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ABSTRACT Temporal datasets that describe complex interactions between individuals over time are
increasingly common in various domains. Conventional graph representations of such datasets may lead
to information loss since higher-order relationships between more than two individuals must be broken
into multiple pairwise relationships in graph representations. In those cases, a hypergraph representation
is preferable since it can preserve higher-order relationships by using hyperedges. However, existing
hypergraph models of temporal complex networks often employ some data-independent growth mechanism,
which is the linear preferential attachment in most cases. In principle, this pre-specification is undesirable
since it completely ignores the data at hand. Our work proposes a new hypergraph growth model with
a data-driven preferential attachment mechanism estimated from observed data. A key component of our
method is a recursive formula that allows us to overcome a bottleneck in computing the normalizing factors
in our model. We also treat an often-neglected selection bias in modeling the emergence of new edges
with new nodes. Fitting the proposed hypergraph model to 13 real-world datasets from diverse domains,
we found that all estimated preferential attachment functions deviates substantially from the linear form.
This demonstrates the need of doing away with the linear preferential attachment assumption and adopting a
data-driven approach. We also showed that our model outperformed conventional models in replicating the
observed first-order and second-order structures in these real-world datasets.

INDEX TERMS Co-authorship networks, complex networks, hypergraphs, preferential attachment, selec-
tion bias.

I. INTRODUCTION
Network modeling, a notable application of graph theory,
can reveal static and dynamic natures of interactions between
individuals in various real-world complex systems [1]–[3].
However, in some data domains, there is an information
loss in simplifying the interaction of complex systems with
graphs: we implicitly break group interactions of three or
more individuals into independent pairwise interactions. For
example, in scientific co-authorship data, papers may be
written by more than two researchers. The co-authorship
of such papers is decomposed into pairwise co-authorship
when the data is represented by graphs. This inability to
preserve higher-order interactions is a serious limitation of
graph representations.We can address this problem by replac-
ing graphs with hypergraphs [4]. Using hypergraphs, the
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co-authorship of each paper can be represented by one hyper-
edge, regardless of how many authors the paper has. This
preserves the collectivity of co-authorship [5]. This study
aims to examine hypergraph growth models that can capture
the dynamics of higher-order interactions in temporal data.

A hypergraph consists of a set of nodes and a set of hyper-
edges. A hyperedge contains an arbitrary number of nodes,
whereas an edge in ordinary graphs contains only two nodes.
The number of nodes that a hyperedge contains is referred to
as the size of the hyperedge. We note that this size can take
different values for each hyperedge. For a node in a hyper-
graph, the number of hyperedges containing it is called its
‘‘hyperdegree’’, whereas the number of edges connected to a
node in ordinary graphs is called its ‘‘degree’’. In hypergraph
representations of co-authorship data, each node and each
hyperedge represents one researcher and the co-authorship
of one paper, respectively. The size of a hyperedge indicates
the number of co-authors of the corresponding paper, and
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the hyperdegree of a node corresponds to the number of
papers the corresponding researcher has written in the past.
Hypergraphs have been applied successfully in a wide variety
of domains, including recommender systems [6], bioinfor-
matics [7], classification [8], clustering [9], and document
retrieval [10].

Although there have been many attempts in complex net-
work theory to model the growth of interactions in tempo-
ral data using graph representations, there is little existing
research on hypergraph-based growth models. One of the
most well-known growth mechanisms is preferential attach-
ment (PA) [11]. PA is a ‘‘rich-get-richer’’ mechanism that can
provide a compelling explanation of the heavy-tailed degree
distributions appeared in many real-world networks. In this
mechanism, the probability a node will get new edges at some
time-step is proportional to its degree, i.e., the number of
edges connected to the node up to that time-step. In case of
temporal graph-based models, several models and estimation
methods have been proposed for various growth mechanisms,
including PA [12]–[16].

Of the few existing works on hypergraph-based growth
models, most employ a data-independent growth mecha-
nism which is the linear preferential attachment [17]–[19].
This pre-specification of the growth mechanism risks
over-simplifying the potentially complex interactions in
real-world datasets. In fact, existing works that employed
graph-based models suggested that the PA mechanism in
real-world temporal graphs is hardly linear [13].

In this work, we propose a hypergraph growth model with
a data-driven PA mechanism that can be estimated from
observed data. Whereas graph-based PA mechanisms are
defined on the degree of a node, our hyper-graph based PA
mechanism is defined on the hyperdegree of a node. In our
PA mechanism, a node with hyperdegree k , i.e., the node is
contained in k hyperedges, will belong to a new hyperedge
with probability proportional to Ak , the preferential attach-
ment kernel. For example, the linear model is specified as
Ak = k . The exact form of Ak is estimated from observed
data.

The contributions of this paper can be summarized as
follows:
• We propose a novel hypergraph-based growth model
with a non-parametric PA kernel. What we mean by
‘‘non-parametric’’ is that the tunable parameter is

A = [A1,A2,A3, . . .] (1)

without specific functional forms. Since the model is
invariant to the scale of A, we may set A1 = 1 without
loss of generality. In most existing works on hypergraph-
growth models, the linear PA kernel Ak = k is assumed.
Such unfounded pre-specification of the growth mech-
anism completely ignores the data at hand. In contrast,
in our model, the PA kernelAk is entirely free of assump-
tions. We stress that our non-parametric PA kernel is
more flexible than the one-parameter kernel Ak = kα ,
which is often employed in graph-based growth models

but not used in any existing hypergraph-based models.
We provide a method to estimate from the data each
value of Ak for each observed hyperdegree k . Specifi-
cally, we employ maximum likelihood estimation of A
for this task and derive a recursive formula that signif-
icantly reduces the computation cost of the likelihood
function of our model. A publicly available software of
the proposed method will be published on Code Ocean.

• We provide a new approach to treat a selection bias
that arises in modeling the emergence of new hyper-
edges with new nodes. Since parameter estimation in
hypergraph-based growth models has not been consid-
ered, there is no existing work on this bias in hypergraph
settings. In conventional graph-based growth models,
in order to remove this bias, new edges are often
removed from calculations of the log-likelihood func-
tion. However, a similar approach of removing hyper-
edges from calculations of the log-likelihood function
would discard too much information, since the typical
number of hyperedges with new nodes can be high in
real-world datasets. In our method we use conditional
probabilities in order to treat the selection bias in a
principle way. We note that this approach can also be
applied to graph-based growth models.

• We fit our proposed model to 13 real-world datasets
that can be divided into five categories: scien-
tific co-authorship datasets, online thread participants
datasets, online tagging datasets, national drug code
directory datasets, and email datasets. We show that our
proposed hypergraph PA model was better in replicating
the observed data compared with conventional graph-
based models. When one considers replications of the
observed distributions of local clustering coefficients,
the proposed hypergraph outperformed conventional
models in all 13 datasets. When one considers repli-
cations of the observed distributions of the number of
triplets, the proposedmodel provided the best fit in seven
datasets, including all co-authorship networks. These
findings confirm the importance of considering the
collectivity of edges inmodeling temporal complex data.

Somewords are needed to bound the scope of our proposed
hypergraph growth model. While our model does not allow
the deletion of nodes and edges in the temporal network,
it is indeed natural for nodes or edges to disappear in some
network types. For example, an author may become inactive
in co-authorship networks, while in relationship networks a
relationship edge may be dissolved after some years. Our
model also assumes that the PA function does not change with
time. However, in co-authorship networks it is not unreason-
able to expect that yearly advancements in communication
and transportation technologies, which potentially ease how
collaborations are formed and maintained, may make the PA
function change with time. Even for those types of networks,
the proposed growth model can still be a viable approxima-
tion for the growth of the network in a short time span, e.g.,
five to ten years, where one can reasonably assume that the
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disappearances of nodes and edges, as well as any temporal
change in the PA function, are negligible.

Our approach can potentially be used in predicting prop-
erties of a temporal network in the future. Some common
network properties that are of potential interest are local prop-
erties such as degree and betweenness centrality of a node
or global properties such as the diameter of a network [20].
In principle, by using a probabilistic generative model such
as our proposed hypergraph-based model, one can get infor-
mation about any network property at a specific time in the
future in the form of probability distributions. In order to do
this, one uses the fitted model to generate multiple simulated
networks at that specific time in the future, and calculates the
empirical probability distribution of the property of interest
in these simulated networks.

The rest of this paper is organized as follows: Section II
describes temporal hypergraphs comparing with temporal
graphs. Section III introduces related graph-based PA mod-
els and our hypergraph-based approach and presents illus-
trative results of our proposed model. Section IV provides
our estimation methodology and the hypergraph generation
algorithm for our growth model. Section V explores the per-
formance of the proposed method in 13 real-world datasets
by comparing it with the conventional method. Finally,
Section VI concludes this work and outlines future work.

II. TEMPORAL HYPERGRAPH MODELS
In this section, we explain some properties of discrete-time
hypergraph-based growth models, comparing it with conven-
tional growthmodels of ordinary graphs. LetGt = (Vt ,Et ) be
the hypergraph at time-step t = 0, . . . ,T . The hypergraphGt
consists of the node set Vt and the hyperedge set Et existing
at time-step t . The temporal hypergraph grows from G0 =

(V0,E0), the initial hypergraph, with the emergence of new
hyperedges and nodes at each time-step. Although a hyper-
graph where the set of nodes in a hyperedge does not have any
order is called an ‘‘undirected hypergraph’’ [21], in this paper
we simply refer to it as a ‘‘hypergraph’’. Similarly, we refer
to ‘‘undirected graph without self-loops’’ as ‘‘graph’’.

Fig. 1 illustrates a discrete-time temporal hypergraph and
its graph representation. To handle some features of the
real-world hypergraph data collected by discrete-time obser-
vations, we explicitly allow the following two points in the
temporal hypergraph model.

1) The hyperedge added at each time-step t can include
both existing nodes and new nodes. This is illustrated
in the hypergraph at time-step t = 1 in Fig. 1. We call
these new nodes newcomer nodes.

2) The number of hyperedges added at each time-step
t can be more than one. An example is given in the
hypergraph at time-step t = 3 in Fig. 1.

Guimerà et al. [22] proposed a probabilistic model of tem-
poral hypergraphs that controls the proportion of newcomer
nodes that appear with hyperedges, and analyzed the relation-
ship between this proportion and the success of collaboration.

In this paper, both our proposed estimation method and gen-
erator for hypergraphs address the above two points.

Next we explain some information losses that can occur
with graph representations of complex temporal data. The
growth of complex network data such as co-authorships of
papers is conventionally modeled by ordinary graphs, where
eachmotif (e.g., paper) occurring among nodes (e.g., authors)
is represented by edges (e.g., pairwise co-authorships). When
a motif contains more than two nodes (e.g., a paper with
more than two authors), the group interaction created by the
motif is decomposed into multiple edges. On the other hand,
in hypergraphs, one motif is represented by one hyperedge.
An example is given in the hypergraph at time-step t = 0 in
Fig. 1. In order to present amotif on four nodes, in hypergraph
representations, a hyperedge containing these four nodes is
used, whereas in ordinary graph representations, six ordi-
nary edges, which constitute a clique on the four nodes,
are used instead. Generally, when a motif occurs among
m nodes, in ordinary graphs, m(m − 1)/2 edges are added
collectively, whereas one hyperedge of size m is added in
hypergraph representations. As can be seen from the hyper-
graph at time-step t = 3, given only one graph representa-
tion at one time-step, in general, we cannot identify which
edges were added together in the past without hyperedge
information. Thus, the information about motifs is not per-
fectly preserved when one employs a graph representation of
the data.

Furthermore, there is another information loss when
m = 1, i.e., when a motif contains only one node (e.g.,
a single-author paper) is added. In such cases, a hyperedge of
size m = 1 is added to the hypergraph, while the edges of the
graph remain unchanged, as illustrated at time-step t = 2 of
Fig. 1.
As mentioned above, graphs do not preserve the informa-

tion about which edges appeared jointly. In other words, the
conventional graph-based growth models assume implicitly
that all edges are independent. Let m denote the size of a
hyperedge. Although data with hugem exist in the real world,
for example in multinational projects [23], [24], few stud-
ies have examined whether this independence assumption
is appropriate under such large values of m. The datasets
used in the experiments in Sections III and V of this paper
contain hyperedges whose m are greater than 100. Using
these datasets, we will investigate the performances of some
conventional graph-based growth models in the case of large
m, which has not been examined much in existing studies.
In addition, it is reported that the modern science collabora-
tion has shown a trend that hyperedge sizes are becoming
larger. From the beginning of the 20th century to present,
the average number of co-authors per paper has increased
in almost all disciplines [25]. Such changes in data over time
may also lead to unforeseen problems for graph-based growth
models.

The main motivation for considering hypergraph models
in this study is that it does not require the above indepen-
dence assumption throughout the growth process. In the next
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FIGURE 1. Hypergraph expression and graph expression of temporal data. Whereas a graph consists of nodes and edges,
a hypergraph consists of nodes and hyperedges. Hyperedges and edges are indicated by ovals and line segments, respectively.
Dashed ovals and line segments represent newly added hyperedges and edges at each time-step, respectively. White nodes
represent newcomer nodes.

section, we describe our proposed approach to capture the
characteristics of temporal hypergraphs.

III. PROPOSED APPROACH
In this section, we first review the conventional PA growth
model for graphs and describe our proposed PA growthmodel
for hypergraphs. We then present illustrative results showing
the effectiveness of the proposed model.

A. GRAPH-BASED GROWTH MODELS WITH PA
We describe an undirected graph version of the General Tem-
poral (GT) model with PA [13]. This model is a general-
ization of various classical models such as Barabási-Albert
model [11] and Price’s model [26]. In the GT model, the
probability that a node pair i, j will acquire an edge at time
t is expressed as:

Pi,j(t) ∝ Adi(t)Adj(t),

where di(t), dj(t) are the degree of node i, j at time-step t ,
and Ad is the PA value of degree d . The function Ad of d
is often called the attachment function or attachment kernel.
Note that Ad is assumed to be time-invariant. This graph PA
model is hereinafter referred to as ‘‘Edge PA’’. In Edge PA,
no functional form is assumed on the PA function Ad . Several
methods have been proposed to estimate the PA function
Ad from the temporal network data. Parametric estimation
methods for estimating Ad based on the assumption that
the PA function has the functional form Ad = dα with a
tunable parameter α include regression-based methods [27],
maximum likelihood estimation methods [28], and methods
based on Markov chain Monte Carlo [29]. There are also
nonparametric estimation methods that do not make assump-
tions on the functional form of the PA function Ad including
methods using histograms [30], [31] and maximum likeli-
hood estimation [13].

B. PROPOSED HYPERGRAPH GROWTH MODEL
We propose a hypergraph version of the PA model based
on the GT model. Instead of defining PA growth for edges,

we define the probability of PA growth for hyperedges, i.e.,
sets of nodes. Let Gt = (Vt ,Et ) be the hypergraph at time-
step t and Cm(Vt ) be a family of sets whose elements are the
sets that satisfy B ⊂ Vt , |B| = m. We define the probability
that a node set B = {i1, i2, . . . , im} ∈ Cm(Vt ) acquires a
hyperedge of size m at time-step t as follows:

PB(t) ∝
∏
i∈B

Aki(t), (2)

where ki(t) is the hyperdegree of node i at time-step t ,
and Ak is the PA value of hyperdegree k . We refer to the
above proposed growth model as ‘‘Hyper PA’’. As in Edge
PA, we assume no functional form for the PA function Ak .
Do et al. [17] proposed a generative model with linear PA
PB ∝ kB for hypergraphs in which kB is defined as the number
of hyperedges that contain the set. However, when the size of
hyperedges is large, i.e., |B| � 1, the value of kB becomes
sparse, which is not suitable for estimating the functional
form of Ak . Therefore, in our model we define the PA growth
on the hyperdegrees ki for i ∈ B.
Edge PA and Hyper PA are equivalent only for data where

the size of all hyperedges is two. The difference between
Hyper PA and Edge PA emerges when we consider the
probability of a hyperedge whose size is greater than two.
As an example, let us consider the Hyper PA and Edge PA
for a group interaction occurring on the set of three nodes
B = {i1, i2, i3} at time-step t . In Hyper PA, this interaction
is considered as a single hyperedge and the probability of
this event is PB(t) ∝ Aki1 (t)Aki2 (t)Aki3 (t). On the other hand,
in Edge PA, the joint probability for all pairs of nodes is
Pi1,i2 (t)Pi1,i3 (t)Pi2,i3 (t) ∝ (Adi1 (t)Adi2 (t)Adi3 (t))

2. In addition
to the difference between using hyperdegree ki and degree
di, the exponent m − 1, which is equal to 2 for the case of
m = 3 above, in Edge PA makes the event of large m very
rare.

The value of Ak in Hyper PA can be estimated from
observed data by maximum likelihood estimation. More
details of the proposed model, including a treatment of a
selection bias that arises when the observed node set B
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contains some newcomer nodes, and estimation method are
described in Sections IV-A and IV-B. We can also generate
hypergraphs with a given PA function Ak by a procedure
provided in Section IV-C.

C. ILLUSTRATIVE RESULTS
This section illustrates that our proposed Hyper PA model
is better than the conventional Edge PA model and some
other baseline models in terms of goodness-of-fit in two
real-world co-authorship temporal networks: STA-coauthor
from the statistics field [32] and HEP-coauthor from the high
energy physics field [33], [34]. The details of these datasets
are provided in Section V. We first fit the models to these
data by estimating the PA function Ak for Hyper PA by
our proposed method and Ad for Edge PA by the method
in [13]. We then compare some statistics of simulated graphs
generated from the fitted models with those of the real-world
data. The closer the simulated statistics of a model are to
the real-world statistics, the better the model is in term of
goodness-of-fit. To compare with the graphs generated by
Edge PA, the hypergraphs generated by Hyper PA were con-
verted into graphs. The detail of proposed estimation method
and the procedure for generating hypergraph is described in
Section IV.
Fig. 2(a) visualizes the final portion in the growth of

STA-coauthor and those of the simulated temporal graphs
generated by Hyper PA and Edge PA. Specifically, we plot
the final 8% increments of the temporal graphs, which cor-
respond to the last 260 papers that appear in STA-coauthor.
To visualize the collectivity of edges around each node,
we colored each node i according to the size qi of the largest
clique that contains i. In the graphs generated by Edge PA,
there are fewer red nodes than in the observed data, which
means that Edge PA did not capture enough higher-order
information and failed to replicate large cliques. On the other
hand, Hyper PA generated large cliques similarly to those
observed in the real data. This observation can also be sup-
ported quantitatively by looking at the average q̄ of qi over
the whole graphs in 10 simulations. To the observed value
q̄ = 3.26, Hyper PA gave a close match of q̄ = 3.29, which
is much closer than the value q̄ = 2.83 given by Edge PA.

The reason why Edge PA failed to replicate the collective
nature of edge increments in STA-coauthor is that Edge PA
adds each edge independently. The poor fit of Edge PA is
also confirmed for second-order structures of graphs such as
triangles in not only STA-coauthor but also other real-world
co-authorship datasets. See Section V-C for more results.
As noted earlier, although conventional graph-based mod-

els such as Edge PA may be a reasonable modeling choice
if the typical size of hyperedges in the data is small, this
number can be enormous in some datasets. Fig. 2(b) shows
the distributions of the numbers of co-authors per paper in
STA-coauthor and HEP-coauthor. In hypergraph expression
of scientific co-authorship, the number of co-authors of a
paper is equal to the size of the corresponding hyperedge.
As can be seen in Fig. 2(b), HEP-coauthor contains many

relatively large hyperedges. The maximum hyperedge size is
201 for the HEP-coauthor and 10 in for the STA-coauthor.
More detailed data descriptions for all datasets used in this
paper are provided in Section V-A. For a dataset that has
a tendency for edge collectivity as strong as HEP-coauthor,
one would expect clear differences between Hyper PA and
Edge PA. The following experiment in Fig. 2(c) illustrates
this point.

In Fig. 2(c), we demonstrate that both hypergraph-based
growth and PA mechanism are needed to provide a reason-
ably good fit to HEP-coauthor. To this end, we add another
baseline model, namely Hyper Uniform, that is a special case
of Hyper PA in which Ak = 1 for every hyperdegree k , i.e.,
there is no PA effect in Hyper Uniform. Fig. 2(c) shows the
observed and simulated probability distributions of degrees
and local clustering coefficients. The local clustering coeffi-
cient, whose mathematical definition is given in Section V-C,
is a popular way to express the density of triangles around a
node. The distribution of local clustering coefficients can be
used to express the degree of collectivity of edges in the data.

From Fig. 2(c), the following observations can be made.

1) Hyper PA outperformed both Edge PA and Hyper Uni-
form in reproducing the overall degree distribution,
thanks to both the hypergraph-based growth and the
PA mechanism. Although Edge PA captured better
the right tail of the degree distribution compared with
Hyper Uniform, both Edge PA and Hyper Uniform
underestimated the portion of low degrees compared
with Hyper PA. This implies that the PA mechanism
may be responsible for reproducing the right tail of
the degree distribution, whereas the hypergraph-based
growth is potentially responsible for replicating the left
tail.

2) In replicating the distribution of local clustering coef-
ficients, Hyper PA also outperformed both Edge PA
and Hyper Uniform. Edge PA significantly underesti-
mated the local clustering coefficients, which implies
that it could not capture the collectivity of edges in
the data. This is expected, since Edge PA adds edges
independently.

To summarize, both hypergraph growth and PA mechanism
are crucial in capturing first-order and second-order struc-
tures of the data. Hyper PA employs both ingredients and
thus was able to provide good fits to STA-coauthor and
HEP-coauthor comparing with conventional models. Further
experiments are provided in Section V.

IV. METHOD
In this section, we describe the maximum likelihood estima-
tion of the PA function in our model and pseudo codes for
generating temporal hypergraphs from our model. In addition
to the derivation of the likelihood function, we provide a
recursive formula that enables a fast calculation of the like-
lihood function. We also provide a principle approach based
on conditional probabilities for handling a selection bias that
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FIGURE 2. Hyper PA outperforms conventional models in reproducing first-order and second-order structures in scientific
co-authorship data. (a): Observed and simulated graphs of STA-coauthor, a dataset of co-authorships in journals from statistics
field. Each graph illustrates the final 8% increments of the temporal graph. The color of each node represents the value qi of the
maximum size of cliques that contain the node. q̄ is the average of all qi in the data. Hyper PA outperformed Edge PA in
reproducing both high values of qi (red nodes) and the average q̄. (b): The observed distribution of the numbers of co-authors per
paper, i.e., the sizes of hyperedges, of STA-coauthor and that of HEP-coauthor, a dataset of co-authorships in high energy physics.
The size of a hyperedge can be enormous, as can be seen from HEP-coauthor. (c): Observed and simulated probability distributions
of degrees and local clustering coefficients in HEP-coauthor. The average values over 10 simulations are shown. The generated
hypergraphs in Hyper PA and Hyper Uniform were converted into graphs for comparison. Hyper PA outperformed Edge PA and
Hyper Uniform in replicating both distributions, thanks to hypergraph-based growth and PA mechanism.

arises in modeling the emergence of new hyperedges with
newcomer nodes.

A. MAXIMUM LIKELIHOOD ESTIMATION
1) LIKELIHOOD FUNCTION
We first derive the likelihood function of A for Hyper PA
model. Aswe described in Section III, our growthmodel (2) is
based on the undirected GT model. Therefore, the derivation
of the likelihood function in Hyper PA model here is also
based on previous works [13], [14], [16] where maximum
likelihood estimation of the PA function is derived for the GT
model.

We define some notations needed in the exposition. Let
Gt = (Vt ,Et ) be the hypergraph at time-step t . Vt and Et are
the node set and the hyperedge set, respectively. Let {Gt }Tt=0
be the hypergraph sequence, and {ht }Tt=1 be the sequence of
the number of hyperedges added to the hypergraph at each

time-step.We denote the size of each hyperedge at time-step t
asmt =

[
mt,1, . . . ,mt,ht

]
and the number of newcomer nodes

that appear with each hyperedge as nt =
[
nt,1, . . . , nt,ht

]
.

For the l-th (1 ≤ l ≤ ht ) hyperedge at time-step t , its size is
given by mt,l , and we have 0 ≤ nt,l ≤ mt,l ; the number of
newcomer nodes is nt,l and the number of existing nodes is
mt,l − nt,l . This hyperedge contains solely existing nodes if
nt,l = 0, and contains solely newcomer nodes if nt,l = mt,l .

Now we consider the probability that some node set Bt,l
whose size ismt,l acquires a new hyperedge of sizemt,l . If we
assume that Bt,l contains only existing nodes, the acquisition
probability is:

PBt,l (t) =

∏
i∈Bt,l Aki(t)∑

B′∈Cmt,l (Vt )
∏

i′∈B′Aki′ (t)
, (3)

where Cmt,l (Vt ) is the family of sets such that a set B belongs
to Cmt,l (Vt ) if and only if B ⊂ Vt and |B| = mt,l . The case
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that Bt,l contains some newcomer nodes needs some special
care, since there is a selection bias. This problem is treated in
Section IV-B.

Suppose that the joint distribution of ht , mt , and nt is gov-
erned by the parameter vector θ t , and that the initial hyper-
graph G0 is determined by θ init . As in previous works [13],
[14], [16], we assume that θ t and θ init are independent of A
in growth process. This assumption is interpreted as follows:
the increments of hypergraph (i.e. the number of additional
nodes and hyperedges) at each time-step are independent of
the PA growth. With this assumption, the probability of the
observed data can be written as:

P(G0, . . . ,GT )

=

T∏
t=1

P(Gt |Gt−1)P(G0)

=

T∏
t=1

P(Gt |Gt−1, ht ,mt ,nt ,A)P(ht ,mt ,nt |Gt−1, θ t )

·P(G0|θ init ).

Taking the logarithm of both sides, the log-likelihood func-
tion of A can be expressed as:

L(A|G0, . . . ,GT )

=

T∑
t=1

logP(Gt |Gt−1, ht ,mt ,nt ,A)

+

T∑
t=1

logP(ht ,mt ,nt |Gt−1, θ t )+ logP(G0|θ init ).

Since on the right-hand side only the first term includes the
PA function A, we can omit the other terms related to the
nuisance parameters θ init and θ t . The log-likelihood function
can then be rewritten as follows:

L(A|G0, . . . ,GT )

=

T∑
t=1

logP(Gt |Gt−1, ht ,mt ,nt ,A)

=

T∑
t=1

ht∑
l=1

logPBt,l (t) (4)

=

T∑
t=1

ht∑
l=1

log
∏
i∈Bt,l

Aki(t)

−

T∑
t=1

ht∑
l=1

log

 ∑
B′∈Cmt,l (Vt )

∏
i∈B′

Aki(t)

. (5)

Note that we substituted (3) into (4).
The maximum likelihood method estimates the value of

A by maximizing L(A|G0, . . . ,GT ). The parameter vector A
in (1) actually includes only elements Ak with the observed
values of k in the dataset. In addition, to reduce the number of
parameters, we employ the ‘‘logarithmic binning’’ [13], [14],
[16] of k , where we set Ak+1 = Ak in groups of k values.

Since (5) is computed numerically, we need its efficient
evaluation. The term

∑
B′∈Cmt,l (Vt )

∏
i∈B′Aki(t) is the normal-

ization of the probability (3), which is the summation of
the probabilities of every node set in Cmt,l (Vt ). When the
hyperedge size mt,l is large, the computational cost of this
term becomes intractable in a naive calculation. This is
because of the combinatorial explosion of the number of
possible node sets. Specifically, when the number of nodes
in the entire hypergraph at time-step t is N (t), the compu-

tational complexity of a naive calculation is O
((N (t)

mt,l

))
=

O
(

N (t)!
mt,l !(N (t)−mt,l )!

)
, which scales exponentially inN (t) ifN (t)

is much larger than mt,l . Next we describe a fast computation
which scales linearly in N (t).

2) A RECURSIVE FORMULA FOR FAST COMPUTATION OF
THE NORMALIZING FACTOR
A fast computation of the normalizing factor

Sm(t) =
∑

B′∈Cm(Vt )

∏
i∈B′

Aki(t) (6)

is possible if one can find a way to reduce the numbers of
summations needed by exploiting its recursive structures.

Our key observation is that (6) is in fact an elementary
symmetric polynomial, namely, it is the sum of all distinct
products of m distinct variables. We define the elemen-
tary symmetric polynomial em(x1, . . . , xn) (0 ≤ m ≤ n)
with variables x1, . . . , xn as follows. For m = 0,
e0(x1, . . . , xn) = 0, and for m > 0,

em(x1, . . . , xn) =
∑

1≤i1<i2<···<im≤n

xi1xi2 · · · xim .

From the definition above, the normalizing factor can be
written as an elementary symmetric polynomial of a suitable
choice of variables, namely

Sm(t) = em(Ak1(t), . . . ,AkN (t)(t)).

We also define the m-th power sum as

pm(x1, . . . , xn) =
n∑
i=1

xmi ,

where m and n are positive integers. According to Newton’s
identities [35], we have:

em(x1, . . . , xn)

=
1
m

m∑
j=1

(−1)j−1em−j(x1, . . . , xn)pj(x1, . . . , xn),

for all positive integers m and n satisfying m ≤ n. We finally
arrive at the key recursive formula:

Sm(t) =
1
m

m∑
j=1

(−1)j−1Sm−j(t)pj(Ak1(t), . . . ,AkN (t)(t)). (7)

Note that m ≤ N (t) always holds in hypergraphs. Our
approach is to use this formula recursively to calculate the
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normalizing factor Sm(t). Since the calculation of the power
sums dominating in (7), the time complexity of calculating
Sm(t) can be reduced from O

(
N (t)!

m!(N (t)−m)!

)
to O

(
m2N (t)

)
.

By utilizing (7), the log-likelihood function given in (5)
can be optimized by standard numerical methods such as
quasi-Newton methods or MM algorithms [13].

B. A SELECTION BIAS IN MODELING THE EMERGENCE OF
NEW HYPEREDGES WITH NEWCOMER NODES
We consider the case that the node set Bt,l contains some
newcomer nodes. Denote such Bt,l simply as B. Naively
treating the hyperdegree of newcomer nodes as k = 0 causes
a selection bias, since in that way such newcomer nodes with
hyperdegree k = 0 acquire new hyperedges a priori. Here
we assume for our dataset that newcomer nodes are included
in Gt only when they got a hyperedge. This may lead to
overestimation of the true value of A0. We are going to solve
this problem by considering conditional probabilities given
that newcomer nodes acquire new hyperedges.

Whereas one can use an existing remedy of a similar bias
occurred in graph-based models [13], [14], this conventional
approach is sub-optimal in hypergraph settings. Specifically,
this approach excludes any new hyperedge that contains some
newcomer nodes in calculating the log-likelihood in (4).
Since the proportion of new hyperedges with newcomer
nodes can be high in many real-world data [22], this leads
to throwing away too much data and risks destabilizing the
estimation of Ak .
Assume that B consists of B1 and B2, where B1 is the

set of newcomer nodes and B2 is the set of existing nodes.
Instead of throwing away all the information contained in B
as in the existing remedy approach, our approach is to salvage
the portion of information contained in the event that a new
hyperedge emerges on the set B2 of existing nodes, given that
the hyperedge also contains the set B1 of newcomer nodes.
We will include a term for B2 in the log-likelihood function,
thus it contributes to the estimation of A. However, we do not
estimate A0, because we assume that existing nodes have at
least one hyperedge.

This intuition can be formalized as follows. For conve-
nience, we denote Vnew = Vt \ Vt−1, Vexist = Vt−1. With
these new notations, note that B = B1 ∪ B2, B1 ⊂ Vnew,
and B2 ⊂ Vexist . Let n and m′ be the sizes of B1 and B2,
respectively, and thus the size of B is m = n+ m′. Now
we consider the conditional probability that B gets a new
hyperedge, conditioned on the event that the set of newcomer
nodes is equal to some pre-specified set B∗ with B∗ ⊂ Vnew.
This conditional probability can be written as:

PB|B1=B∗ (t)

=

∏
i∈B2

Aki(t)∑
B′2∈Cm′ (Vexist )

∏
i′∈B′2

Aki′ (t)
, (8)

which is essentially equivalent to (3) but applied to B2 part.
In other words, we simply ignore B1 part. In calculating (4),
if the observed node set Bt,l contains only existing nodes,

Algorithm 1 The proposed Hyper PA generator for temporal
hypergraph
Input: (i) preferential attachment: A

(ii) initial hypergraph: G0 = (V0,E0)
(iii) timespan: T
(iv) sequence of the number of new hyperedges: {ht }Tt=1
(v) sequence of hyperedge size: {mt }

T
t=1,

mt =
[
mt,1, . . . ,mt,ht

]
(vi) sequence of the number of emerging nodes: {nt }Tt=1,

nt =
[
nt,1, . . . , nt,ht

]
Output: evolving hypergraph: {Gt }Tt=1, Gt = (Vt ,Et )
1: for time t in [1, . . . ,T ] do
2: set Vt ← Vt−1 and Et ← Et−1
3: for i in [1, . . . , ht ] do
4: vnewi ← set nt,i newcomer nodes
5: vexisti ← sample mt,i − nt,i nodes from Vt−1 by

HyperPA(A,Gt−1,mt,i, nt,i)
6: ei← set a hyperedge containing vnewi ∪ v

exist
i

7: add vnewi to Vt and ei to Et
8: end for
9: Gt ← (Vt ,Et )
10: end for
11: return {Gt }Tt=1

subroutine: HyperPA(A,Gt−1,mt,i, nt,i)
12: {kj}

N (t)
j=1 ← calculate the hyperdegrees for all existing

nodes at time t − 1 from hypergraph Gt−1
13: vexisti ← sample mt,i − nt,i nodes according to the prob-

ability PB(t) ∝
∏

j∈B Akj(t),B ∈ Cmt,i−nt,i (Vt−1)

one uses (3), whereas if it contains some newcomer nodes,
one uses (8). Note that in (8), all calculations occur solely
on existing nodes. Therefore, we can remove the selection
bias and obtain a stable estimate of Ak (k > 0) at the same
time. The calculation of the denominator of (8) can also be
accelerated by the recursive formula (7). See Appendix for a
derivation of (8).

C. ALGORITHM FOR GENERATING HYPERGRAPHS
In this section, we describe the procedure for generating
hypergraphs in simulations. The pseudocode for our proposed
hypergraph generator is provided in Algorithm 1.

First, we describe how to determine the input of the gener-
ator. By using real-world observations, we can set reasonable
values in our simulations; inputs (ii) to (vi) can be given
directly as descriptive statistics of a dataset, whereas input
(i) needs to be estimated from the data. Ak can be given either
as an estimated nonparametric sequence or a function with
estimated parameters.

At each iteration of t in the procedure, the set of nodes that
acquire a new hyperedge (vexisti at line 5) is sampled from
the Hyper PA model with the HyperPA procedure, which
is described at the bottom of Algorithm 1 as a subroutine.
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We use the conditional probability given in (8) of Hyper PA
to separate the effects of the node birth process from the
hyperedge acquisition process. In our experiments, the set
of newcomer nodes (vnewi at line 4) is simply taken from the
history of a dataset; this is not explicitly described in Input
though.

V. EXPERIMENTS
In this section, we first describe the real-world datasets and
then present the estimation results for the PA function Ak
in these datasets. We then perform simulations to evaluate
goodness-of-fit of our proposed hypergraph model.

A. REAL-WORLD DATASETS
We use 13 real-world datasets as temporal hypergraphs in
experiments. The datasets can be divided into five categories.

• Scientific co-authorship datasets: Each node is
an author and each hyperedge is a set of authors
who have written a paper collaboratively. We use
the following four datasets: Complex Network The-
ory (CMP-coauthor) [36], High Energy Physics
(HEP-coauthor) [33], [34], Strategic Management Jour-
nal (SMJ-coauthor) [37], and Statistics
(STA-coauthor) [32].

• Online thread participants datasets: Each node rep-
resents a user answering questions on threads and each
hyperedge describes a set of users in a thread in which
questions are posted. We use three datasets created from
sub-forums of the online Stack Exchange forum: ask-
ubuntu-user, math-sx-user, and stack-overflow-user.

• Online tagging datasets: Each node is a tag and each
hyperedge is a set of tags associated with a question.
We use three datasets created from sub-forums of the
Stack Exchange forum: ask-ubuntu-tags, math-sx-tags,
and stack-overflow-tags.

• National drug code (NDC) directory datasets: We use
two datasets: NDC-classes and NDC-substances. Each
node is a class label of drugs (NDC-classes) or a sub-
stance in drugs (NDC-substances) and each hyperedge
is a set of class labels of a drug or a set of substances in
a drug.

• Email network datasets: Each node is an email address
and each hyperedge is a set of email addresses of the
sender and all recipients contained in an email. There is
one dataset in this category: Eu-email.

Except for the four scientific co-authorship datasets, the
remaining datasets are from the hypergraph collection of
Benson et al. [38].

Some preprocessing is needed before one can perform
model fitting. For each dataset in Benson et al. [38],
we extracted the latest 5000 hyperedges for analysis. In addi-
tion, several datasets with too few or too many nodes
extracted from Benson et al. [38] are excluded from the
analysis and not listed here. In each dataset, we set the initial
state G0 as the first 50% of each data in terms of the number

FIGURE 3. Our proposed method can estimate the PA function Ak from
observed temporal hypergraphs without any assumptions on the
functional form of Ak . We generated synthetic hypergraphs from the
Hyper PA model, and applied our method to recover the PA function from
the simulated data. (a): Hyper PA 1 with Ak = 3(log k)2 + 1 as the true PA
function. (b): Hyper PA 2 and Hyper PA 3 with Ak = k0.5 and Ak = k1.5,
respectively, as the true PA function. In the three functional forms, the
method successfully recovered the PA functions.

FIGURE 4. Nonparametrically estimated PA values of Hyper PA in four
real-world datasets: HEP-coauthor, STA-coauthor, math-sx-user, and
NDC-substances. The estimated Ak are generally increasing, which
implies the existence of preferential attachment in hypergraph growth.
PA exponent α calculated with the estimated PA values for all datasets
including the above four datasets are given in Table 1.

of edges. In co-authorship datasets, except for STA-coauthor,
the original datasets only have temporal graphs and do not
contain hyperedges. For this reason, we heuristically recon-
structed the hyperedges from the increments of edges at
each time-step. Specifically, at each time-step, we repeatedly
replaced the new edges that constitute the largest clique with a
new hyperedge until there was no more new edges. We tested
this procedure on the STA-coauthor, and confirmed that all
hyperedges were successfully reconstructed from its graph
representation.

Table 1 shows some summary statistics of the datasets. It is
important to note that HEP-coauthor contains large collabo-
rative research projects such as accelerator physics [39], and
hence the average number of co-authors per paper (i.e., the
average size of hyperedges) is larger than the other datasets.

B. PREFERENTIAL ATTACHMENT IN 13 DATASETS
We first demonstrate that our estimation method works in
some hypergraphs generated from the Hyper PA model.
We generated one hypergraph (Hyper PA 1) using the PA
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TABLE 1. Summary statistics and experiment results for 13 datasets. Summary statistics of the datasets described in Section V-A; T is the number of
time-steps, N is the number of nodes, L is the number of edges, H is the number of hyperedges, M̄ is the average size of the hyperedges, γ is the
power-law exponent of the degree distribution, and C is the clustering coefficient. Here L and H are counting repetitions in duplicate. α is the estimated
PA exponent by fitting the proposed hypergraph-based growth model in Section V-B. Each of E triplet is the mean value of the error between the
probability distributions of the numbers of triplets in observed and simulated data with Edge PA (EP), Hyper Uniform (HU), and Hyper PA (HP) in
Section V-C. Each of E local is the mean value of the error between the distributions of local clustering coefficients averaged over nodes with each degree
in observed and simulated data with EP, HU, and HP in Section V-C. For each of E triplet and E local , the values are expressed in percentages, and the best
values are in bold (lower is better).

FIGURE 5. Estimated PA exponents α, power-law exponents γ , and clustering coefficients C in 13 datasets. (a): Estimated PA
exponent α and power-law exponents γ . (b): Estimated PA exponent α clustering coefficient C . In each panel, the data points are
colored according to the type of network. Datasets belonging to the same network type show similar trends in relationships
between α and γ and between α and C . The PA mechanisms successfully captures first-order structures in the networks, as can be
inferred from the high correlation between α and γ . However, PA alone is not enough to explain second-order structures, as can be
seen from the low correlation between α and C .

function Ak = 3 (log k)2 + 1, and two other hypergraphs,
namely, Hyper PA 2 and Hyper PA 3, using the PA func-
tion Ak = kα with α = 0.5 and α = 1.5, respec-
tively. The former functional form is also used in previous
works [13], [16] to verify the nonparametric estimation
of the PA function for graph growth models. The latter
log-linear form is a widely-used form for the PA function
Ad of Edge PA with degree d , as described in Section III.
When applying the hypergraph generator of Algorithm 1 in

Section IV-C, input parameters other than Ak were deter-
mined fromSTA-coauthor in order to generate realistic hyper-
graphs. Fig. 3 shows the estimation results for each of the
generated hypergraphs. Without making any assumptions on
the functional form of the PA function, each estimation result
captured reasonably the shape of the corresponding true PA
function.

We next estimated the PA function Ak by our proposed
method in all datasets. Fig. 4 illustrates the nonparametrically
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estimated values of the PA functions of Hyper PA
model in HEP-coauthor, STA-coauthor, math-sx-user, and
NDC-substances. The nonparametrically estimated Ak in
these datasets increase on average, which indicates the exis-
tence of the preferential attachment. Furthermore, they are
substantially linear in log-log scale. Therefore, we also fitted
the log-linear form Ak = kα with hyperdegree k to the
estimated Ak values and calculated the exponent α by the
least-squares method. The values of PA exponent α of Ak
for all datasets are given in Table 1. Since the estimated
attachment exponents α are greater than 1 in all co-authorship
datasets and thread participants datasets, the PA effect is
superlinear in those datasets. And the values of α for the
tagging datasets and NDC datasets were all in the range of
0.9 to 1.2, and 0.77 for Eu-Email. This result suggests the
existence of the PA effect, particularly the strong PA effect in
the co-authorship datasets and thread participants datasets.
For example, in co-authorship data, the PA effect is that
authors who have written more papers in the past are more
likely to write new papers in the future.

In the 13 real-world datasets, we found that, while PA
successfully captures first-order structures, it alone cannot
explain the observed second-order structures. Fig. 5(a) shows
a remarkably high correlation between the estimated attach-
ment exponent α with the power-law exponent γ in the real-
world datasets. There is a theoretical reason for this high
correlation. In PA trees with Ak = kα , γ has been shown to
be highly correlated with α when α ≤ 1 [40]. Extrapolating
this result to our hypergraph-based growth model, it is rea-
sonable to expect that when the average size of hyperedges
is not large, the degree distribution of our model behaves
similarly to that of a PA tree. This explains the observed high
correlation between α and γ when α is around 1. However,
given α, one cannot infer too much about the clustering
coefficient C , as can be seen from the high variation of
C in Fig. 5(b). This implies that PA alone cannot explain
second-order structures, which is expected since PA is only a
first-order mechanism. It is reasonable to expect that second-
order structures, such as the clustering coefficient C , also
depend on various higher-order growth factors, such as the
distributions of sizes and numbers of hyperedges at each
time-step.

C. EVALUATION OF GOODNESS-OF-FIT FOR
SECOND-ORDER STRUCTURES
In this section we perform additional experiments to compare
the proposed Hyper PA model with some baseline models
in reproducing second-order structures in the observed data.
As in Section III-C, in addition to Edge PA and Hyper PA
models, we also consider the Hyper Uniform model. This
special case of the Hyper PA model uniformly adds hyper-
edges, i.e., the PA function in Hyper Uniform is Ak = 1 for
all hyperdegree k . As already described in Section III-C,
we will adopt a simulation-based approach to investigate the
goodness-of-fit of the models. Specifically, we will generate
networks from each model and compare several important

FIGURE 6. Observed and simulated cumulative probability distributions
of the numbers of triplets in some representative datasets. For each of
13 datasets, we generate 10 graphs by Edge PA, and 10 hypergraphs by
Hyper PA and Hyper Uniform, respectively. The generated hypergraphs are
converted into graphs for comparison. The average values over
10 simulations are compared with the observed distributions.
To illustrate, we show the observed and simulated distributions for four
representative datasets: HEP-coauthor, STA-coauthor, math-sx-user, and
NDC-substances. The quantitative comparison results for all datasets are
given in Table 1. In datasets where Hyper PA is the best, Edge PA often
over-estimates in the region of small numbers of triplets, as can be seen
in HEP-coauthor, STA-coauthor, and math-sx-user. This is expected, since
the independence of edges in Edge PA makes it more prone to produce
nodes with a small number of triplets. For NDC-substances, Hyper PA and
Hyper Uniform failed by under-estimating in the region of low number of
triplets, while Edge PA performed well.

statistics of the generated data to those of the real-world
data. In each dataset, Hyper PA incorporates Ak estimated in
the previous section, and Edge PA incorporates Ad obtained
from a nonparametric estimation method [13]. Since Edge
PA generates graphs, we converted hypergraphs generated by
Hyper PA and Hyper Uniform into graphs for comparison.

One of the most important graph properties often found in
real-world networks is triangle-rich, which is manifested as
a high value of the clustering coefficient [30], [41]. We here
examine the distribution of the number of triangles that a node
has. We denote the number of triplets of node i as:

1i =
∑
j,l

xi,jxj,lxl,i,

where xi,j = 1 indicates the presence of edges between
i and j, whereas xi,j = 0 indicates the absence of edges.
Fig. 6 shows the observed and simulated cumulative prob-
abilities of the numbers of triplets in representative cases
when Hyper PA succeeded and when it failed. When Hyper
PA succeeded, Edge PA often over-estimated the region
of small number of triplets, which may be caused by the
edge independence assumption in Edge PA. When Hyper PA
failed, it often under-estimated the region of small number
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FIGURE 7. Observed and simulated local clustering coefficients averaged
over nodes with degree d in some representative datasets. See Fig. 6 for
simulation settings. To illustrate, we show the observed and simulated
C(d ) for four representative datasets: HEP-coauthor, STA-coauthor,
math-sx-user, and NDC-substances. The quantitative comparison results
for all datasets are given in Table 1. In these four datasets, Hyper PA
succeeded in replicating the signature decreasing of C(d ) when d
increases. Edge PA often under-estimated C(d ), especially in the region of
low d .

of triplets. Table 1 shows a quantitative comparison for all
datasets using E triplet , which is calculated as follows:

E triplet =
1
Nbin

Nbin∑
n=1

∣∣pobs(1′n)− psim(1′n)∣∣ ,
where Nbin is the number of logarithmic bins, and pobs and
psim are the probability distributions of the numbers of triplets
in real-world data and simulation data, respectively. We note
that 1′1, . . . ,1

′
Nbin

are the logarithmic binning of 1, and we
describe the result with Nbin = 10 in Table 1. Hyper PA
provided the best fit in 10 datasets, whereas Edge PA and
Hyper Uniform prevailed in the remaining three.

For closer inspection, we investigate the density of trian-
gles around nodes, i.e., the local clustering coefficient. The
high density of triangles in low-degree nodes is a signa-
ture property of many real-world networks. This property
is also important since it may make practical tasks such as
low-dimensional embedding more difficult [42]. The local
clustering coefficient of node i with degree di is

Ci =

{
21i

di(di−1)
(di ≥ 2)

0 (di = 0, 1).

The average of Ci over all nodes in a graph is called the clus-
tering coefficient. We analyze the distribution of Ci averaged
over nodes that has the same degree d :

C(d) =
1
Nd

∑
i∈Vd

Ci, (9)

where the setVd is all nodes with degrees d in a graph, andNd
is the number of nodes in Vd . Fig. 7 shows the observed and
simulated distributionsC(d) for some representative datasets.
Hyper PA succeeded in reproducing the signature decreasing
of C(d) when d increases, while Edge PA under-estimated
C(d), especially in the region of low d . Table 1 shows a
quantitative comparison in all the 13 datasets using E local ,
which is calculated as follows:

E local =
1
Nbin

Nbin∑
n=1

∣∣Cobs(d ′n)− Csim(d ′n)∣∣ ,
where Nbin is the number of logarithmic bins, and Cobs and
Csim are (9) of observed and simulated data, respectively.
We note that d ′1, . . . , d

′
Nbin

are the logarithmic binning of d ,
and we describe the result with Nbin = 10 in Table 1. Out
of the 13 datasets, Hyper PA provided the best fit in all.
Hyper Uniform prevailed over Edge PA in 11 datasets, in spite
of the fact that Hyper Uniform uses a constant linear PA
function, while Edge PA estimates the PA function from data.
This highlights the importance of incorporating hyperedge
information. Taking into accounts the results in Section III-C,
Hyper PA replicates well various first-order and second-order
structures in all datasets.

VI. CONCLUSION
Investigating the trade-offs of graph models, such as simplifi-
cation by pairwise relationships, can provide valuable insight
when considering which structures to choose for real-world
complex systems: graphs, hypergraphs, or others. In this
paper, we have proposed a statistical method for estimating
the preferential attachment in temporal hypergraphs. We also
derived the conditional probability and the recursive formula
that stabilize and accelerate the estimation on the hypergraph
model. The analysis of the real-world datasets showed that
the PA function of the hypergraph model had a similar form
to that of the graph model in previous works. Furthermore,
we demonstrated that our hypergraph PA growth model has
advantages over conventional graph-based models in that it
can better capture the first-order and second-order structures
around each node.

Future work includes more scrutiny of growth mechanisms
in hypergraph models. In the case of functions using node
features such as hyperdegree in our model, the computa-
tional complexity of the likelihood function can be simi-
larly reduced by utilizing the proposed recursive formula.
For example, the log-likelihood function can be efficiently
computed when (2) is modified to

PB(t) ∝
∏
i∈B

Aki(t)fi,

where fi is the ‘‘fitness’’ parameter of node i [14]. However,
in the case of features that use dyadic relations, such as
common neighbor nodes between a node pair, or features
defined for a node set, the recursive formula can not be
directly applied. Therefore, when extending the method to
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higher-order features, it will be necessary to solve the com-
binatorial computation problem, which hypergraph models
often face.

APPENDIX A DERIVATION OF THE CONDITIONAL
PROBABILITY TO EXCLUDE EFFECTS OF NEWCOMER
NODES
We here derive the conditional probability (8). Let Gt =
(Vt ,Et ) be the hypergraph at time-step t . Vt and Et are the
node set and the hyperedge set, respectively. For convenience,
we denote Vnew = Vt \ Vt−1 and Vexist = Vt−1. Recall that
Hyper PA determines the probability that a set B of m nodes
will acquire a hyperedge of size m. Let B1 and B2 be the sets
of the nodes satisfying B = B1 ∪B2, B1 ⊂ Vnew, B2 ⊂ Vexist ,
|B1| = n, and |B2| = m − n = m′. We here decom-
pose (2) into the conditional probability given that B1 = B∗

for a pre-specified set B∗ ⊂ Vnew and the probability of
observing B∗:

PB(t) = PB1∪B2 (t)

= PB1∪B2,B1=B∗ (t)

= PB1∪B2|B1=B∗ (t)PB1=B∗ (t). (10)

The term PB1∪B2|B1=B∗ (t) corresponds to the desired condi-
tional probability in (8). Note that we denote B∗ ⊂ Vnew and
not B∗ = Vnew because we allow the temporal hypergraphs
to add multiple hyperedges at each time-step t . With (3)
and (10), we obtain:

PB1∪B2|B1=B∗ (t)

=
PB1∪B2 (t)
PB1=B∗ (t)

=

(
∏
i∈B1

Aki(t))(
∏
i∈B2

Aki(t))∑
B′∈Cm(Vexist∪Vnew)

∏
i′∈B′ Aki′ (t)∑

B′2∈Cm′ (Vexist )
(
∏
i∈B1

Aki(t))(
∏
i′∈B′2

Aki′ (t))∑
B′∈Cm(Vexist∪Vnew)

∏
i′∈B′ Aki′ (t)

=

(∏
i∈B1 Aki(t)

) (∏
i∈B2 Aki(t)

)
(∏

i∈B1 Aki(t)
) (∑

B′2∈Cm′ (Vexist )
∏

i′∈B′2
Aki′ (t)

)
=

∏
i∈B2 Aki(t)∑

B′2∈Cm′ (Vexist )
∏

i′∈B′2
Aki′ (t)

,

thus showing (8).
So far we have assumed that B1 = B∗ is pre-specified,

but we can change the setting so that B1 is randomly

sampled from Vnew with P(B1) = 1/
(
|Vnew|
n

)
. Then

logP(B1) terms may be added to the log-likelihood function
L(A|G0, . . . ,GT ). However, since logP(B1) does not involve
A, it does not change the maximum likelihood estimation
of A.
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