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ABSTRACT For the dynamic multi-attribute decision-making problem, the decision information is usually
given in the form of the interval-valued picture fuzzy number (IVPFN), and the attributes are also usually
related to each other, a decision method based on the interval-valued picture fuzzy geometric weighted
Heronian average mean (IVPFGWHM) operator is proposed. First, the algorithms of IVPFN are defined
by combining the picture fuzzy number (PFN) with the algorithms of the interval-valued intuitionistic fuzzy
number (IVIFN). Then, using the algorithms of IVPFN and geometric Heronian average mean operators,
four Heronianmean operators for IVPFN are proposed: the interval-valued picture fuzzy geometric Heronian
average mean (IVPFGHM) operator, the interval-valued picture fuzzy geometric weighted Heronian average
mean (IVPFGWHM) operator, and the dynamic interval-valued picture fuzzy geometric weighted Heronian
average mean (DIVPFGWHM) operator. Then some properties of these operators are studied. Furthermore,
a multi-attribute decision-making process based on DIVPFGWHM is proposed. At the same time, with the
aid of the best-worst method (BWM), we obtained the attribute weights. Finally, by analyzing the current
situation of logistics industry and using the proposedmethod to select logistics companies, and by comparing
with the other methods to illustrate the effectiveness and advantages of the developed method.

INDEX TERMS Interval-valued picture fuzzy number, interval-valued picture fuzzy geometric weight
Heronian average mean operator, best-worst method, dynamic multi-attribute decision-making.

I. INTRODUCTION
Since Zadeh proposed fuzzy sets [1], it has been widely
used to describe fuzzy and uncertain decision information.
However, because the fuzzy set have only degree of
membership, it cannot describe some complex decision-
making problems. Then Atanassov [2] extended it to the
Intuitionistic Fuzzy Set (IFS). IFS assigns to each element
a membership degree and a non-membership degree, and it
can describe and characterize the essence of fuzzy decision
information in more detail. However, in the decision-making
process, decision makers usually have more than just ‘‘sup-
port’’ and ‘‘opposition’’ attitudes. In addition to expressing
‘‘consistency’’ and ‘‘inconsistency’’, the traditional IFS does

The associate editor coordinating the review of this manuscript and

approving it for publication was Francisco J. Garcia-Penalvo .

not consider other possibilities such as refusal. In order
to overcome this shortcoming, Cuong and Kreinovich [3]
proposed the concept of picture fuzzy set (PFS). PFS
is a generalization of IFS. Its advantage is to use three
membership functions to describe the behavior of decision
makers, including positive membership, neutral membership
and negative membership. For example, in voting activities,
voters can be divided into four groups: ‘‘support’’, ‘‘abstain’’,
‘‘against’’, ‘‘refusal of the voting’’. It conforms to the
situation in real life, so it has attracted the attention of
many researchers in the field. Wu et al [4] proposed the
concept of SVN2TL set (SVN2TLS) and single valued
neutrosophic 2-tuple linguistic element (SVN2TLE), Later,
Wu et al. [5] combined hesitant fuzzy sets and Pythagorean
fuzzy sets, proposed the concept of hesitant Pythagorean
fuzzy sets, and based on these concepts, some multi-attribute
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decision methods are given. Wei et al. [6]–[8] defined
several procedures for calculating the similarity between
PFSs. Wang [9] applied the VIKOR method to the PFS,
Liu [10] proposed the concept of complex picture fuzzy
sets (CPFS) which is a generalization of picture fuzzy
sets. Wang et al. [11] put forward a multi-criteria group
decision-making method to solve building energy efficiency
retrofitting (BEER) project selection problem. Tian and
Peng [12] defined the picture fuzzy score and accuracy
function, and developed a corresponding comparativemethod
between two picture fuzzy numbers. Ashraf et al. [13]
introduced a series of picture fuzzy weighted geometric
aggregation operators by using t-norm and t-conorm, and
proposed the TOPSIS method to aggregate the picture fuzzy
information. Lin et al. [14] proposed a novel picture fuzzy
multi-criteria decision making (MCDM) model to solve the
problem of car sharing stations. Jiang et al. combined the
picture fuzzy numbers, extended TODIM, and cumulative
prospect theory (PF-CPT-TODIM), and use it to evaluate food
companies. Moreover, various decision-making methods
based on PFS have been studied [15], [16].

However, in real life, it’s difficult to describe the degree
of membership and non-membership with crisp numbers,
so Atanassov and Gargov [17] proposed the concept of
interval valued intuitionistic fuzzy sets (IVIFS) to deal with
the problem. IVIFS is an extension of intuitionistic fuzzy
set. It can effectively describe and process the uncertainty
of decision information. Therefore, it has attracted wide
attention. Wan and Dong [18] defined the ordered weighted
average operator and hybrid weighted average operator
for IVIFNs based on the Karnik-Mendel algorithms and
employed to solve multi-attribute group decision making
problems with IVIFNs. Xu and Yager [19] developed a
new similarity measure between intuitionistic fuzzy sets,
and applied it for consensus analysis in group decision
making based on intuitionistic fuzzy preference relations, and
finally further extend it to the interval-valued intuitionistic
fuzzy set theory. Many multi-attribute decision-making
methods based on IVIF have appeared one after another.
Xu [20], [21] studied the algorithm of IVIFS and put forward
some IVIFWA aggregation operators, IVIFGA aggregation
operators, IVIFOWA aggregation operators based on IVIFS,
and gave the ranking method of score function, accuracy
function and IVIFNs, Li [22] combined TOPSIS method
and nonlinear programming theory. Garg and Kumar [23]
gave a multi-attribute decision-making method for the
interval-valued intuitionistic fuzzy set using the set pair
analysis (SPA) theory. Lu and Wei [24] extended TODIM
method to the MADM with the interval-valued intuitionistic
fuzzy numbers. Zhao et al. [25] proposed the TODIM
method based on the cumulative prospect theory to solve
the MAGDM problem under IVIFS. Wu et al. [26], [27]
use interval type 2 fuzzy sets (IT2FSs) to solve the portfolio
allocation and the selection of green suppliers problem.
However, there are currently few studies that combine the
interval number with the PFN to deal with the situation

where the decision information is given in the form of the
IVPFN.

In dealing with multi-attribute decision-making problems,
the aggregation operator is a very effective method, Wang
and Garg [28] define some Pythagorean fuzzy interaction
aggregation operators with the aid of Archimedean t-conorm
and t-norm (ATT), but the above aggregation operator
only considers the independence of the attributes, however
in actual situations, different attributes will have different
degrees of connection. Such as complementarity, redundancy,
preference relations, etc. The Heronian mean (HM) operator
is an aggregation operator that deals with the interrela-
tionships between attributes. In the past, some scholars’
research on HM operator mainly focused on the theory and
application of inequalities. Yu [29], [30] proposed geometric
Heronian mean (GHM) operator, and then combined IFS and
GHM operators in an intuitionistic fuzzy environment, and
proposed the intuitionistic fuzzy geometric Heronian mean
operator (IFGHM) and the intuitionistic fuzzy geometric
weighted Heronian mean operator (IFGWHM), at the same
time, the properties are studied, and finally the effectiveness
and practicability of the IFGWHM operator are verified
by MADM examples. Then, Yu extended the HM operator
to the interval-valued intuitionistic fuzzy environment, and
proposed a generalized interval-valued intuitionistic fuzzy
HM (GIIFHM) and an approach to multi-criteria decision
making based on weighted GIIFHM (GIIFWHM). Liu and
Chen [31] proposed the intuitionistic fuzzy Archimedean
Heronian aggregation (IFAHA) operator and the intuitionistic
fuzzy weight Archimedean Heronian aggregation (IFWAHA)
operator. Luo and Xing [32] combined the partitioned
HM operator with the PFN to deal with the problem of
hotel selection. Liu [33] proposed some new intuitionistic
uncertain language HM operators to deal with the situation
where both the attribute weights and the expert weights
take the form of crisp numbers, and attribute values take
the form of intuitionistic uncertain linguistic variables.
Zhou et al. [34] proposed a decision-makingmethod based on
interval-valued intuitionistic fuzzy geometric weighted Hero-
nian average operator for the multi-attribute group decision-
making problem where the decision information is IVIFNs
and the attributes are related to each other. Liu et al. [35]
proposed the partitioned Heronian mean (PHM) operator
which assumes that all attributes are partitioned into several
parts and members in the same part are interrelated while
in different parts there are no interrelationships among
members. Yang et al. [36] proposed an online shopping
support model by using q-rung orthopair fuzzy interaction
weighted Heronian mean operators. Lin et al. [37] proposed
the partitioned geometric Heronian mean (PGHM) operator
based on the linguistic q-rung orthopair fuzzy sets to solve the
interrelationship problem in decision-making. Wu et al. [38]
proposed some Dombi Heronian mean operators with
interval-valued intuitionistic fuzzy numbers, and proposed
two MADM methods based on these operators. However,
there is no research to combine the HM operator with IVPFN.
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In real life, decision-making information often be collected
at different periods, which is a dynamic multi-attribute
decision-making problem. In the dynamic IVIF multi-
attribute decision-making problem, Xu and Yager [39] stud-
ied the dynamic multi-attribute decision making problems
with intuitionistic fuzzy information, and proposed two new
aggregation operators dynamic intuitionistic fuzzy weighted
averaging (DIFWA) operator and uncertain dynamic intu-
itionistic fuzzy weighted averaging (UDIFWA) operator,
Guo et al. [40] gave a dynamic comprehensive evaluation
method to reflect the dynamics of decision-making from the
perspective of index and time dimensions; Chen et al. [41]
proposed a multi-attribute decision-making process that
dynamically handles the selection of service methods for
large servers Problem. Yang et al. [42] gave a multi-
attribute decision-making model of dynamic intuitionistic
fuzzy normal aggregate settlement based on time preference.
Liu et al. [43] proposed a new DIF-MADM method and
some new dynamic intuitionistic fuzzy weighted geometric
operators to address some limits of the existing methods.
However, these dynamic methods are not combined with
IVPF theory, nor do they consider the relationship between
aggregated data.

The above studies on IVIF have been very well developed,
and a complete set of systems and methods have been
developed for the multi-attribute decision-making problem
in the IVIFS environment, however, most of the research
directions tend to combine the interval number with IFNs
when the decision information is not accurate, and few
of them combine the interval number with PFNs to deal
with the multi-attribute decision problem. Based on this,
This paper presents a weighted GHM operator based on
IVPF to deal with dynamic multi-attribute decision making
problems, extends the real number GWHM operator to the
field of IVPF, and defines the IVPFGWHM operator that can
handle dynamic multi-attribute decision-making problems.
Use the non-linear characteristics of the IVPFGWHM
operator to link the relationship between the aggregated
data, so that the decision result is closer to the actual
situation.

The main contributions are as follows.
(1) Combining the interval number with the PFN to

propose the IVPFN, and the algorithms, score function,
accuracy function of IVPFN, and the ranking method are
studied, finally they are applied to actual dynamic decision-
making problems.

(2) Extend the weighted GHM operator to the multi-
attribute decision-making in the IVPF environment, and
prove that under this condition, the result of the operator
aggregation is also an IVPFN; at the same time, the
relevant properties of the operator are studied. Then under
this background, the IVPFGWHM operator under dynamic
conditions is defined.

(3) Again, we use the best worst method (BWM) intro-
duced by Rezaei [44] to determine the weight information of
the attributes.

(4) The detailed process of the IVPF multi-attribute
decision-making is designed. The dynamic IVPFGWHM
operator is used to aggregate a single aggregate value at each
time point to obtain a comprehensive aggregate value, and
the decision alternatives are ranked according to the score
function and the accuracy function.

The remainder of this paper is organized as follows.
In section 2, the preliminary knowledge of IVPFN and
GHM operators are introduced in brief, the algorithms
of IVPFNs are defined, several interval-valued picture
fuzzy GHM operators are proposed on the basis of these
algorithms, and their properties are discussed, then the BWM
method is briefly introduced. Then, a new decision-making
method based on these aggregation operators is proposed
in section 3. In section 4, a case of logistics company
selection is studied to show the advantages of IVPFNs and
the practicality of our proposed method, and demonstrates
the superiority of the proposed method by comparing with
other existing methods. Finally, some necessary conclusions
are given.

II. PRELIMINARIES
In this section, we briefly introduced the preliminary
knowledge of IVPFN and GHM operators, and defined the
algorithms of IVPFNs. Several interval-valued picture fuzzy
GHM operators are proposed based on these algorithms, and
their properties are discussed. Then the BWM method is
briefly reviewed.

A. INTERVAL-VALUED PICTURE FUZZY NUMBERS
Definition 1 ([3]):
LetX be a non-empty finite set. Then a picture fuzzy set (PFS)
in X is defined by

A = {〈x, µA (x) , ηA (x) , νA (x)| x ∈ X〉} , (1)

where, µA (x), ηA (x), νA (x) represent the positive member-
ship, neutral membership and negative membership function
of the element x in X belonging to set A respectively.
In addition, πA (x) = 1 − µA (x) − ηA (x) is called the
refusal degree of element x belonging to A, which satisfy the
condition.

0≤µA (x)≤1, 0 ≤ ηA (x)≤1, 0 ≤ νA (x) ≤ 1,

0 ≤ πA (x) ≤ 1, 0 ≤ µA (x)+ ηA (x)+ νA (x) ≤ 1,

then (µA (x) , ηA (x) , νA (x)) is called a picture fuzzy
number (PFN).
Definition 2: Let X be a non-empty finite set. Then an

interval-valued picture fuzzy set (IVPFS) in X is defined by

A = {〈x, µA (x) , ηA (x) , νA (x)| x ∈ X〉} , (2)

where, µA (x) =
[
µLA (x) , µUA (x)

]
, ηA (x) =[

ηLA (x) , ηUA (x)
]
, νA (x) =

[
νLA (x) , νUA (x)

]
,

and µA (x) , ηA (x) , νA (x) are all interval numbers in
[0, 1], represent positive membership, neutral member-
ship and negative membership respectively. which satisfy
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the condition.

0 ≤ µUA (x)+ ηUA (x)+ νUA (x) ≤ 1,

µLA (x) ≥ 0, ηLA (x) ≥ 0, νLA (x) ≥ 0.

Then,
([
µLA

(
x
)
, µUA

(
x
)][
ηLA

(
x
)
, ηUA

(
x
)]
,
[
νLA

(
x
)
,

νUA
(
x
)])

is called an interval-valued picture fuzzy number
(IVPFN). Marked as

([
a, b

]
,
[
c, d

]
,
[
e, f

])
.

B. THE OPERATIONS OF IVPFNS
In this part, we defined the arithmetic operations of two
picture fuzzy numbers, Let α1 = ([a1, b1] , [c1, d1] , [e1, f1])
and α2 = ([a2, b2] , [c2, d2] , [e2, f2]) be the IVPFNs,
∀λ > 0, then the operations of IVPFNs are defined as follows.
(1) α̃1 = ([e1, f1] , [c1, d1] , [a1, b1]);
(2) α̃1 ∩ α̃2 = ([min(a1, a2),min(b1, b2)], [max(c1, c2),

max(d1, d2)], [max(e1, e2),max(f1, f2)]);
α̃1 ∪ α̃2 = ([max(a1, a2),max(b1, b2)], [min(c1, c2),

min(d1, d2)], [min(e1, e2),min(f1, f2)]);
(3) α̃1 ⊕ α̃2 = ([a1 + a2 − a1a2, b1 + b2 − b1b2], [c1c2,

d1d2], [e1e2, f1f2]);
(4) α̃1 ⊗ α̃2 = ([a1a2, b1b2],[c1 + c2 − c1c2, d1 + d2 −

d1d2], [e1 + e2 − e1e2, f1 + f2 − f1f2]);
(5) λα̃1= ([1−(1− a1)λ, 1−(1− b1)λ], [cλ1, d

λ
1 ], [e

λ
1, f

λ
1 ]);

(6) α̃λ1 = ([aλ1, b
λ
1], [1 − (1− c1)λ, 1 − (1−d1)λ], [1 −

(1− e1)λ, 1− (1− f1)λ]).
It is easy to know that all of the above operation results

are still IVPFNs. According to these operation results, the
following operations can be obtained.
(7) α1 ⊕ α2 = α2 ⊕ α1;
(8) α1 ⊗ α2 = α2 ⊗ α1;
(9) λ(α1 ⊕ α2) = λα1 ⊕ λα2;
(10) (α1 ⊗ α2)λ = αλ1 ⊗ α

λ
2 ;

(11) λ1α1 ⊕ λ2α1 = (λ1 + λ2)α1;
(12) αλ11 ⊗ α

λ2
1 = (α1)λ1+λ2 .

Definition 3: Let α = ([a, b] , [c, d] , [e, f ]) be an IVPFN,
a score function S(α) and an accuracy function H (α) of the
IVPFN can be defined by

S(α) =
a− c− e+ b− d − f

2
, S(α) ∈ [−1, 1] ; (3)

H (α) =
a+ b+ c+ d + e+ f

2
, H (α) ∈ [0, 1] . (4)

Based on the score function S(α) and the accuracy function
H (α), two IVPFNs can be compared the order relation, which
is defined as follows.

(1) If S(α1) < S(α2), then, α1 ≺ α2;
(2) If S(α1) = S(α2), then,
¬ If H (α1) < H (α2), then α1 ≺ α2;
­ If H (α1) = H (α2), then α1 = α2.
If the value of S(α) is larger, the corresponding IVPFN is

larger.

C. GEOMETRIC HERONIAN MEAN OPERATOR
Let I = [0, 1], p, q > 0, HMp,q

: In → I and a non-
negative real number set {a1, a2, . . . , an}, The GHM operator

is defined by

GHMp,q(a1, a2, . . . , an) =
1

p+ q

×

 n∏
i=1,j=i

(
pai + qaj

) 2
n(n+1)

 (5)

We combine the GHM operator and propose the IVPFGHM
operator to deal with the situation where the information of
the multi-attribute decision-making problem is given in the
form of PFN.

D. INTERVAL-VALUED PICTURE FUZZY GEOMETRIC
HERONIAN MEAN OPERATOR Definition 5:
Let αi = ([ai, bi] , [ci, di] , [ei, fi]) (i = 1, 2, . . . , n) be a
collection of IVPFNs, and p, q > 0, and IVPFGHMp,q

:

�n
→ �, then the IVPFGHM operator is defined by

IVPFGHMp,q(α1, α2, . . . , αn) =
1

p+ q

×

(
n
⊗

i=1,j=i

(
pαi ⊕ qαj

) 2
n(n+1)

)
. (6)

Lemma 1: Let γij = (lγij,mγij, nγij) be an IVPFN, and
i, j = 1, 2, . . . , n, then the formula (7) is true.

n
⊗

i=1,j=i
γ

2
n(n+1) =

 n∏
i=1,j=i

l
2

n(n+1)
γij , 1−

n∏
i=1,j=i

(1− mγij)
2

n(n+1) ,

× 1−
n∏

i=1,j=i

(1− nγij)
2

n(n+1)

 (7)

where, lγij,mγij and nγij represent the positive membership,
neutral membership and negative membership Respectively.
Theorem 1: Let αi = ([ai, bi] , [ci, di] , [ei, fi]) (i =

1, 2, . . . , n) be a collection of IVPFNs, and p, q > 0, then,
the result aggregated from (6) is still an IVPFN, and even

IVPFGHMp,q(α1, α2, . . . , αn)

=

[1− (1−
n∏

i=1,j=i

(1− (1− ai)p(1− aj)q)
2

n(n+1) )
1

p+q ,

× 1− (1−
n∏

i=1,j=i

(1− (1−bi)p(1− bj)q)
2

n(n+1) )
1

p+q ],

× [(1−
n∏

i=1,j=i

(1− (ci)
p(cj)q)

2
n(n+1) )

1
p+q ,

× (1−
n∏

i=1,j=i

(1− (d i)
p(dj)q)

2
n(n+1) )

1
p+q ],

× [(1−
n∏

i=1,j=i

(1− (ei)
p(ej)q)

2
n(n+1) )

1
p+q ,

× (1−
n∏

i=1,j=i

(1− (f i)
p (fj)q)

2
n(n+1) )

1
p+q ]

 . (8)
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Proof: Since αi = ([ai, bi] , [ci, di] , [ei, fi]), and αj =([
aj, bj

]
,
[
cj, dj

]
,
[
ej, fj

])
, from Eq (5), we have

pαi =
([
1− (1− ai)p, 1− (1− bi)p

]
,
[
cpi , d

p
i

]
,
[
epi , f

p
i

])
,

qαj =
([
1− (1− aj)q, 1− (1− bj)q

]
,
[
cqj , d

q
j

]
,
[
eqj , f

q
j

])
.

From Eq (3) we have

pαi ⊕ qαj
=
(
[1− (1− ai)p(1− aj)q, 1− (1− bi)p(1− bj)q] ,

×
[
(ci)p(cj)q, (di)p(dj)q

]
,
[
(ei)p(ej)q, (fi)p(fj)q

])
.

Then from Eq (6) we have

(pαi ⊕ qαj)
2

n(n+1)

= ([(1− (1− ai)p(1− aj)q)
2

n(n+1) ,

× (1− (1− bi)p(1− bj)q)
2

n(n+1) ],

× [1− (1− (ci)p(cj)q)
2

n(n+1) , 1− (1− (di)p(dj)q)
2

n(n+1) ],

× [1− (1− (ei)p(ej)q)
2

n(n+1) , 1− (1− (fi)p(fj)q)
2

n(n+1) ]).

(9)

Replace γij in formula (7) with pαi ⊕ qαj in formula (9),

replace lγij with [(1 − (1 − ai)p(1 − aj)q)
2

n(n+1) , (1 −

(1 − bi)p(1 − bj)q)
2

n(n+1) ], replace mγij with [1 − (1 −

(ci)p(cj)q)
2

n(n+1) , 1 − (1 − (di)p(dj)q)
2

n(n+1) ], replace nγij with

[1− (1− (ei)p(ej)q)
2

n(n+1) , 1− (1− (fi)p(fj)q)
2

n(n+1) ].
Combination Eq (3), (4), (5), (6) can prove that the

following formula is true.
n
⊗

i=1,j=i
(pαi ⊕ qαj)

2
n(n+1)

=

[
n∏

i=1,j=i

(1− (1− ai)p(1− aj)q)
2

n(n+1) ,

×

n∏
i=1,j=i

(1− (1− bi)p(1− bj)q)
2

n(n+1) ],

× 1−
n∏

i=1,j=i

(1− (ci)p(cj)q)
2

n(n+1) ,

× 1−
n∏

i=1,j=i

(1− (di)p(dj)q)
2

n(n+1) ],

× 1−
n∏

i=1,j=i

(1− (ei)p(ej)q)
2

n(n+1) ,

× 1−
n∏

i=1,j=i

(1− (di)p(dj)q)
2

n(n+1) ]

 .
So,

IVPFGHMp,q(α1, α2, . . . , αn)

=
1

p+ q

(
n
⊗

i=1,j=i
(pαi ⊕ qαj)

2
n(n+1)

)

=

[1− (1−
n∏

i=1,j=i

(1− (1− ai)p(1− aj)q)
2

n(n+1) )
1

p+q ,

× 1− (1−
n∏

i=1,j=i

(1− (1−bi)p(1− bj)q)
2

n(n+1) )
1

p+q ],

× [(1−
n∏

i=1,j=i

(1− (ci)
p(cj)q)

2
n(n+1) )

1
p+q ,

× (1−
n∏

i=1,j=i

(1− (d i)
p(dj)q)

2
n(n+1) )

1
p+q ],

× [(1−
n∏

i=1,j=i

(1− (ei)
p(ej)q)

2
n(n+1) )

1
p+q ,

×(1−
n∏

i=1,j=i

(1− (f i)
p(fj)q)

2
n(n+1) )

1
p+q ]

 .
Therefore formula (8) is proved.

Following, we will study some properties of IVPFGHM
operator.
Theorem 2 (Idempotency): Let αi = ([ai, bi] ,

[ci, di] , [ei, fi]) be a collection of IVPFNs, if

αi = ([ai, bi] , [ci, di] , [ei, fi])

= α = ([a, b] , [c, d] , [e, f ]) (i = 1, 2, . . . , n),

then

IVPFGHMp,q(α1, α2, . . . , αn)

= IVPFGHMp,q(α, α, . . . , α) = α. (10)

Proof: Since

αi = ([ai, bi] , [ci, di] , [ei, fi]) = α = ([a, b] , [c, d] , [e, f ])

(i = 1, 2, . . . , n), then,

IVPFGHMp,q(α1, α2, . . . , αn)

= IVPFGHMp,q(α, α, . . . , α)

=

[1− (1−
n∏

i=1,j=i

(1− (1−a)p(1− a)q)
2

n(n+1) )
1

p+q ,

× 1− (1−
n∏

i=1,j=i

(1− (1−b)p(1− b)q)
2

n(n+1) )
1

p+q ],

× [(1−
n∏

i=1,j=i

(1− (c)p(c)q)
2

n(n+1) )
1

p+q ,

× (1−
n∏

i=1,j=i

(1− (d)p(d)q)
2

n(n+1) )
1

p+q ],

× [(1−
n∏

i=1,j=i

(1− (e)p(e)q)
2

n(n+1) )
1

p+q ,

× (1−
n∏

i=1,j=i

(1− (f )p(f )q)
2

n(n+1) )
1

p+q


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=

[1− (1−
n∏

i=1,j=i

(1− (1− a)p+q)
2

n(n+1) )
1

p+q ,

× 1− (1−
n∏

i=1,j=i

(1− (1− b)p+q)
2

n(n+1) )
1

p+q ] ,

× [(1−
n∏

i=1,j=i

(1−cp+q)
2

n(n+1) )
1

p+q ,

× (1−
n∏

i=1,j=i

(1− dp+q)
2

n(n+1) )
1

p+q ],

× [(1−
n∏

i=1,j=i

(1−ep+q)
2

n(n+1) )
1

p+q ,

× (1−
n∏

i=1,j=i

(1− f p+q)
2

n(n+1) )
1

p+q ]


=

(
[1− (1− (1− (1− a)p+q))

1
p+q

× , 1− (1− (1− (1− b)p+q))
1

p+q ],

× [(1− (1− cp+q))
1

p+q ,

× (1− (1− dp+q))
1

p+q ], [(1− (1− ep+q))
1

p+q ,

× (1− (1− f p+q))
1

p+q ]
)

= ([a, b] , [c, d], [e, f ]) .

Now, the proof is completed.
Theorem 3 (Permutation): Let (α1, α2, . . . , αn) and

(α′1, α
′

2, . . . , α
′
n) be two collections of IVPFNs, If (α

′

1, α
′

2, . . . ,

α′n) is an arbitrary permutation of (α1, α2, . . . , αn), then,

IVPFGHMp,q(α1, α2, . . . , αn)

= IVPFGHMp,q(α1′, α′2, . . . , α
′
n). (11)

Proof: By the operations of IVPFN, we have

IVPFGHMp,q(α1, α2, . . . , αn)

=
1

p+ q

(
n
⊗

i=1,j=i
(pαi ⊕ qαj)

2
n(n+1)

)
=

1
p+ q

(
n
⊗

i=1,j=i
(pα′i ⊕ qα

′
j)

2
n(n+1)

)
= IVPFGHMp,q(a′1, a

′

2, . . . , a
′
n).

which completes the proof.
Theorem 4 (Monotonicity): Let αi = ([ai, bi] , [ci , di] ,

[ei, fi]) and α′′i = ([a′′i , b
′′
i ], [c

′′
i , d
′′
i ], [e

′′
i , f
′′
i ])(i =

1, 2, . . . , n) be two collections of IVPFNs, If αi ≤ α′′i αi ≤

αi′′, for all i, then,

IVPFGHMp,q(α1, α2, . . . , αn)

≤ IVPFGHMp,q(α′′1 , α
′′

2 , . . . , α
′′
n ). (12)

Proof: Let IVPFGHMp,q(α1, α2, . . . , αn) = ([a ,
b] , [c, d], [e, f ]), and IVPFGHMp,q(α′′1 , α

′′

2 , . . . , αn
′′) =

[a′′, b′′], [c′′, d ′′], [e′′, f ′′].

Since ai ≤ a′′i , aj ≤ a′′j , then we have 1 − (1 − ai)p(1 −
aj)q ≤ 1− (1− a′′i )

p(1− a′′j )
q, thereafter,

1−
n∏

i=1,j=i

(1− (1−ai)p(1− aj)q)
2

n(n+1)

≥ 1−
n∏

i=1,j=i

(1− (1−a′′i )
p(1− a′′j )

q)
2

n(n+1) ,

thus,

a = 1− (1−
n∏

i=1,j=i

(1− (1−ai)p(1− aj)q)
2

n(n+1) )
1

p+q ≤ a′′

= 1− (1−
n∏

i=1,j=i

(1− (1−a′′i )
p(1− a′′j )

q)
2

n(n+1) )
1

p+q .

Similarly,

1− (1− bi)p(1− bj)q

≤ 1− (1− b′′i )
p(1− b′′j )

q,

1−
n∏

i=1,j=i

(1− (1−bi)p(1− bj)q)
2

n(n+1)

≥ 1−
n∏

i=1,j=i

(1− (1−b′′i )
p(1− b′′j )

q)
2

n(n+1) ,

b = 1− (1−
n∏

i=1,j=i

(1− (1−bi)p(1− bj)q)
2

n(n+1) )
1

p+q ≤ b′′

= 1− (1−
n∏

i=1,j=i

(1− (1−b′′i )
p(1− b′′j )

q)
2

n(n+1) )
1

p+q .

Since ei ≥ e′′i , ej ≥ e
′′
j , then we have

1− (1− ei)p(1− ej)q ≥ 1− (1− e′′i )
p(1− e′′j )

q,

thereafter,

1−
n∏

i=1,j=i

(1− (1−ei)p(1− ej)q)
2

n(n+1)

≤ 1−
n∏

i=1,j=i

(1− (1−e′′i )
p(1− e′′j )

q)
2

n(n+1) ,

thus,

e = 1− (1−
n∏

i=1,j=i

(1− (1−ei)p(1− ej)q)
2

n(n+1) )
1

p+q ≥ e′′

= 1− (1−
n∏

i=1,j=i

(1− (1−e′′i )
p(1− e′′j )

q)
2

n(n+1) )
1

p+q .

Similarly,

1− (1− fi)p(1− fj)q

≥ 1− (1− f ′′i )
p(1− f ′′j )

q,
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1−
n∏

i=1,j=i

(1− (1−fi)p(1− fj)q)
2

n(n+1)

≤ 1−
n∏

i=1,j=i

(1− (1−f ′′i )
p(1− f ′′j )

q)
2

n(n+1) ,

f = 1− (1−
n∏

i=1,j=i

(1− (1−fi)p(1− fj)q)
2

n(n+1) )
1

p+q ≥ f ′′

= 1− (1−
n∏

i=1,j=i

(1− (1−f ′′i )
p(1− f ′′j )

q)
2

n(n+1) )
1

p+q .

So,

IVPFGHMp,q(α1, α2, . . . , αn)

≤ IVPFGHMp,q(a′′1, a
′′

2, . . . , a
′′
n),

Therefore, the proof of Theorem 4 is completed.
Theorem 5 (boundedness): Let αi = ([ai, bi] , [ci ,

di] , [ei, fi]) (i = 1, 2, . . . , n) be a collection of IVPFNs, and
α−i = min(a1, a2, . . . , an), α

+

i = max(a1, a2, . . . , an), then
we have

α−i ≤ IVPFGHM
p,q(α1, α2, . . . , αn) ≤ αi+. (13)

Proof: According to Theorem 2, we have

IVPFGHMp,q(α−i , α
−

i , . . . , α
−

i )

= α−i , IVPFGHM
p,q(α+i , α

+

i , . . . , α
+

i ) = α
+

i .

Further, According to Theorem 4, we have

IVPFGHMp,q(α−i , α
−

i , . . . , α
−

i )

≤ IVPFGHMp,q(α1, α2, . . . , αi)

≤ IVPFGHMp,q(α+i , α
+

i , . . . , α
+

i ).

So, α−i ≤ IVPFGHM
p,q(α1, α2, . . . , αn) ≤ α

+

i .
Theorem 5 is completed.

E. INTERVAL-VALUED PICTURE FUZZY GEOMETRIC
WEIGHTED HERONIAN MEAN OPERATOR
Based on the above research, the IVPFGHM operator
considers the interrelationships between attributes, but in
practical applications, different attributes have different
degrees of importance. For this reason, we propose the
IVPFGWHM operator.
Definition 6: Let αi = ([ai, bi] , [ci, di] , [ei, fi]) (i =

1, 2, . . . , n) be a collections of IVPFNs, and p, q > 0, ω =
(ω1, ω2, . . . , ωn) is the weight vector of αi(i = 1, 2, . . . , n),

satisfying ωι ≥ 0, ι = 1, 2, . . . , n,
n∑
i=1
ωi = 1, then the

IVPFGWHM operator is defined by

IVPFGWHMp,q(α1, α2, . . . , αn)

=
1

p+ q

(
n
⊗

i=1,j=i

(
(pαi)ωi ⊕

(
qαj
)
ωj
) 2

n(n+1)

)
. (14)

Theorem 6: Let αi = ([ai, bi] , [ci, di] , [ei, fi]) (i =
1, 2, . . . , n) be a collections of IVPFNs, and p, q >

0, ω=(ω1, ω2, . . . , ωn) is the weight vector of αi(i =

1, 2, . . . , n), satisfying ωι ≥ 0, ι = 1, 2, . . . , n,
n∑
i=1
ωi = 1,

then, the result aggregated from (14) is still an IVPFN, and
even

IVPFGWHMp,q(α1, α2, . . . , αn)

=

1− (1−
n∏

i=1,j=i

(1− (1− ( ai)ωi )p

× (1− (aj)ωj )q)
2

n(n+1) )
1

p+q ,

× 1− (1−
n∏

i=1,j=i

(1− (1− (bi)ωi )p

× (1− (bj)ωj )q)
2

n(n+1) )
1

p+q

 ,
×

(1− n∏
i=1,j=i

(1− (1− (1− ci)ωi )p

× (1− (1− cj)ωj )q)
2

n(n+1) )
1

p+q ,

× (1−
n∏

i=1,j=i

(1− (1− (1− di)ωi )p

× (1− (1− dj)ωj )q)
2

n(n+1) )
1

p+q

 ,
×

(1− n∏
i=1,j=i

(1− (1− (1− ei)ωi )p

× (1− (1− ej)ωj )q)
2

n(n+1) )
1

p+q ,

× (1−
n∏

i=1,j=i

(1− (1− (1− fi)ωi )p

× (1− (1− fj)ωj )q )
2

n(n+1) )
1

p+q

 . (15)

The proof of Theorem 6 is similar to Theorem 1, which is
omitted here.

F. DYNAMIC INTERVAL-VALUED PICTURE FUZZY
GEOMETRIC WEIGHTED HERONIAN MEAN OPERATOR
In order to solve the problem of dynamic multi-attribute
decision-making, Definition 7 defines the DIVPFGWHM
operator.
Definition 7: Let αj(t1), αj(t2), . . . , αj(tp)(j = 1,

2, . . . ,m) be the attribute value of the a certain attribute
in the period t1, t2, . . . , tp, Where αj(tk ) is represented
by IVPFN, at the same time, assume that θ (t) =

(θ (t1), θ(t2), . . . , θ (tm))T , θ(tk ) ≥ 0,
m∑
k=1

θ (tk ) = 1, k =

1, 2, . . . ,m are the time weight vectors of each period, then
the DIVPFGWHM operator is defined by

DIVPFGWHM
p,q

θ (t)
(
αj(t1), αj(t2), . . . , αj(tp)

)
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=
1

p+ q

(
m
⊗

i=1,k=i
((pαj(ti))θ (ti) ⊕ (qαj(tk ))θ (tk ))

2
n(n+1)

)
,

(16)

The DIVPFGWHM operator also satisfies Theorems 2,
3, 4, and 5. Although this operator is similar to the
IVPFGWHMM operator, the weight here is the time weight,
so it is a new operator.

G. STEPS OF THE BWM METHOD
The weight of attributes is very important in the aggregation
and ranking of alternatives. In order to ensure that our
proposed method has better results, we need to objectively
determine the weight information of attributes. Based on
the new best-worst method (BWM) proposed by Rezae for
multi-attribute decision-making technology, we calculate the
weight of the attribute set. The advantages of the BWM
method are as follows.

(1) Compared to matrix-basedMCDMmethods, it requires
fewer comparisons.

(2) The BWM method provides more consistent compar-
isons and more reliable results.

(3) It can derive the weights independently or in combina-
tion with other MCDM methods.

(4) In this method, only integers are used, making it easier
to use.
Step 1. Determine a set of decision-making criteria. In this

step, the decision maker develops a set of criteria to evaluate
various alternatives.
Step 2. Choose the best criterion Cb and the worst criterion

Cw from the criteria determined in the first step.
Step 3. Use a number between 1 and 9 to determine the

preference of the best standard relative to other standards.
The result is called the best-other vector, denoted as AB =
(aB1 , aB2, . . . , aBn)T , where aBj represents the preference
degree of the best criterion Cb over the criterion Cj, and
aBB = 1.
Step 4. Use a number between 1 and 9 to determine the

preference of the worst standard relative to other standards.
The result is called the other - worst vector, denoted as AW =
(a1W , a2W , . . . , anW )T , where aBj represents the preference
degree of the best criterionCb over the criterionCj, and aBB =
1.
Step 5. Find the optimal weights

(
w∗1 ,w

∗

2, . . . , w
∗
n
)
,

Construct the following non-linear programming model.

minmax {|wB− aBj wj
∣∣ , ∣∣wj − ajWww∣∣ }

s.t.


n∑
j=1

wj = 1

wj ≥ 0, ∀j.
(17)

Problem (17) can be transferred to the following problem:

min ξL

s.t.



|wB − aBj wj
∣∣ ≤ ξL , ∀j∣∣wj − ajW wW | ≤ ξL , ∀j

n∑
j=1

wj = 1

wj ≥ 0, ∀j.

(18)

ξL represents the consistency index, the closer ξL is to 0,
the higher the consistency.

III. DYNAMIC MULTI-ATTRIBUTE DECISION-MAKING
BASED ON IVPFGWHM OPERATOR
For the dynamic multi-attribute decision-making problem,
here we use the IVPFGWHM operator as a tool to solve it.

A. PROBLEM DESCRIPTION
Assume that there are m alternatives, denoted as A =

{A1,A2, . . . ,Am}, and n criteria, denoted as C =

{C1,C2, . . . ,Cn}, The weight vector of these criteria is
w = (w1,w2, . . . ,wn)T , which satisfies the condition wj ∈

[0, 1],
n∑
j=1

wj = 1, The weight vector of periods is λ(t) =

(λ(t1), λ(t2), . . . , λ(tq))T , which also satisfies
q∑

k=1
λ(tk ) =

1, λ(tk ) ∈ [0, 1](k = 1, 2, . . . , q), where λ(tk ) represents the
weight of the period k .

B. DECISION MAKING PROCEDURES
In this section, the decision-making method based on the
proposed aggregation operator is to propose to solve the
decision-making problem described in section 4. The specific
decision-making frame diagram and procedures are described
as Figure 1.
Step1. Normalize the initial decision-making matrix.
Convert all cost criteria into benefit criteria, the standard-

ized decision matrix constructed is as follows.

D(tk ) = (dij(tk ))m× n =

{
aij, for benefit criteria

aij, for cos t criteria.
(19)

where, aij is the complement of aij, which satisfies

aij =
([
eij, fij

]
,
[
aij, bij

]
,
[
cij, dij

])
(i = 1, 2, . . . ,m, j = 1, 2, . . . , n).

Step2. Calculate the comprehensive IVPF for a single
period separately.

For the Decision matrix D(tk ) of different periods, use
IVPFGWHM operator to aggregate the evaluation value
dij(tk ) of alternative i under different attributes in period
k . The attribute aggregation values of each alternatives in
different periods are as follows.

IVPFGWHM (di1(tk ), di2(tk ), . . . , dim(tk )).

Step3. Calculate the comprehensive IVPF for each
alternative.
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FIGURE 1. Frame diagram for BWM method and DIVPFGWHM operator.

Use the DIVPFGWHM operator to aggregate the IVPF
of each alternative in different periods, the comprehensive
IVPFN of each alternative is obtained as follows.

DIVPFGWHM (di(t1), di(t2), . . . , di(tq)).

Step4. Calculate the score function and accuracy function
of the comprehensive evaluation value of each alternative.

Based on Eq (13), (14), we calculate the score function
S(α) and accuracy function H (α).
Step5. Obtain the ranking order.
According to the comparison method proposed in Defini-

tion 3, we can get the final ranking order of all alternatives.

IV. CASE STUDY
with the development of market economy and the continuous
innovation of science and technology, many enterprises

TABLE 1. Indicators and meanings.

are eager to realize the automatic operation and efficient
management of the material transportation process through
advanced logistics network technology, and the emergence
of intelligent logistics through intelligent hardware and
software, Internet of Things, big data and other technical
means, the logistics industry and the Internet combined,
changing the original market environment and business
processes of the logistics industry. The intelligence of
logistics industry has a positive role in promoting China’s
logistics industry to improve profits and reduce logistics
costs. For enterprise decision makers, it is crucial to choose
a suitable logistics company to improve resource utilization
and management. Through the review of the literature related
to ‘‘intelligent logistics performance evaluation in China’’,
this paper decided to use the following indicators as the
attributes of logistics company selection, and the specific
definition of each attribute is shown in Table 1.
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This section will analyze how companies select logistics
companies based on these indicators.

An enterprise wants to realize the automatic operation
and efficient management of material transportation process
through the advanced logistics network technology. After
research and investigation, four candidate companies A =
{A1,A2,A3,A4}were identified, after discussion by the board
of directors, it was decided to investigate and evaluate
these 4 companies based on the above mentioned indicators.
In order to compare the four companies more reasonably,
the board of directors decided to evaluate the performance
of these four companies in 2017-2019 under these four
standards. The evaluation result is given in the form of
IVPFN.

A. DECISION MAKING ANALYSIS
In this section, we use the IVPFGWHM operator to solve
the partner selection problem mentioned above. First, we use
the best-worst method (BWM) to objectively calculate the
weights of attributes. Then, we use the DIVPFGWHM
operator to aggregate the decision information and sort
the alternatives. The detailed decision analysis is shown as
follows.

1) DETERMINATION OF ATTRIBUTES WEIGHT
Step1. Determine four decision criteria {C1,C2,C3,C4}.
Step2. After research and discussion by the company’s

board of directors, it was decided that C1 was the best
criterion and C4 was the worst criterion.
Step3. Construct a pairwise comparison vector for the best

criterion, which are shown in Table 2.
Step4. Construct a pairwise comparison vector for the

worst criterion. which are shown in Table 3.
Step5. According to Table 2 and Table 3, we derive the

weights of the four attributes based on the above-mentioned
nonlinear programming model, shown as follows.

min ξL

s.t.



|w1 − w1| ≤ ξ
L ,

|w1 − 4 w2| ≤ ξ
L ,

|w1 − 3 w3| ≤ ξ
L ,

|w1 − 8 w1| ≤ ξ
L ,

|w1 − 8 w4| ≤ ξ
L ,

|w2 − 2 w4| ≤ ξ
L ,

|w3 − 3 w4| ≤ ξ
L ,

|w4 − w4| ≤ ξ
L ,

w1 + w2 + w3 + w4 = 1,w1,w2,w3,w4 ≥ 0

(20)

By solving this nonlinear programming model, we obtain
the optimal attribute weight vector as w∗ =

{
0.58, 0.15,

0.20, 0.07
}
, and ξL = 0.014.

2) MULTI-ATTRIBUTE DECISION MAKING
In order to get the best alternative, the following steps are
performed.

TABLE 2. Pairwise comparison vector for the best criterion.

TABLE 3. Pairwise comparison vector for the best criterion.

Interval-valued picture fuzzy decision matrixes D(tk )(k =
1, 2, 3) are shown as Table4-Table6, where the weight vector
of period tk is λ(tk ) = (1/6, 1/3, 1/2)T (k = 1, 2, 3).
Step1. Normalized the decision matrix. Because all

attributes are benefit, this step is skipped.
Step2. Calculate the comprehensive IVPF for a single

period separately. According to the decision matrixD(tk ), the
IVPFGWHM operator is used to aggregate the elements of
different alternatives under each attribute, and the aggregate
value of IVPFs of alternative Ai is obtained (21)–(23), as
shown at the bottom of the next page.
Step3. Calculate the comprehensive IVPF for each alterna-

tive. use the DIVPFGWHM operator to aggregate the IVPFN
di(tk ) of each alternative Ai at different periods t, obtain the
comprehensive IVPFN of each alternative as follows (24), as
shown at the bottom of the next page.
Step4. Calculate the score function S(ri) (i = 1, 2, 3, 4) of

the comprehensive evaluation value of each alternative, the
results are shown as follows.

S(r1) = 0.8573, S(r2) = 0.8753,

S(r3) = 0.8580, S(r4) = 0.8821. (25)

Step5. Obtain the ranking order.
According to the score function S(ri)(i = 1, 2, 3, 4), the

ranking order of the alternatives {A1,A2,A3,A4} is: A4 �
A2 � A3 � A1, where ‘‘�’’ means superior. Therefore, the
best solution is A4.

B. COMPARATIVE ANALYSIS
In order to further illustrate the advantages of the pro-
posed method, IVPFWA operator, IVPFGA operator and
IVPF-EDAS method are used to handle the decision infor-
mation of this case, and the score function value, accuracy
function value and the Appraisal Score (AS) of IVPF-EDAS
method is shown in the table 7.

It can be seen from Table 8 that the ordering result
of the DIVPFGWHM operator is slightly different from
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TABLE 4. IVPF decision matrix D(t1).

TABLE 5. IVPF decision matrix D(t2).

TABLE 6. IVPF decision matrix D(t3).

(di(t1))4×1 =


[0.6696, 0.7402] , [0.0330, 0.0686] , [0.0528, 0.1193]
[0.7089, 0.7786] , [0.0542, 0.0968] , [0.0512, 0.0861]
[0.6215, 0.7428] , [0.0667, 0.1490] , [0.0273, 0.0627]
[0.6547, 0.7539] , [0.0946, 0.1340] , [0.0313, 0.0660]

 (21)

(di(t2))4×1 =


[0.6648, 0.7366] , [0.1061, 0.1492] , [0.0290, 0.0666]
[0.6259, 0.7757] , [0.0608, 0.0987] , [0.0329, 0.0667]
[0.6518, 0.7569] , [0.0313, 0.0743] , [0.0479, 0.1047]
[0.6547, 0.7539] , [0.1023, 0.1377] , [0.0230, 0.0667]

 (22)

(di(t3))4×1 =


[0.6015, 0.7133] , [0.0759, 0.1423] , [0.0273, 0.0805]
[0.6892, 0.7726] , [0.0702, 0.1180] , [0.0464, 0.0765]
[0.6424, 0.7611] , [0.0362, 0.0761] , [0.0716, 0.1100]
[0.6913, 0.8169] , [0.0385, 0.0737] , [0.0313, 0.0667]

 (23)

(di)4×1 =


[0.8570, 0.8971] , [0.0280, 0.0478] , [0.0109, 0.0286]
[0.8740, 0.9173] , [0.0226, 0.0383] , [0.0148, 0.0260]
[0.8616, 0.9103] , [0.0135, 0.0304] , [0.0202, 0.0358]
[0.8753, 0.9218] , [0.0241, 0.0368] , [0.0099, 0.0231]

 (24)
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TABLE 7. IVPFWA operator and IVPFGA operator aggregation results.

TABLE 8. The comparison of the sorting results of several methods.

TABLE 9. The effect of parameters p, q on sorting results in DIVPFGWHM
operator.

that of other methods, which is shown in the ordering of
alternatives A3 and A1. Use the DIVPFGWHM operator,
A3 is better than A1, while using IVPFWA operator and
IVPFGA operator the result obtained is that A1 is better
than A3, using the EDAS method, the sorting result is
completely different, but the optimal alternative of the three
operators is A4, and the other three methods fail to consider
the relationship between the attributes. When there is a
relationship of complementarity, redundancy, preference, etc.
between attributes, the DIVPFGWHM operator has more
advantages. Even if the values of multiple parameters are
changed, the obtained score function value and the accuracy

function value are quite different, which can effectively
overcome the subjectivity brought by the decision maker.
At the same time, it is simple and easy to operate in terms of
operator aggregation operations. Based on the above analysis,
the conclusion drawn in this article is reasonable.

C. SENSITIVITY ANALYSIS
In this section, we discuss the effect of the parameters p,
q in the IVPFGWHM operator on the aggregation results.
We assign different values to the parameters p, q, respectively,
and the results are shown in the following table 9.

As can be seen from Table 9, changes in parameters p,
q will affect the ranking results, but the optimal solution is
still A4 or A2. When p =0 or q =0, the aggregation results
do not reflect the interactions between attributes, and thus
changes in p, q cause fluctuations in the ranking results; when
p, q is small, the interactions between attributes are weak,
so changes in p, q will also cause fluctuations in the ranking
results; when p, q is large, the interactions between attributes
is strong, even if p, q changes, the aggregation results will
not make large differences, thus making the ranking results
stable. In the actual decision problem, the decision maker can
choose appropriate parameters according to the actual needs,
but it is not recommended to choose too large or too small
parameters.

V. CONCLUSION
In multi-attribute decision-making problems in real life,
decision-making information often appears in the form
of inaccurate interval numbers, and traditional IVIF fails
to consider other information except ‘‘consistent’’ and
‘‘inconsistent’’. In this paper, the interval number and the
picture fuzzy number are combined to study the properties
and calculation rules of IVPFS. In addition, the decision
attributes are often related to each other to varying degrees.
The IVPF information is combined with the GHM operator
to study IVPFGHM operator and IVPFGWHM operator and
IVPFGWHM operator in dynamic environment, and study
some properties of IVPFGHM operator, design the detailed
process of decision algorithm and simulation example,
in dynamic multi-attribute decision problem, use BWM
method to solve the weight of each attribute is calculated,
and the DIVPFGWHM operator is used to solve it. The
result of the calculation example shows the validity and
correctness of the operator. Compared with the traditional
method, this method considers the interrelationships between
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decision attributes, makes the decision analysis closer to
the actual situation of the decision problem, the decision
result is more reasonable, and provides a new idea for
solving the dynamic multi-attribute decision-making prob-
lem. The method proposed in this paper has the following
advantages.

(1) This method combines the interval number with
the PFN to propose the IVPFN, so it describes cognitive
information more widely and accurately.

(2) The IVPFGWHM operator proposed by this method
has two parameters, p and q, the decision maker can
adjust these two parameters according to the input data and
subjective preferences to obtain the ranking order. Therefore,
this method is more flexible.

(3) The method combines IVPFS with GHM operator,
hence it considers the correlation between attributes, and
reveals the interaction of factors and the influence of the
interaction in the decision-making process and results.

At the same time, the method has the following disadvan-
tages.

(1) The proposed algorithms of IVPFN are not perfect and
need further improvement.

(2) The proposed operator only contains the advantage that
the HM operator can handle the problem of inter-correlation
between attributes and does not consider the effect of
anomalous data on the aggregation results.

On the basis of this study, subsequent studies can focus
on the following points. In the basic theory, the operation
rules and related theories of IVPFN can be further expanded,
for example, combining IVPFs with power operators or other
operators, or studying the similarity and distance measures
between IVPFs to check other types of cognitive information.
In terms of application, the method can be used in business
decision, medical diagnosis, pattern recognition and other
fields.
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