deviation = m
√
2π. (42)

In IoT systems, a machine learning technique that includes
deep neural networks has also been used. Estimated val-
ues from deep neural networks might include estimation
errors, and several researchers such as [69]–[71] reported
that the estimation errors followed a normal distribution.
If an anonymizer can obtain several training samples, the
anonymizer can produce the error probability distribution
and calculate its standard deviation. The Anderson-Darling
test [72], which tests whether samples come from a normal
distribution, can be used to check whether the error probabil-
ity distribution follows a normal distribution.

Android OS provides APIs for location, speed, and bear-
ing. In addition, the APIs for the data return the measurement
values and their accuracy at 68% confidence.3 In a normal
distribution, 68% of the data falls within one standard devia-
tion from the mean.

Errors always exist in the measurements regardless of
how carefully and scientifically the measurements are per-
formed. However, error analysis allows scientists to evaluate
the degree of uncertainty. It has been proven that if the
measurements have many small random error sources and
negligible systematic errors, the measurements are normally
distributed [16].

Although not all measurement errors follow a normal
distribution, as mentioned above, many measurement errors
are considered to follow a normal distribution. The method
proposed here targets the case where measurement errors are
considered to follow a normal distribution. On the other hand,
our proposed novel concept, TDP, can be applied to any other
error models. We hope that this paper is the first step toward
error-aware differential privacy.

B. MACHINE LEARNING WITH NOISY IoT DATA
Several studies generated machine learning models from
noisy IoT data, and the models could achieve high accu-
racy [73], [74]. In contrast, studies on differential privacy
showed that if the value of the privacy budget is small, i.e.,
if the noise added using differential privacy techniques is
large, the accuracy of machine learning models will deteri-
orate significantly [53]–[55].

In this paper, we have shown that by considering the
observation noise of IoT data, the amount of noise to protect
privacy can be reduced. Our proposed concept can be used
with existing differentially private techniques. Therefore, the
accuracy of the machine learning model can be improved
while maintaining the same privacy protection level.

3https://developer.android.com/reference/android/location/

C. FUTURE WORK
Some mechanisms can achieve differential privacy other
than the Laplace mechanism and the randomized response
mechanism. Geng and Viswanath [75] proposed the staircase
mechanism for numerical values and proved that it was better
when ε was very large. Andrés et al. [76] proposed the geo-
indistinguishable mechanism, especially for location infor-
mation. The authors of this paper believe that TDP can be
applied to other privacy metrics that manage probability dis-
tributions of attribute values. These privacy metrics include
pk-anonymity [77], [78], which is a probability extension of
the k-anonymity [79] model, and t-closeness [80], which is a
refinement of k-anonymity.
Future work includes applying TDP to other mechanisms

to achieve differential privacy and other privacy metrics.
In this paper, the normal distribution as the error distri-

bution is considered. However, other error distributions can
also be considered. By replacing N (x; σ 2) with other error
distributions, new algorithms for error distributions can be
introduced.

In this paper, the target scenario proposed is the collection
of anonymized data from each person individually. Privacy-
preserving data publishing, which states that a data holder
has much personal data and anonymizes and publishes them,
is another important scenario in the research area of privacy;
ε-differential privacy can be applied in this case. Further-
more, TDP can also be applied to ε-differential privacy in this
case. A concrete discussion on these concepts is presented in
future work.

VII. CONCLUSION
Differential privacy can protect user privacy by adding noise
to a target value, which must be protected. Sensing values
in IoT environments involve some errors; however, existing
solutions have not taken sensing noise into account. In other
words, present systems attempt to protect the detected value
in the presence of sensing noise. On the contrary, our research
aims at protecting the true value. Our technique modifies
the amount of added noise based on the sensor noise model,
whereas existing systems do not. Our strategy can lower the
amount of noise introduced by the differential privacy tech-
nique by roughly 20%. As a result, the resulting histogram’s
mean square error and JS divergence can be lowered by
40.4% and 29.6% on average, respectively. A novel privacy
metamodel called TDP is introduced and applied to differ-
ential privacy since the data owner or anonymizer might not
know the true value. We validate this result on synthetic and
five real data sets. This is the first research work that proposes
and applies TDP. The authors expect many studies based on
TDP in the near future.

REFERENCES
[1] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos,

B. Kantarci, and S. Andreescu, ‘‘Health monitoring andmanagement using
Internet-of-Things (IoT) sensing with cloud-based processing: Opportuni-
ties and challenges,’’ in Proc. IEEE Int. Conf. Services Comput., Jun. 2015,
pp. 285–292.

VOLUME 10, 2022 8755



Y. Sei, A. Ohsuga: Private True Data Mining: Differential Privacy Featuring Errors to Manage Internet-of-Things Data

[2] M. Munoz-Organero, G. A. Ramíez-González, P. J. Munoz-Merino, and
C. D. Kloos, ‘‘A collaborative recommender system based on space-time
similarities,’’ IEEE Pervasive Comput., vol. 9, no. 3, pp. 81–87, Jul. 2010.

[3] J. Torres-Sospedra, J. Avariento, D. Rambla, R. Montoliu, S. Casteleyn,
M. Benedito-Bordonau, M. Gould, and J. Huerta, ‘‘Enhancing integrated
indoor/outdoor mobility in a smart campus,’’ Int. J. Geograph. Inf. Sci.,
vol. 29, no. 11, pp. 1955–1968, Nov. 2015.

[4] J. Tang, S. Fu, X. Liu, Y. Luo, and M. Xu, ‘‘Achieving privacy-
preserving and lightweight truth discovery in mobile crowdsensing,’’
IEEE Trans. Knowl. Data Eng., early access, Jan. 29, 2021, doi:
10.1109/TKDE.2021.3054409.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith, ‘‘Calibrating noise to
sensitivity in private data analysis,’’ in Proc. Theory Cryptogr. (TCC),
2006, pp. 265–284.

[6] C. Dwork and A. Roth, ‘‘The algorithmic foundations of differential pri-
vacy,’’ Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407,
Aug. 2014.

[7] F. Liu, ‘‘Generalized Gaussian mechanism for differential privacy,’’ IEEE
Trans. Knowl. Data Eng., vol. 31, no. 4, pp. 747–756, Apr. 2019.

[8] X. Ren, C. M. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and P. S. Yu,
‘‘Lopub: High-dimensional crowdsourced data publication with local dif-
ferential privacy,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 9,
pp. 2151–2166, Sep. 2018.

[9] N. Phan, X. Wu, H. Hu, and D. Dou, ‘‘Adaptive Laplace mechanism:
Differential privacy preservation in deep learning,’’ in Proc. IEEE Int.
Conf. Data Mining (ICDM), Nov. 2017, pp. 385–394.

[10] X. Zhang, R. Chen, J. Xu, X. Meng, and Y. Xie, ‘‘Towards accurate
histogram publication under differential privacy,’’ in Proc. SIAM Int. Conf.
Data Mining, Apr. 2014, pp. 587–595.

[11] X. Xiao, G. Wang, and J. Gehrke, ‘‘Differential privacy via wavelet
transforms,’’ in Proc. IEEE 26th Int. Conf. Data Eng. (ICDE), 2010,
pp. 225–236.

[12] X. Ding, S. Sheng, H. Zhou, X. Zhang, Z. Bao, P. Zhou, and H. Jin,
‘‘Differentially private triangle counting in large graphs,’’ IEEE Trans.
Knowl. Data Eng., early access, Jan. 19, 2021.

[13] S. L. Warner, ‘‘Randomized response: A survey technique for eliminating
evasive answer bias,’’ J. Amer. Statist. Assoc., vol. 60, no. 309, pp. 63–69,
1965.

[14] Z. Huang and W. Du, ‘‘OptRR: Optimizing randomized response schemes
for privacy-preserving data mining,’’ in Proc. IEEE 24th Int. Conf. Data
Eng., Apr. 2008, pp. 705–714.

[15] G. B. Airy, On the Algebraical and Numerical Theory of Errors of
Observations and the Combination of Observations. Whitefish, MT, USA:
Kessinger Publishing, 2007.

[16] J. R. Taylor, Introduction to Error Analysis: The Study of Uncertainties
in Physical Measurements, 2nd ed. Sausalito, CA, USA: Univ. Science
Books, 1997.

[17] T. Murakami and Y. Kawamoto, ‘‘Utility-optimized local differential pri-
vacy mechanisms for distribution estimation,’’ in Proc. USENIX Secur.
Symp., 2019, pp. 1877–1894.

[18] X. Gu, M. Li, L. Xiong, and Y. Cao, ‘‘Providing input-discriminative
protection for local differential privacy,’’ inProc. IEEE 36th Int. Conf. Data
Eng. (ICDE), Apr. 2020, pp. 505–516.

[19] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, N. Li, and B. Škoric, ‘‘Estimat-
ing numerical distributions under local differential privacy,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, Jun. 2020, pp. 621–635.

[20] Y. Zhao, J. Zhao, M. Yang, T. Wang, N. Wang, L. Lyu, D. Niyato, and
K.-Y. Lam, ‘‘Local differential privacy-based federated learning for Inter-
net of Things,’’ IEEE Internet Things J., vol. 8, no. 11, pp. 8836–8853,
Jun. 2021.

[21] M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, and L. Shu, ‘‘Authen-
tication protocols for Internet of Things: A comprehensive survey,’’ Secur.
Commun. Netw., vol. 2017, pp. 1–41, Nov. 2017.

[22] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac, ‘‘A sur-
vey on IoT platforms: Communication, security, and privacy perspectives,’’
Comput. Netw., vol. 192, Jun. 2021, Art. no. 108040.

[23] M. A. Husnoo, A. Anwar, R. K. Chakrabortty, R. Doss, and M. J. Ryan,
‘‘Differential privacy for IoT-enabled critical infrastructure: A comprehen-
sive survey,’’ IEEE Access, vol. 9, pp. 153276–153304, 2021.

[24] C. Ma, L. Yuan, L. Han, M. Ding, R. Bhaskar, and J. Li, ‘‘Data level pri-
vacy preserving: A stochastic perturbation approach based on differential
privacy,’’ IEEE Trans. Knowl. Data Eng., early access, Dec. 21, 2021.
[Online]. Available: https://ieeexplore.ieee.org/document/9658125/, doi:
10.1109/TKDE.2021.3137047.

[25] J. A. Onesimu, J. Karthikeyan, and Y. Sei, ‘‘An efficient clustering-
based anonymization scheme for privacy-preserving data collection
in IoT based healthcare services,’’ Peer-Peer Netw. Appl.,
vol. 14, no. 3, pp. 1629–1649, May 2021. [Online]. Available:
https://link.springer.com/article/10.1007/s12083-021-01077-7

[26] F. M. Zahid and C. Heumann, ‘‘Multiple imputation with sequential penal-
ized regression,’’ Stat. Methods Med. Res., vol. 28, no. 5, pp. 1311–1327,
May 2019.

[27] A. Lyon, ‘‘Why are normal distributions normal?’’ Brit. J. Philosophy Sci.,
vol. 65, no. 3, pp. 621–649, Sep. 2014.

[28] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, ‘‘What can we learn privately?’’ SIAM J. Comput., vol. 40, no. 3,
pp. 793–826, Jun. 2011.

[29] S. Winitzki, ‘‘A handy approximation for the error function and its
inverse,’’ Univ. Heidelberg, Heidelberg, Germany, Tech. Rep., 2008.

[30] J. Tang, A. Korolova, X. Bai, X. Wang, and X. Wang, ‘‘Privacy loss in
apple’s implementation of differential privacy on MacOS 10.12,’’ 2017,
pp. 1–12, arXiv:1709.02753.

[31] Differential Privacy Team Apple, ‘‘Learning with privacy at scale,’’Mach.
Learn. J., vol. 1, no. 8, pp. 1–25, 2017.

[32] U. Erlingsson, V. Pihur, and A. Korolova, ‘‘RAPPOR: Randomized aggre-
gatable privacy-preserving ordinal response,’’ in Proc. ACM CCS, 2014,
pp. 1054–1067.

[33] D. Dua and C. Graff. (2019).UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

[34] F. Palumbo, C. Gallicchio, R. Pucci, and A. Micheli, ‘‘Human activity
recognition using multisensor data fusion based on reservoir computing,’’
J. Ambient Intell. Smart Environ., vol. 8, no. 2, pp. 87–107, 2016.

[35] F. J. Ordóñez, P. de Toledo, A. Sanchis, F. J. Ordóñez, P. De Toledo, and
A. Sanchis, ‘‘Activity recognition using hybrid generative/discriminative
models on home environments using binary sensors,’’ Sensors, vol. 13,
no. 5, pp. 5460–5477, 2013.

[36] R. L. S. Torres, D. C. Ranasinghe, Q. Shi, and A. P. Sample, ‘‘Sensor
enabled wearable RFID technology for mitigating the risk of falls near
beds,’’ in Proc. IEEE Int. Conf. RFID (RFID), Apr. 2013, pp. 191–198.

[37] B. Kaluža, V. Mirchevska, E. Dovgan, M. Luštrek, and M. Gams,
‘‘An agent-based approach to care in independent living,’’ inProc. Int. Joint
Conf. Ambient Intell., 2010, pp. 177–186.

[38] X. Wang, V. Ly, G. Lu, and C. Kambhamettu, ‘‘Can we minimize the
influence due to gender and race in age estimation?’’ in Proc. 12th Int.
Conf. Mach. Learn. Appl., Dec. 2013, pp. 309–314.

[39] S. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, and J. Kim, ‘‘Age estimation
using a hierarchical classifier based on global and local facial features,’’
Pattern Recognit., vol. 44, no. 6, pp. 1262–1281, 2011.

[40] H. Han, C. Otto, X. Liu, and A. K. Jain, ‘‘Demographic estimation from
face images: Human vs. machine performance,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 6, pp. 1148–1161, Jun. 2015.

[41] T. Wang, J. Blocki, N. Li, T. Wang, J. Blocki, and N. Li, ‘‘Locally
differentially private protocols for frequency estimation,’’ inProc. USENIX
Secur. Symp., 2017, pp. 729–745.

[42] Y. Sei and A. Ohsuga, ‘‘Differentially private mobile crowd sensing con-
sidering sensing errors,’’ Sensors, vol. 20, no. 10, pp. 2785:1–2785:25,
May 2020.

[43] J. Lin, ‘‘Divergence measures based on the Shannon entropy,’’ IEEE Trans.
Inf. Theory, vol. 37, no. 1, pp. 145–151, Jan. 1991.

[44] T. Murakami, H. Hino, and J. Sakuma, ‘‘Toward distribution estima-
tion under local differential privacy with small samples,’’ Proc. Privacy
Enhancing Technol., vol. 2018, no. 3, pp. 84–104, Jun. 2018.

[45] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin, and G. Yu,
‘‘PrivTrie: Effective frequent term discovery under local differential pri-
vacy,’’ in Proc. IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018,
pp. 821–832.

[46] J. W. Kim, D.-H. Kim, and B. Jang, ‘‘Application of local differential
privacy to collection of indoor positioning data,’’ IEEE Access, vol. 6,
pp. 4276–4286, 2018.

[47] S. Tonyali, K. Akkaya, N. Saputro, A. S. Uluagac, and M. Nojoumian,
‘‘Privacy-preserving protocols for secure and reliable data aggregation
in IoT-enabled smart metering systems,’’ Future Gener. Comput. Syst.,
vol. 78, pp. 547–557, Jan. 2018.

[48] Y. Liu, W. Guo, C.-I. Fan, L. Chang, and C. Cheng, ‘‘A practical privacy-
preserving data aggregation (3PDA) scheme for smart grid,’’ IEEE Trans.
Ind. Informat., vol. 15, no. 3, pp. 1767–1774, Mar. 2018.

8756 VOLUME 10, 2022

http://dx.doi.org/10.1109/TKDE.2021.3054409
http://dx.doi.org/10.1109/TKDE.2021.3137047


Y. Sei, A. Ohsuga: Private True Data Mining: Differential Privacy Featuring Errors to Manage Internet-of-Things Data

[49] O. Abul, F. Bonchi, and M. Nanni, ‘‘Never walk alone: Uncertainty for
anonymity in moving objects databases,’’ in Proc. IEEE 24th Int. Conf.
Data Eng., Apr. 2008, pp. 376–385.

[50] Y. Sei and A. Ohsuga, ‘‘Location anonymization with considering errors
and existence probability,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 47,
no. 12, pp. 3207–3218, Dec. 2017.

[51] C. Ge, I. F. Ilyas, X. He, and A. Machanavajjhala, ‘‘Private exploration
primitives for data cleaning,’’ 2017, pp. 1–17, arXiv:1712.10266.

[52] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and T. Kraska, ‘‘Pri-
vateclean: Data cleaning and differential privacy,’’ inProc. ACMSIGMOD,
2016, pp. 937–951.

[53] D. Shi, J. Ding, S. M. Errapotu, H. Yue, W. Xu, X. Zhou, and M. Pan,
‘‘Deep Q-network-based route scheduling for TNC vehicles with Passen-
gers’ location differential privacy,’’ IEEE Internet Things J., vol. 6, no. 5,
pp. 7681–7692, Oct. 2019.

[54] C. Xu, J. Ren, L. She, Y. Zhang, Z. Qin, and K. Ren, ‘‘EdgeSani-
tizer: Locally differentially private deep inference at the edge for mobile
data analytics,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 5140–5151,
Jun. 2019.

[55] Z. Guan, Z. Lv, X. Du, L. Wu, and M. Guizani, ‘‘Achieving data utility-
privacy tradeoff in Internet of Medical Things: A machine learning
approach,’’ Future Gener. Comput. Syst., vol. 98, pp. 60–68, Sep. 2019.

[56] P. Chao, W. Hua, R. Mao, J. Xu, and X. Zhou, ‘‘A survey and quantitative
study on map inference algorithms from GPS trajectories,’’ IEEE Trans.
Knowl. Data Eng., vol. 34, no. 1, pp. 15–28, Jan. 2022.

[57] E. Frentzos, K. Gratsias, and Y. Theodoridis, ‘‘On the effect of location
uncertainty in spatial querying,’’ IEEE Trans. Knowl. Data Eng., vol. 21,
no. 3, pp. 366–383, Mar. 2009.

[58] D. Zhang, Z. Chang, S. Wu, Y. Yuan, K.-L. Tan, and G. Chen,
‘‘Continuous trajectory similarity search for online outlier detection,’’
IEEE Trans. Knowl. Data Eng., early access, Dec. 24, 2020, doi:
10.1109/TKDE.2020.3046670.

[59] T. S. D. Ferreira, F. C. L. Trindade, and J. C. M. Vieira, ‘‘Load flow-
based method for nontechnical electrical loss detection and location in
distribution systems using smart meters,’’ IEEE Trans. Power Syst., vol. 35,
no. 5, pp. 3671–3681, Sep. 2020.

[60] Y. Sun, N. J. Yuan, X. Xie, K. McDonald, and R. Zhang, ‘‘Collaborative
intent prediction with real-time contextual data,’’ ACM Trans. Inf. Syst.,
vol. 35, no. 4, pp. 1–33, Aug. 2017.

[61] F. Xiao, Z. Wang, N. Ye, R. Wang, and X.-Y. Li, ‘‘One more tag enables
fine-grained RFID localization and tracking,’’ IEEE/ACM Trans. Netw.,
vol. 26, no. 1, pp. 161–174, Feb. 2018.

[62] R. Peng and M. L. Sichitiu, ‘‘Angle of arrival localization for wireless
sensor networks,’’ in Proc. 3rd Annu. IEEE Commun. Soc. Sensor Ad Hoc
Commun. Netw. (SECON), 2006, pp. 374–382.

[63] I. Floris, P. A. Calderón, S. Sales, and J.M. Adam, ‘‘Effects of core position
uncertainty on optical shape sensor accuracy,’’ Measurement, vol. 139,
pp. 21–33, Jun. 2019.

[64] A. Burguera, Y. González, and G. Oliver, ‘‘Sonar sensor models and
their application to mobile robot localization,’’ Sensors, vol. 9, no. 12,
pp. 10217–10243, Dec. 2009.

[65] D. DeVon, T. Holzer, and S. Sarkani, ‘‘Minimizing uncertainty and improv-
ing accuracy when fusing multiple stationary GPS receivers,’’ in Proc.
IEEE Int. Conf. Multisensor Fusion Integr. Intell. Syst. (MFI), Sep. 2015,
pp. 83–88.

[66] Q. Wang, G. Kurillo, F. Ofli, and R. Bajcsy, ‘‘Evaluation of pose tracking
accuracy in the first and second generations of Microsoft Kinect,’’ in Proc.
Int. Conf. Healthcare Informat. (ICHI), Oct. 2015, pp. 380–389.

[67] X. Gao, S. Chen, and G. Chen, ‘‘MAB-based reinforced worker selection
framework for budgeted spatial crowdsensing,’’ IEEE Trans. Knowl. Data
Eng., early access, May 4, 2020, doi: 10.1109/TKDE.2020.2992531.

[68] L. V. Nguyen, S. Kodagoda, R. Ranasinghe, and G. Dissanayake, ‘‘Adap-
tive placement for mobile sensors in spatial prediction under locational
errors,’’ IEEE Sensors J., vol. 17, no. 3, pp. 794–802, Feb. 2017.

[69] P. N. P. Barbeiro, J. Krstulovic, H. Teixeira, J. Pereira, F. J. Soares, and
J. P. Iria, ‘‘State estimation in distribution smart grids using autoencoders,’’
in Proc. IEEE 8th Int. Power Eng. Optim. Conf. (PEOCO), Mar. 2014,
pp. 358–363.

[70] A. Magaña, H. Wu, P. Bauer, and G. Reinhart, ‘‘PoseNetwork: Pipeline
for the automated generation of synthetic training data and CNN for
object detection, segmentation, and orientation estimation,’’ in Proc. 25th
IEEE Int. Conf. Emerg. Technol. Factory Automat. (ETFA), Sep. 2020,
pp. 587–594.

[71] M. Uss, B. Vozel, V. Lukin, and K. Chehdi, ‘‘Efficient discrimina-
tion and localization of multimodal remote sensing images using CNN-
based prediction of localization uncertainty,’’ Remote Sens., vol. 12,
no. 4, p. 703, Feb. 2020. [Online]. Available: https://www.mdpi.com/2072-
4292/12/4/703

[72] M. A. Stephens, ‘‘EDF statistics for goodness of fit and some compar-
isons,’’ J. Amer. Stat. Assoc., vol. 69, no. 347, pp. 730–737, Sep. 1974.

[73] M. Li, L. Xie, Z. Lv, J. Li, and Z. Wang, ‘‘Multistep deep system for
multimodal emotion detection with invalid data in the Internet of Things,’’
IEEE Access, vol. 8, pp. 187208–187221, 2020.

[74] C. Lee, J. Lin, P. Chen, and Y. Chang, ‘‘Deep learning-constructed joint
transmission-recognition for Internet of Things,’’ IEEE Access, vol. 7,
pp. 76547–76561, 2019.

[75] Q. Geng and P. Viswanath, ‘‘The optimal noise-adding mechanism in
differential privacy,’’ IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 925–951,
Feb. 2016.

[76] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
‘‘Geo-indistinguishability: Differential privacy for location-based sys-
tems,’’ in Proc. ACM CCS, 2013, pp. 901–914.

[77] E. Kimura, K. Chida, D. Ikarashi, K. Hamada, and K. Ishihara, ‘‘Statistical
disclosure limitation of health data based on Pk-anonymity,’’ Stud. Health
Technol. Informat., vol. 180, pp. 1117–1119, Aug. 2012.

[78] M. Kakizawa, C. Watanabe, R. Furukawa, and T. Takahashi, ‘‘Improve-
ment of Pk-anonymization,’’ in Proc. IEEE 33rd Int. Symp. Reliable Dis-
trib. Syst. Workshops, Oct. 2014, pp. 82–87.

[79] K. LeFevre, D. DeWitt, and R. Ramakrishnan, ‘‘Incognito: Efficient full-
domain k-anonymity,’’ in Proc. ACM SIGMOD, 2005, pp. 49–60.

[80] N. Li, T. Li, and S. Venkatasubramanian, ‘‘T-closeness: Privacy beyond
k-anonymity and l-diversity,’’ in Proc. IEEE 23rd Int. Conf. Data Eng.,
Apr. 2007, pp. 106–115.

YUICHI SEI (Member, IEEE) received the
Ph.D. degree in information science and tech-
nology from The University of Tokyo, in 2009.
From 2009 to 2012, he was with Mitsubishi
Research Institute. He joined The University of
Electro-Communications, in 2013, and is currently
an Associate Professor with the Graduate School
of Informatics and Engineering. He is also a Vis-
iting Researcher at Mitsubishi Research Institute
and an Adjunct Researcher at Waseda Univer-

sity. His current research interests include pervasive computing, privacy-
preserving data mining, and software engineering. He was a recipient of
the IPSJ Best Paper Award and the JSCE Hydraulic Engineering Best Paper
Award, in 2017.

AKIHIKO OHSUGA (Member, IEEE) received
the Ph.D. degree in computer science fromWaseda
University, in 1995. From 1981 to 2007, he was
with Toshiba Corporation. He joined The Univer-
sity of Electro-Communications, in 2007, and is
currently a Professor with the Graduate School of
Informatics and Engineering. He is also the Dean
of the Graduate School of Information Systems.
He is also a Visiting Professor at the National Insti-
tute of Informatics. His research interests include

agent technologies, web intelligence, and software engineering. He is amem-
ber of IEEE Computer Society (IEEE CS), Information Processing Society
of Japan (IPSJ), the Institute of Electronics, Information and Communication
Engineers (IEICE), Japanese Society for Artificial Intelligence (JSAI), Japan
Society for Software Science and Technology (JSSST), and the Institute
of Electrical Engineers of Japan (IEEJ). He received the IPSJ Best Paper
Awards in 1987 and 2017. He was the Chair of IEEE CS Japan Chapter.
He was a member of the Board of Directors of JSAI and JSSST.

VOLUME 10, 2022 8757

http://dx.doi.org/10.1109/TKDE.2020.3046670
http://dx.doi.org/10.1109/TKDE.2020.2992531

