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ABSTRACT Herein, we propose a normalized subband adaptive filter (NSAF) algorithm that adjusts both the
step size and regularization parameter. Based on the random-walk model, the proposed algorithm is derived
by minimizing the mean-square deviation of the NSAF at each iteration to calculate the optimal parameters.
We also propose a method for estimating the uncertainty in an unknown system. Consequently, the proposed
algorithm improves performance in terms of tracking speed and misalignment. Simulation results show that
the proposed NSAF outperforms existing algorithms in system identification scenarios.

INDEX TERMS Adaptive filter, normalized subband adaptive filter, variable step size, variable
regularization parameter, mean-square deviation.

I. INTRODUCTION
Adaptive filter algorithms have been used in a wide
range of signal processing applications, such as acoustic
echo cancellation, system identification, and channel
equalization [1]–[5]. The normalized least-mean-square
(NLMS) algorithm is one of the most widely used
adaptive filter algorithms owing to its low computational
complexity and ease of implementation [6], [7]. However,
it exhibits substantial performance degradation in terms
of the convergence rates for highly correlated input
signals. To address this problem, affine projection (AP)
algorithm and normalized subband adaptive filter (NSAF)
algorithm were introduced [3], [8], [9]. The AP algorithm
achieves fast convergence speeds using multiple input
vectors; thus, its computational complexity increases for
higher-order systems, such as acoustic echo cancellation.
However, despite the lower computational complexity
than the AP algorithm, the NSAF algorithms have better
performance in terms of tracking speed owing to their
self-whitening property. Moreover, some variants of the
NSAF, such as sign subband adaptive filter (SSAF) and its
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variants [10]–[12], M-estimate NSAF [13], [14], sparsity-
aware SSAF and NSAF [15], [16], and bias-compensated
NSAF [17]–[19], have been proposed to improve
performance.

The NSAF algorithms have two important parameters that
affect the performance in terms of convergence rates and
steady-state errors, i.e., step size and regularization param-
eter. The fixed step size and the regularization parameter lead
to a trade-off between the convergence rate and misalignment
in the NSAF. To control these parameters, variable step-
size (VSS) algorithms and variable regularization-parameter
(VR) algorithms have been proposed for the NSAF [20]–[28].
Unlike other variable parameter NSAF algorithms, the
joint-optimization step size and regularization parameter
NSAF(JOSR-NSAF) algorithm controls both the step size
and regularization parameter [28]. The JOSR-NSAF algo-
rithm is derived from joint-optimization (JO) scheme [29]
based on minimizing the mean-square deviation (MSD). The
result of the MSD analysis from the JOSR-NSAF algorithm
is similar to that of the VR-NSAF algorithm developed by
Jeong et al. [27] under stationary environments. However,
this analysis method does not accurately reflect the change
in the regularization parameters for colored input signals
well [26].
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In this study, we propose an NSAF algorithm that controls
both the step size and regularization parameter owing to
improvements in terms of tracking speed and misalignment.
The contribution of this study is threefold. First, an MSD
analysis of the NSAF algorithm is provided for both the step
size and regularization parameter based on the random-walk
model. The proposed method is derived from a method simi-
lar to that of the adaptive regularizationNSAF algorithm [26];
however, we propose a method that considers the step size
and non-stationary systems to obtain both the optimal step
size and regularization parameter at each iteration. Second,
an optimized NSAF algorithm is derived from the MSD
analysis, which control both the step size and regularization
parameter to minimize the MSD of the NSAF algorithm at
each iteration. Third, a method for estimating the uncertainty
of an unknown system is proposed. Simulations tested in the
system identification scenario and the performance of the
proposed algorithm were compared with those of existing
algorithms.

The remainder of this paper is organized as follows. A brief
review of the NSAF algorithm is presented in Section II.
The MSD performance analysis of the NSAF algorithm is
developed in Section III. Section IV introduces an optimal
NSAF algorithm. Practical issues are presented for the
proposed algorithm in Section V. Finally, in Section VI, the
performance of the proposed NSAF algorithm is verified
through various computer simulations.

II. REVIEW OF CONVENTIONAL NSAF ALGORITHM
We consider a system identification problem such as acoustic
echo cancellation. The weight coefficient vector of the
unknown system and input signal at the discrete-time index,
n, are denoted by:

wo = [w0,w1, · · · ,wM−1]T , (1)

u(n) = [u(n), u(n− 1), · · · , u(n−M + 1)]T , (2)

whereM is filter lengths. The desired signal derived from an
unknown system is

d(n) = uT (n)wo + v(n), (3)

where v(n) represents measurement noise with zero mean
and variance σ 2

v . Figure 1 shows the structure of the NSAF.
In this figure, the desired signal, di(n), and input signal, ui,
are derived by the analysis filter, Hi(z), which is defined as

Hi(z) =
L−1∑
j=0

hi(j)z−j, i = 0, 1, · · · ,N , (4)

where N represents the number of subbands, L is the length
of the analysis filter, and hi(j) is the jth coefficient of
the analysis filter for the ith subband. di,D and yiD are
obtained by critically sub-sampling di and yi, respectively.
Therefore, the downsampled output signal of the ith subband
is defined as yi,D(k) = uTi (k)ŵ(k), where ui(k) =
[ui(kN ), ui(kN − 1), · · · , ui(kN − M + 1)]T , ŵ(k) =
[ŵ0(k), ŵ1(k), · · · , ŵM−1(k)]T indicates the estimation ofwo

FIGURE 1. Structure of the NSAF.

at index k , and k is used to index the decimated signal.
We define the decimated output error signal of the ith subband
as follows:

ei,D(k) = di,D(k)− yi,D(k)

= uTi (k)w̃(k)+ vi,D(k), (5)

where w̃(k) , wo − w(k), and vi,D(k) is the ith subband
noise with zero-mean white Gaussian noise with variance σ 2

vi .
Therefore, the update equation of the conventional NSAF
algorithm is:

ŵ(k) = ŵ(k − 1)+
N−1∑
i=0

µiui(k)ei,D(k)
uTi (k)ui(k)+ βi

, (6)

whereµi and βi are the step size and regularization parameter
of the ith subband, respectively.

III. MSD ANALYSIS OF NSAF WITH THE RANDOM-WALK
MODEL
A. RANDOM-WALK MODEL
We assume that an unknown weight vector wo has the
following random-walk model [29], [30]

wo(n) = wo(n− 1)+ q(n), (7)

where q(k) is a white Gaussian noise vector with zero mean
and variance mσ 2

q = E
{
qT (k)q(k)

}
and covariance matrix

E
{
q(k)qT (k)

}
= σ 2

q IM with IM being an M × M identity
matrix.We have an unknownweight vector at the kth iteration
as follows:

wo(k) = wo(k − 1)+
N∑
j=1

q(kN − j+ 1). (8)

B. PRELIMINARIES
Let us consider the following four assumptions as proposed
in [26], [31]–[34] for analysis of theMSD performance of the
NSAF with step-size and regularization parameters.
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Assumption 1: The input signal vector u(n) has zero mean
and an independent and identically distributed (i.i.d.) and
covariance matrix:

R = E
{
u(n)uT (n)

}
= V3VT , (9)

where 3 = diag(λ1 λ2 · · · λM ) are the eigenvalues of
covariance matrix R, and V = [ν1 ν2 · · · νM ] are the
corresponding orthonormal eigenvectors(VTV = I).
Assumption 2: The signals vi,D(k), ui(k), q(k), and w̃(k) are

statistically independent.
Assumption 3: The ith subband input vector ui(k) is the

product of three independent variables si, ri, vi that are i.i.d.,
such that

ui(k) = sirivi,

where


P(si = ±1)=

1
2

ri ∼ ‖ui(k)‖
P(vi=νj)=pj, j = 1, 2, . . . ,m

(10)

Here, ri ∼ ‖ui(k)‖ indicates that ri has the same distribution
as the norm of ui(k). Note that

∑m
j=1 pj = 1.

C. MSD ANALYSIS OF NSAF
The NSAF update equation (6) can be rewritten in terms of w̃
using (8) as follows:

w̃(k) = w̃(k − 1)−
N−1∑
i=0

µiui(k)ei,D(k)
uTi (k)ui(k)+ βi

+

N∑
j=1

q(kN + j− 1), (11)

where w̃(k) , wo(k)−w(k). By subtracting (5) from (8), the
decimated output error signals become

ei,D(k) = uTi (k)wo(k)− uTi (k)ŵ(k − 1)+ vi,D(k)

= uTi (k)w̃(k − 1)+ uTi (k)
N∑
j=1

q(kN + j− 1)

+vi,D(k). (12)

Considering (12), we rearrange (11) as

w̃(k) =

(
IM −

N−1∑
i=0

µiui(k)uTi (k)

uTi (k)ui(k)+ βi

)
w̃(k − 1)

−

N−1∑
i=0

µiui(k)vi,D(k)
uTi (k)ui(k)+ βi

−

N−1∑
i=0

µiui(k)uTi (k)
∑N

j=1 q(kN + j− 1)

uTi (k)ui(k)+ βi

+

N∑
j=1

q(kN + j− 1), (13)

Applying Assumption 2 and 3, the covariance matrix of
w̃(k) can be obtained as follows:

P(k) = E
{
8(k)P(k − 1)8T (k)

}
+E

{
N−1∑
i=0

µ2
i σ

2
vir

2
i

(r2i + βi)
2
vivTi

}

+E

{
N−1∑
i=0

µ2
i Nσ

2
q r

4
i

(r2i + βi)
2
vivTi viv

T
i

}

−E

{
N−1∑
i=0

2µiNσ 2
q r

2
i

r2i + βi
vivTi

}
+ Nσ 2

q IM , (14)

where 8(k) = IM −
∑N−1

i=0
µir2i viv

T
i

r2i +βi
.

If we define πj(k) , νTj P(k)νj, by multiplying νTj and νj
on both side of (14), we obtain:

πj(k) = E
{
νTj 8(k)P(k − 1)8T (k)νj

}
+E

{
N−1∑
i=0

µ2
i σ

2
vir

2
i

(r2i + βi)
2
νTj viv

T
i νj

}

+E

{
N−1∑
i=0

µ2
i Nσ

2
q r

4
i

(r2i + βi)
2
νTj viv

T
i viv

T
i νj

}

−E

{
N−1∑
i=0

2µiNσ 2
q r

2
i

r2i + βi
νTj viv

T
i νj

}
+ Nσ 2

q ν
T
j νj

=

M∑
q=1

pqE

{
νTj

(
I−

N−1∑
i=0

αir2i νqν
T
q

)
P(k − 1)

×

(
I−

N−1∑
i=0

αir2i νqν
T
q

)T
νj


+

M∑
q=1

pqE

{
N−1∑
i=0

α2i σ
2
vir

2
i ν

T
j νqν

T
q νj

}

+

M∑
q=1

pqE

{
N−1∑
i=0

α2i Nσ
2
qir

4
i ν

T
j νqν

T
q νqν

T
q νj

}

−

M∑
q=1

pqE

{
N−1∑
i=0

2αiNσ 2
qir

2
i ν

T
j νqν

T
q νj

}
+ Nσ 2

q

(15)

where αi , µi/(r2i + βi). From [2, eq.(18) and (20)], the
recursion of πj(k) for the ith subband can be expressed as
follows:

πi,j(k) =
[
1+

N
M

{(
αir2i

)2
−2αir2i

}](
πi,j(k−1)+Nσ 2

q

)
+
Nα2i r

2
i σ

2
vi

M
, (16)

when M � 1.
To conduct the MSD analysis of the NSAF, the MSD is

defined as MSD(k) , E(w̃T (k)w̃(k)) = Tr(P(k)). Finally,
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we obtain

MSD(k) = Tr(P(k)) =
1
N
Tr
(
VTP(k)V

)
=

1
N

N−1∑
i=0

M∑
j=1

πi,j(k)

=
1
N

N−1∑
i=0

fi(k), (17)

where

fi(k) ,
M∑
j=1

πi,j(k)

=

[
1+

N
M

{(
αir2i

)2
−2αir2i

}](
fi(k−1)+MNσ 2

q

)
+Nα2i r

2
i σ

2
vi . (18)

IV. OPTIMIZED NSAF ALGORITHM BASED ON THE
JOINT-OPTIMIZATION SCHEME
To rapidly minimize the MSD of the NSAF at each
iteration, a joint-optimization strategy can be derived by
∂MSD(k)/∂µi(k) = ∂MSD(k)/∂βi(k) = 0. Therefore,
we can obtain a novel update equation of the NSAF with
optimal step size µi(k) and regularization parameter βi(k) as
follows:

ŵ(k) = ŵ(k − 1)+
N−1∑
i=0

α∗i (k)ui(k)ei,D(k), (19)

where

gi(k) , fi(k − 1)+MNσ 2
q , (20)

α∗i (k) ,
µi(k)

r2i (k)+ βi(k)
=

gi(k)

r2i gi(k)+Mσ
2
vi

, (21)

fi(k) =
{
1−

N
M

(
r2i α
∗
i (k)

)}
gi(k). (22)

Substituting (20) and (21) into (22), we obtain the quadratic
equation for the steady-state value of fi(k) as follows:

r2i
(
fi,ss +MNσ 2

q

)2
−M2r2i σ

2
q

(
fi,ss +MNσ 2

q

)
−M3σ 2

q σ
2
vi = 0, (23)

where fi,ss , limk→∞ fi(k). Therefore, the steady-state value
of MSD can be obtained as

lim
k→∞

MSD(k) = lim
k→∞

Tr(P(k)) =
1
N

N−1∑
i=0

fi,ss, (24)

where

fi,ss =
M2σ 2

q

2

1−
2N
M
+

√√√√1+
4σ 2

vi

Mr2i σ
2
q

 . (25)

The performance limit of the proposed algorithm is related to
the system parameters (N ,M ), measurement noise, (σ 2

v ), and
non-stationary environments, (σ 2

q ).

V. PRACTICAL CONSIDERATIONS
The proposed NSAF algorithm depends on the parame-
ters ri, σ 2

vi , and σ
2
q . Therefore, practical considerations are

necessary.
The first parameter, ri, is related to the subband input

variance σ 2
ui . Therefore, we can use the subband input

variance instead of r2i as follows:

r2i ' Mσ 2
ui (k) = E

{
uTi (k)ui(k)

}
. (26)

Moreover, the input variance is easily estimated as follows
[28], [29]:

σ̂ 2
ui (k) =

1
M

uTi (k)ui(k). (27)

The second parameter is the subband noise variance, σ 2
vi ,

which can be easily estimated [31]–[34]. We assume that the
subband noise variance, σ 2

vi , is already known, because it is
out of the scope of this study.

The third parameter, σ 2
q , denotes the uncertainties in

unknown system wo(n). The performance of the proposed
NSAF algorithm is affected by the value of σ 2

q . Therefore, it is
important to estimate the value of σ 2

q for implementing the
proposed NSAF algorithm. Amethod for estimating σ 2

q using
the random-walk model (8) and replacing wo(k) with ŵ(k) is
as follows:

N∑
j=1

‖q(kN − j+ 1)‖2 = ‖ŵ(k)− ŵ(k − 1)‖2. (28)

We define the estimated parameter, σ 2
q,1, which is estimated

using the above method as

σ̂ 2
q,1(k) ,

‖ŵ(k)− ŵ(k − 1)‖2

NM
. (29)

When a system undergoes an abrupt change, the parameter
σ̂ 2
q,1(k) has large values, which provides a fast convergence

speed. However, an error in the estimation of the parameter,
σ̂ 2
q,1(k) causes an error in deriving the optimal parameter,
α∗i (k), which leads to significant misalignment. Thus, we pro-
pose a method to estimate σ 2

q using multiband mean-squared
error (MSE), which is defined as follows:

ζ (k) ,
1
N

N−1∑
i=0

E
(
‖ei,D(k)‖2

)
(30)

Applying Assumption 2, the multibandMSE can be rewritten
as

ζ (k) =
1
N

N−1∑
i=0

E
(
‖uTi (k)w̃(k − 1)‖2

)

+
1
N

N−1∑
i=0

E


∥∥∥∥∥∥uTi (k)

N∑
j=1

q(kN + j− 1)

∥∥∥∥∥∥
2


+
1
N

N−1∑
i=0

E
(
‖vi,D(k)‖2

)
(31)

VOLUME 10, 2022 9871



J. Shin et al.: Novel Normalized Subband Adaptive Filter Algorithm Based on Joint-Optimization Scheme

TABLE 1. Summary of the proposed algorithm.

From [ [26], eq(33)]

1
N

N−1∑
i=0

σ 2
ei (k) =

1
N

N−1∑
i=0

(
σ 2
ui (k)fi(k − 1)

+NMσ 2
ui (k)σ

2
q (k)+ σ

2
vi

)
, (32)

where σ 2
ei (k) = γ σ 2

ei (k − 1) + (1 − γ )ei,D(k)2, and γ
is the smoothing factor (0 � γ < 1). We define the
estimated parameter σ̂ 2

q,2, which is estimated using the above
equation (32) as

σ̂ 2
q,2(k) , max

{∑N−1
i=0

(
σ 2
ei (k)−σ

2
ui (k)fi(k−1)−σ

2
vi

)
NM

∑N−1
i=0 σ 2

ui (k)
, 0

}
(33)

When a system is stable in a stationary environment, the
subband error variance σ 2

ei (k) and σ
2
ui (k)fi(k−1)+σ

2
vi become

equal; thus, σ̂ 2
q,2(k) takes small values leading to small

misalignment under a stationary environment. To reduce
performance degradation, the parameter σ̂ 2

q (k) is estimated
as

σ̂ 2
q (k) , min

{
σ̂ 2
q,1(k), σ̂

2
q,2(k)

}
. (34)

The proposed algorithm is summarized in Table 1.

VI. SIMULATION RESULTS
Computer simulations were performed using the system
identification model to verify the MSD performance of the

FIGURE 2. NMSD learning curves of proposed NSAFs according to the
number of subbands N with sudden system change environment
(SNR = 30dB, L = 8× N). (a) white Gaussian input (b) AR1 input
(c) AR2 input.

proposed algorithm. The unknown system coefficient,wo was
randomly generated with unit variance for the MSD analysis
comparison and the acoustic impulse response of a room for
performance comparison. It was assumed that the adaptive
filter and the unknown system have the same number of filter
length, which was set M = 512 for computer simulations.
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FIGURE 3. NMSD learning curves of the experimental results (solid lines),
theoretical analysis results, and the proposed method (SNR = 20dB).
(a) whit Gaussian input (b) AR1 input (c) AR2.

The colored input signals were generated by filtering the
white Gaussian noise through

G1(z) =
1

1− 0.95z−1
, (35)

G2(z) =
1

1− 1.6z−1 + 0.81z−2
, (36)

which are referred to as AR1, and AR2. The signal-to-
noise ratio (SNR) was set to 20dB or 30dB to add the

FIGURE 4. NMSD learning curves of the experimental results (solid lines),
theoretical analysis results, and the proposed method (SNR = 30dB).
(a) whit Gaussian input (b) AR1 input (c) AR2.

measurement noise at the output signal yi where the SNR is
defined as

SNR , 10 log10
E
{(
u(n)Two

)2}
E
{
v(n)2

} . (37)

In addition, we assumed that the noise variance was known.
The measure of performance is the normalized mean squared

VOLUME 10, 2022 9873
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FIGURE 5. NMSD learning curves of proposed NSAFs, JO-NLMS,
JOSR-NSAF, and standard NSAFs with various step sizes (SNR = 20dB).
(a) whit Gaussian input (b) AR1 input (c) AR2.

deviation (NMSD), which is defined as:

NMSD , 10 log10 E
{
w̃T (k)w̃(k)
(wT

owo)

}
. (38)

The simulation results were obtained by ensemble aver-
aging over 10 trials. For the proposed algorithm, we set
γ = 1− κN/M , where κ = 2.

FIGURE 6. NMSD learning curves of proposed NSAFs, JO-NLMS,
JOSR-NSAF, and standard NSAFs with various step sizes (SNR = 30dB).
(a) whit Gaussian input (b) AR1 input (c) AR2.

A. SELF WHITENING EFFECT DEPENDING ON THE
NUMBER OF SUBBANDS
The convergence performance of the subband adaptive filter
is almost same for white Gaussian input signal; the proposed
NSAF algorithm is shown in Figure 2(a). However, the
convergence rate of the subband adaptive filter is further
improved with an increased number of subbands owing to
the self-input whitening effect for colored input signals.
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FIGURE 7. NMSD learning curves of proposed NSAFs, JO-NLMS,
JOSR-NSAF, and standard NSAFs with various step sizes for speech input
signal. (a) SNR = 20dB; (b) SNR = 30dB.

Figure 2(b) and 2(c) show that the NMSD learning curves
of the proposed NSAFs according to the number of subbands
in AR1 and AR2 input environments, respectively. As can be
seen, the convergence performance of the proposed NSAF is
saturated at N = 8, implying that the colored input signals
are sufficiently whited at N = 8.

B. MSD ANALYSIS COMPARISON
Figure 3 and 4 show the NMSD learning curves of the
experimental results and theoretical analysis results for
white Gaussian and colored input signals. As shown in
Figure 3(a) and 4(a), the analysis methods of [28]
and proposed are match well with the experimental
results for white Gaussian input signals. However,
Figure 3(b), 4(b), 3(c), and 4(c) show a discrepancy
between the theoretical analysis results that are obtained
by [28] and the experimental results for both convergence
and steady-state behaviors. The proposed analysis can
properly estimate the NMSD learning curves of the NSAFs
that have various step sizes and regularization parameters in
colored input environments as shown in Figure 3 and 4.

C. PERFORMANCE COMPARISON
Figure 5 and 6 show the NMSD learning curves for the
conventional NSAFs, NSAF-VSS [21], AR-NSAF [26], JO-
NLMS [29], and JOSR-NSAF [28] with white Gaussian,
AR1, and AR2 input signals. All algorithms needed to
tune several parameters that were set according to the
recommendations provided in [21], [26], [28], [29]. The
NSAF-VSS algorithm controls only step-size values with
zero regularization parameters and the AR-NSAF algorithm
controls only regularization parameters with a unit step size.
However, the proposed algorithm and JO algorithms control
both parameters. As can be seen in figure 5 and 6, the JO
algorithms have low convergence rates and high misalign-
ments than the existing VSS and VR algorithms, especially
when the input signal is white Gaussian. The proposed
algorithm has steady-state errors performance similar to VSS
and VR algorithms, and provides faster convergence rates
than existing algorithms when the unknown system changes
abruptly. In Figure 7, the proposed algorithm outperforms the
existing VSS, VR, and JO algorithms in terms of the steady-
state error and the convergence speed when the input signal
is a speech sequence.

VII. CONCLUSION
In this paper, we presented an NSAF algorithm that controls
both the step size and regularization parameter byminimizing
the MSD performance of the NSAF at each iteration. To deal
with optimal parameters, the MSD analysis method for step
size and regularization parameter was proposed based on
the random-walk model. We then proposed an estimation
algorithm for calculating the uncertainty of the unknown
system to improve the performance of the proposed NSAF
algorithm in terms of misalignments and convergence rates.
Simulation results verified that the proposed NSAF with
adjusting parameters had a fast convergence rate and low
misalignment as compared with the existing algorithms in the
system identification scenario.
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