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ABSTRACT Currently, the most popular health indicator used to assess the degradation of lithium-ion
batteries (LIBs) is the state-of-health (SOH). This indicator is necessary to ensure the safety, degradation
management, and good operation of the battery, for example, the correct estimate of the state-of-charge
(SOC). In this paper, a new health indicator is proposed as an alternative to the use of the SOH because it
has a high correlation and similarity with the SOH and has the advantage that it can be calculated and/or
estimated very easily. The new health indicator, named ‘‘Degradation Speed Ratio’’ (DSR) is calculated with
variables directly measured (voltage and time), and it is not necessary to spend any time on the total charging
cycle, therefore reducing waiting times about 84%. In addition, due to its high correlation with capacity, it is
a significant marker of battery end-of-life (EOL). In this study, the obtained DSR and a Gaussian process
regression (GPR) model were used to estimate the lost capacity and to compare it with existing models in
the literature. The accuracy achieved using the DSR indicator as input is very high. Similarly, the results of
a multilayer perceptron neural network (MLPNN) model are shown using the new indicator (DSR) as input
to estimate the degradation. The sensitivity and precision of this NN model with unknown data are also very
high.

INDEX TERMS Battery energy storage systems, data-driven estimation, degradation speed ratio, electric
vehicles, lithium-ion batteries, model based estimation, state of health.

I. INTRODUCTION
There are more and more devices using Lithium-ion cells in
our lifestyle: laptops, electric vehicles (EV), Battery Energy
Storage Systems (BESS) [1].

BESS are booming owing to climate change, the increase
in renewable energy (e.g., wind farm, solar power plant, etc.),
to provide stability to the electricity grids (micro-grid [2]),
and the need for this kind of energy to store its surplus.

In the lithium-ion battery (LIB) market, different types
of cells are manufactured, some of which are indicated to
store energy (BESS), and others are used to make high-
power energy systems, such as electric vehicles and sccotters.
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Therefore, each cell is unique owing to themanufacturing and
battery chemistry.

In addition, there are different operating and environmental
conditions (e.g., C-Rate, deep discharge, operating tempera-
ture, etc.). Therefore, the battery ageing process for Li-ion
cells is different for each one, and knowing the battery aging
is key to their operation to prevent failures. There is an
attempt to solve this problem by implementing a precise SOH
estimation method in the battery management system (BMS).

The SOH estimation is necessary for the correct operation
of these batteries to determine the current energy storage and
power supply in relation to the initial one for which it was
designed.

Due to the relevance of having a good SOH estimation
in order to know its health condition, in scientific literature
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several SOH methods can be found based on different strate-
gies and algorithms. Some of these are carried out through
offline processes [3] [4], and others can be developed as
online estimation methods [5]–[7].

The internal parameters of battery cells (e.g., impedance,
internal resistance, etc.) are difficult to monitor by any BMS
because of their difficult access during operation. However,
the temperature, current, and voltage are external variables
of the battery that can be directly measured, and their char-
acteristics can be analyzed to use them in the battery aging
process estimation. For this reason, the internal parameters
of the LIB cannot be used in online processes to estimate the
battery capacity.

Thus, in the literature, many different methods focus on
estimating the SOH of batteries with increased precision.
They can be classified into three categories:

(1) Direct measurements based on internal resistance
measurement [3], the impedance measurement
method [8], and the Coulomb counting method [9] are
the most frequently applied.

(2) Model-based methods. They consider the battery as
an electrochemical, electrical, or empirical model: e.g.
equivalent circuit model (ECM) or electrochemical
impedance model (EIM).

(3) Data-driven methods. They are based on features
extraction approaches from observed values of vari-
ables able to be measured. They are flexible and use
machine learning approaches.

Typically, data-driven methods use data from cell tempera-
tures, currents, voltages, etc., obtained through several charg-
ing/discharging cycles. However, not all of these methods can
extract data when the battery is in operation. Liu et al. [10]
proposed a health indicator (HI) using data voltage ranges
during charging and discharging processes.

Chen et al. [11] analyzed the constant current (CC) dis-
charge voltage curve to describe the degradation of a bat-
tery, and they used a least-square supported vector machine
(LS-SVM) model to estimate the SOH.

Feng et al. [6] used a charging voltage profile interval of
15 min and a support vector machine (SVM) model. This
model was trained using incremental capacity analysis (ICA)
and open-circuit voltage (OCV) model-based data.

More complex methods have been proposed by
He et al. [12] and Bien et al. [13], who obtained new features
of interest (FOIs) through ICA, dQ/dV curves, and their
voltage peaks. Finally, they estimated the SOH using a linear
model.

Many papers have proposed HI, which have high cor-
relations with the SOH [14], and are carried out through
the characteristics of battery discharge [15], [16]. These
methods are difficult to implement in real-life applications
because they are developed for optimal laboratory conditions,
and these features only occur in constant-current discharges;
the actual battery operation does not occur under these
conditions.

Wang et al. [17] proposed a new HI based on a high
correlation with the capacity; later on, this HI was estimated
using an equivalent circuit model (ECM). A constant-voltage
charging curve was used to estimate this HI, for which the
battery must first reach the maximum voltage (4.2V).

Zhang and Tian [18] extracted the charging times between
two specific voltages to estimate the SOH through a Gaus-
sian method: the GPR model. Thus, a comparison of some
intervals of charging times between voltages is made, and
even of the entire CC charging cycle (from the minimum to
the maximum voltage), for which the method also requires
reaching the maximum voltage of the battery to be estimated.

Tan and Zhao [19] proposed nine different FOIs based on
CC charging curves and their gray relational coefficients vs.
SOH. The best value was 0.98, but it required a full charge
to reach this goal. Subsequently, the method applies a long
short-term memory (LSTM) network to predict the SOH.

Meng et al. [20] used the charging voltage profile
optimized by the NSGA-II algorithm to estimate the SOH.
However, to do this, it is necessary to know the SOC for these
voltages.

Tian et al. [21] proposed measuring the temperature differ-
ences in a specific voltage interval during constant charging
using a support vector regression model to estimate the SOH.
The results were compared with those obtained using the ICA
method.

This paper proposes a new HI based on charging voltage
profiles to solve some of the problems mentioned before and
to cover some of the gaps detected in the state-of-the-art
methods. In real-life applications, the battery charge (carried
out under constant current) is always performed by the BMS
under controlled conditions and, therefore, meets the conve-
nient requirements to be measured to estimate the new HI
described in this paper.

In addition, the proposed method does not require a com-
plete charge/discharge cycle or a complete charge, not even
when the battery is completely discharged at the beginning of
the new charge cycle. This method is valid for all lithium-ion
battery models and their different charging conditions due
to the voltage range duration is measured with the same
charging current.

Thus, battery operation can be performed according to
the control signal. A constant charging current (for a short
time period) is the only requirement for measuring time and
voltage. Furthermore, this constant current can be supplied
from the BMS for any short period during battery operation.

Therefore, the HI can be obtained at all times with a
small interval of the charging voltage curve, e.g., in Electric
Vehicles with the ‘‘braking’’ recharge. This new HI uses
only one FOI; therefore, it is easier to implement, and its
computational effort will be lower.

This paper is structured as follows: Section II presents the
battery datasets used in this study and the CC charging curves.
Section III includes an explanation of a novel battery health
indicator, the correlations between this new HI and capac-
ity degradation, and the advantages of using this new HI.
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Section IV describes the validation of the proposed method
using two datasets collected from different cells under dif-
ferent conditions, and the results are compared with those
of the other methods. Finally, the conclusions are presented
in Section V.

II. BATTERY DATASET AND DATA ANALYTICS
A. BATTERY DATASETS
Three datasets of LIBs were selected to analyze the behavior
of the battery charging voltages and test the new HI proposed
in this study. The first group from the NASA Ames Prog-
nostics Center of Excellence are: B0005, B0006, and B0007
dataset battery [22]. Charging was carried out in a CC mode
at 1.5A until the battery voltage reached 4,2V. Discharge was
carried out at a CC level of 2A until the battery voltage fell
to 2.7V, 2.5V and 2.2V for batteries 5, 6, and 7, respectively.
The experiments were stopped when the batteries reached a
30% fade in rated capacity.

The second group from the Center for Advanced Life
Cycle Engineering (CALCE) of the University of Maryland
includes CS2-35, CS2-36, and CS2-37 [23]. In this case,
charging was carried out in CCmode at 0.5A until the battery
voltage reached 4,2V. Discharge was performed at a CC level
of 1A, and the discharge cut-off voltage was 2.7V. The accel-
erated aging process was tested at an ambient temperature
of 24 ◦C.

The last battery dataset from the Oxford University
Research Archive (ORA) of the University of Oxford was
BMP-cell2. For the profit-maximizing bucket model (BMP),
the voltage limits were set to 3.42V and 4.08V, corresponding
to 10 % and 90 % state of charge, and the charging current
profile has variations from 2A until 17A.

B. VOLTAGE CURVE DATA ANALYTICS
The SOH is the most popular indicator reflecting the degra-
dation of LIBs. The most widespread formula for this health
indicator is shown in (1).

SOH(%) = (Ccurrent/CBOL) (1)

where Ccurrent and CBOL are the current and BOL capacity,
respectively. The value for begin-of-life (BOL) capacity, the
first cycle of use, is 100%. In the same way, the value for the
EOL is globally established at 20%, i.e., fade capacity is 80%.

Thus, the relationship between SOH and the fade capac-
ity (FC) is:

Fade Capacity(%) = 1− SOH(%) (2)

In this study, a new HI is proposed based on observing
the constant of certain characteristics of the current charging
curves. The voltage curves for the different cycles are shown
in Fig. 1.

Thus, it can be seen how, through the charging/discharging
cycles (battery aging), the charging times needed to reach the
target voltage (4.2V generally) are reduced, i.e., they decrease
throughout their life. Meanwhile, the battery degrades, and
the SOHdecreases. This behavior can be observed in all LIBs.

FIGURE 1. Charging voltage profiles from cycle 1 until cycle end of life.

FIGURE 2. Slope variation calculation from cycle 1 (points P1 and P2)
until cycle end of life points (P’1 and P’2).

III. NEW PROPOSED BATTERY
DEGRADATION INDICATOR
A. HEALTH INDICATOR DEFINITION
In this section, according to the analysis in the previous
one, the development of a new degradation indicator shaped
by data (voltages and times) from the CC charging voltage
profile is exposed.

Thus, the aging features, only based on the voltage curve
during the CC charging phase, were extracted.

As a result of the decrease in the charging times (due
to battery aging), the slopes (calculated between any two
points) of the charging voltage curves throughout the
charging/discharging cycles also have variation, although it
is increasing.

Thus, the slope for cycle 1 between points P1 and P2 is
shown in Fig. 2 and is defined in (3).

m = (V4.1 − V4.0)/(t2 − t1) (3)

and for the cycle EOL in (4)

m′ = (V4.1 − V4.0)/(t′2 − t
′

1) (4)

If the slopes of all the charging cycles (from cycle 1 to cycle
EOL) of a battery are calculated between two voltage levels
(for example, 3.8V to 3.9V), the trend is obtained as shown
in Fig. 3.

The x-axis indicates the number of battery charging/
discharging cycles and the y-axis shows the calculation of the
slopes previously mentioned.

Thus, using these slopes a new proposed indicator called
‘‘degradation speed ratio’’ (DSR) is defined, which expresses
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FIGURE 3. Voltage range measured [3.8-3.9 V] for NASA B0005 battery.

the degradation speed of the battery measured in this voltage
range [3.8-3.9V] throughout all its charging cycles (from
cycle 1 to cycle EOL). V/s was used to measure the DSR.
For the example shown in Fig. 3, this speed increases from
0.2 mV/s to 1.4 mV/s throughout the 168 charging cycles.

This indicator expresses for each voltage range (e.g.
[3.8-3.9V]) what increase in the degradation speed (mV/s)
a battery has, and the higher than speed, the greater the fade
capacity is.

It is important to note that it is possible that the DSR slope
decreases temporally in some of these calculations. This is
due to the fact that the capacity at this moment increases.
However, this effect ismitigated in successive charging cycles
of the following DSRs.

B. DEGRADATION SPEED RATIO. METHOD
Once the DSR has been defined and the first speed between
two voltage points has been calculated (e.g. [3.8-3.9V]),
the remainder can be calculated for successive intervals of
the same charging voltage curve. Thus, e.g., the speeds for the
NASA B0005 battery calculated in the intervals [3.8-3.9V],
[3.9-4.0V], [4.0-4.1V], and [4.1-4.2V] are shown in Fig. 4.

After obtaining the speeds of the different voltage ranges,
it is necessary to analyze the correlation between each DSR
and the capacity indicator, 1-SOH (%) and 1/Cap (%),
respectively.

In this study, the inverse of the capacity (%) and the fade
capacity 1-SOH (%) were used because their correlation with
the DSR can be better visualized, as can be observed in Fig. 5,
that shows the four trends: two degradation rates [3.8-3.9V]
and [3.9-4.0V], the capacity fade (%), and the inverse of
capacity (1/Cap.(%)).

Fig. 6 shows the relationship observed between the SOH
and DSR, and the possibility of using it when only one of
these two variables is available in real time. In a very simplis-
tic approach, based on a linear regression model, it is possible
to conclude that the knowledge of DSR can provide a close
idea of the SOH dynamic, even when it is not observed, and
the similarity of both dynamics is within confidence bands at
level of 95% in both cases.

These correlations must be calculated for the DSR ranges
that need to be analyzed. Thus, Table 1 shows in the first four
rows the correlation between the DSR Ranges [3.8-3.9V],

FIGURE 4. Degradation Speed Ratio for NASA B0005 battery. (a) DSR
range [3.8-3.9V]. (b) DSR range [3.9-4.0V]. (c) DSR range [4.0-4.1V]. (d) DSR
range [4.1-4.2V].

FIGURE 5. DSR [3.850-3.9V] and DSR range [3.875-3.9V] vs. 1-SOH and
1/Capacity.

FIGURE 6. Relationship observed that exists between the SOH and the
DSR. (a) 1/Capacity vs. DSR [3.8-3.9V]. (b) 1-SOH vs. DSR [3.8-3.9V].

[3.9-4.0V], [4.0-4.1V] and [4.1-4.2V] vs. 1 / Cap (%) and
Fade Capacity (%) respectively.

The DSRs can be measured in whatever charging voltage
range is deemed appropriate. In this study, DSR R1 [3.8-
3.9V]was selected since it has the best correlation coefficient,
as is shown in Table 1.

To reduce the measurement times of the DSRs and have
more DSR ranges available for the method, the best corre-
lation range ([3.8-3.9V]) was split into four subranges, and
their correlation coefficients were subsequently calculated.
Thereby, if a cell in an instant does not need to charge in that
voltage range, it will be performed in another chosen one. For
example, DSRR8 is the first option and DSRR7 is the second
option, [3.850-3.875V] and [3.875-3.9V], because they have
the highest correlation coefficient.
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TABLE 1. Correlation between the DSR Ranges [3.8-3.9V], [3.9-4.0V],
[4.0-4.1V] and [4.1-4.2V] vs. 1 / Cap (%) and Fade Capacity (%),
respectively.

In this study, four subranges were deepened, i.e., a voltage
increase of 0.25V, but the voltage range can continue to be
reduced according to needs and correlation analysis can be
performed with the capacity variable to be corroborated.

Thus, the choice of the voltage range is made with the
maximum correlation index because all data are available.
However, in real life, when the entire dataset is not available,
the choice of voltage range can be made according to several
criteria due to the versatility of the indicator.

For example, it is possible to look at the charging profiles
(observed during a week, e.g., ) when a battery begins its life
(during its first charge cycle) and see which voltage ranges
are the most used or have the highest frequency. Thus, it is
possible to select (to estimate the battery fade capacity) one,
two, three, or several of these voltage ranges. Hence, a real
and optimal dataset will be built (to be used for this indicator)
because a higher frequency of use area in battery operation
will be covered.

In case of limited resources, a unique voltage range will be
chosen, the one with the highest frequency of use. Once this
range has been chosen, and due to the fact that the voltages
and the time are always available, the DSR can be easily
calculated.

Another example is the behavior of the DSR on the
lithium-ion battery ‘‘BMP-cell2’’ working with different
charging currents has also been analyzed, as shown in
Fig. 7. This battery operation is carried out with different
charge/discharge current levels, and it is possible to measure
(as Fig. 7 shows) the DSR in a voltage range [3.75-3.8V]
using different charging currents on the same ‘‘BMP-cell2.’’

C. ADVANTAGES OF USING DSR
The main motivation of this work, are the advantages of using
the DSR indicator. They are multiple, but the most important
is its efficiency, especially when considering its simplicity of
calculation versus its relevance (sensitivity to capacity). Other
remarkable advantages are listed below:

(1) DSR is an indicator with a high correlation coefficient
of battery fade capacity since it relates and allows
for not only the charging times [17], [18] but also
charging voltage.

(2) The aforementioned time measurement reduction,
e.g., a full charging/discharging cycle of the NASA

FIGURE 7. Degradation speed ratio for OXFORD BMP-Cell2 battery. DSR
range [3.75-3.8V] and 4A and 5A of current measure.

B0005 battery spends approximately 7000 s (4000
charges + 3000 discharges). It is not needed to wait
for the full charge and discharge battery cycle using
this method, the time used to measure the predictive
variables is reduced to 500 s, the time spent to calcu-
late the DSR in the range [3.8-3.9V] in the BOL of the
LIB. Therefore, it is obtained a reduction time in the
measurement of 93% for the charging/discharge cycle
and 84% with respect to the charging cycle.
This data of 500 s was used as a reference example
in this paper, but these measurement times depend
on the level of charging current used and the ampli-
tude of the voltage range chosen (e.g., 0.1V, 0.05V,
0.025V). The higher the intensity, the shorter the
charging and measurement times used; similarly, the
smaller the amplitude of the voltage range, the shorter
the measurement time used.

(3) This new DSR indicator allows to see the trend of
battery degradation at any time without having to esti-
mate the SOH. If two DSRs are compared, in the same
voltage range but measured at different times, it can
be observed if this degradation remains constant over
time (within confidence bounds) or if, by contrast,
it is accelerating and how much, in order to carry
out any preventive operation or maintenance measures
thereon.

(4) DSR can be measured in different voltage ranges,
resulting in different DSRs that can advance the bat-
tery degradation process. For example, when will the
battery reach its EOL, since as shown in Fig. 8, begin-
ning with cycle 800, the fade capacity goes from being
25% to 100% in only 200 cycles, just like DSR, which
goes from 0.07mV/s to 0.81mV/s in those 200 cycles.

(5) It can be used as an independent indicator and an
alternative option to substitute the traditional SOH,
as explained later, since in real life, the SOH verifi-
cation can only be carried out under laboratory condi-
tions (capacity test), and this does not occur with the
new DSR, which can be measured at any time.

(6) The implementation in a real BMS should be easy,
because once the voltage range to be measured has
been chosen, it is only necessary to calculate the
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FIGURE 8. Degradation speed ratio for CALCE CS2_37 battery. (a) DSR
range [3.8-3.9V]. (b) DSR range [3.9-4.0V].

TABLE 2. GRP errors model using DSR [3.875-3.9V] as input vs. 1/Cap
with NASA and CALCE batteries dataset.

TABLE 3. LR errors model using DSR [3.825-3.850V] and DSR [3.850-3.75V]
as input vs. DSR [3.875-3.9V] with NASA and CALCE batteries dataset.

slope of that piece of ‘‘voltage segment’’, and that is
instantaneous.

D. DSR AS A HI
Keeping inmind the advantage number fivementioned above,
for the validation of the DSR [3.875-3.9V] as an HI, the
capacity estimation was performed with a single DSR range
[3.875-3.9V] as input to a GPR model [24] for the six cells of
the chosen datasets.

Table 2 illustrates the accuracy of the GRP model
using DSR [3.875-3.9V] as input with the batteries B0005
and CS2_37.

Once the DSR indicator [3.875-3.9V] is certified as a valid
instrument to evaluate battery degradation, it is possible to use
a simple linear regression (LR) with the two previous DSR
ranges: [3.825-3.850V] and [3.850- 3.875V] as model inputs
to estimate the mentioned DSR [3.875-3.9V].

Table 3 shows the results obtained with the LRmodel [25]:
One of the advantages of using this DSR indicator

[3.875-3.9V] is that the real measurement of the output vari-
able can be obtained much more frequently and easily than
the capacity, and thus be able to correct our model of real-
time estimation.

As the output variable DSR [3.875-3.9V] has a very high
SOH correlation (R2

(AVR) = 0.99, for the six batteries in

Table 2), the DSR works as a very reliable estimator of the
degradation capacity that can be measured in a more direct
and simple way.

Although, in case of preferring the traditional indicator
(the capacity as HI (SOH)), the data in Table 2 also show a
high accuracy in the capacity estimation with a single input
variable: DSR [3.875-3.9V].

There are other studies (e.g. [6] and [10]) that use a volt-
age segment to develop an HI, but on the one hand, e.g.
Liu et al. [10] uses this ‘‘voltage segment’’ measured in a
constant time interval (T), from a chosen voltage. Thus, this
HI is a 1V (voltage increase). In our method, the HI (DSR)
considers voltage and time; therefore, the HI is sensitive to
these two parameters. On the other hand, the Feng et al. [6]
method needs ‘‘voltage segments’’ vs. SOC of the charging
curve for different levels of SOHs and the Incremental Capac-
ity Analysis (ICA), in order to train an SVM model. The
online estimated SOH is calculated by comparing a ‘‘voltage
segment’’ vs. SOC curve measured during 15 min, with the
‘‘voltage segment’’ curve calculated by the SVM model.

In our method, DSR only requires a small charging ‘‘volt-
age segment’’, which simplifies the method and makes it
different from existing ones, because none (of the current
methods proposed in scientific literature) uses the slopes
calculated in a ‘‘voltage segment’’ of the charging curve
profiles to analyze its variation and relationship with battery
degradation.

IV. VALIDATION OF THE PROPOSED METHOD
Two different model methods were proposed to validate the
DSR HI as a degradation indicator. First, the DSR indicator
was used as an input variable of a GRPmodel [24] to estimate
the degraded capacity and compare the results. This GPR
model was used because it has been observed that the distribu-
tion of the data fits well with regions of Gaussian distribution.

Second, a similar experiment was performed using a neural
network type multilayer perceptron with 8 + 4 + 2 lay-
ers. This will allow for modeling the possible non-linear
characteristics underlying the relationships analyzed. Since,
as is known, an MLPNN is a universal functional approx-
imator able to model non-linear relationships with a good
performance.

Later on, the behavior of this model was testing using an
unknown dataset. Both of the approaches are described in the
following subsections.

A. MODEL 1. GPR
In this sub-section, to test the new DSR indicator, it was used
as an input of two GPR models to predict the SOH and to
compare the proposed method with other studies.

In this way, the NASA battery dataset (cells B0005, B0006,
and B0007) was used to train a GPR model in order to com-
pare the results with studies that use the same datasets. Sim-
ilarly, another GPR model trained with the CALCE dataset
(cells CS2_35, CS2_36, and CS2_37) was developed for the
same purpose to compare the results with similar models.
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TABLE 4. GPR errors model using DSR[3.825-3.850V], DSR[3.850-3.875V]
and DSR[3.875-3.9V] as input vs. 1-SoH with NASA and CALCE batteries
dataset.

TABLE 5. Comparative results of this study and the state of the art.

Once the models were trained, they were tested with values
set aside (not used in the training process) for this purpose.
Table 4 lists the error indicators, and Fig. 9 shows the trends
of the estimated and real values from the B0005 and CS2_35
batteries tested with each of their models.

Table 5 was created using the results of themodels from the
papers mentioned above in the state-of-the-art introduction
section to compare these results with the results obtained by
the proposed method.

Furthermore, in order to analyze the DSR behavior using
the GPR model to estimate the 1-SOH, for this study, another
model has been trained using battery data sets B0005, B0006,
B0007, CS2_35 and CS2_37, to be tested with the battery
data set CS2_36, later on. In the same way, Fig. 10 shows the
errors and the actual and estimated values trends.

The data used in the manuscript and in the papers cited in
the ‘‘state of the art’’ of the introduction section are from a
laboratory setting (NASA, CLACE, and OXFORD).

In real life, BMS systems implement integrated cir-
cuits (ICs) for the batterymonitoring process to achieve errors
below 0.25% of the voltage. Consequently, they will not
contain any noise, and the GPR model will not be affected.
Furthermore, sensor fault diagnosis models such as those
proposed in [28] can be applied if necessary. Implementing
both solutions, the measures used in the model in real life
would not be compromised without corresponding detection.

The use of this new HI has another advantage: it depends
only on the measurement of the voltage for its use; it is
more robust against failures and greater ease of detection,
not needing sensors of temperature, currents, resistors, etc.,
and other measures or calculations used as input in other
prediction models.

B. MODEL 2. MLPNN
In addition, as an added value to this study, anMLPNNmodel
was trained [29], which is the basic core of the major neural

FIGURE 9. GPR model trend. (a) Tested with B0005 battery dataset.
(b) Tested with CS2_35 battery dataset.

FIGURE 10. GPR model trend. Tested with CS2_36 battery dataset.

network designs used in deep learning. By using the newDSR
indicator (DSR[3.825-3.850V], DSR[3.850-3.875V], and
DSR[3.875-3.9V]) as the input of the basic core (MLPNN,
8+4+2 layers) of the neural network model, to estimate the
battery degradation and analyze how it responds with other
battery datasets not used in the training process model. Thus,
the battery dataset used for training was formed by batteries
B0005, B0006, CS2_35, and CS2_37, and later on, it was
tested with B0007 and CS2_36 battery datasets.

The results are shown in Fig. 11 (test B0007 and test
CS2_36) and Fig. 12 (test B0007+CS2_36), where good
behavior with an unknown battery dataset can be seen as well
as accuracy in the same order ofmagnitude as themodels used
in other studies, but with a ‘‘real’’ battery dataset.

As has been proved, in both models (GPR and MLPNN),
the results are very good, tested with unknown data,
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FIGURE 11. MLPNN model trend. (a) Tested with B0007 battery dataset.
(b) Tested with CS2_36 battery dataset.

FIGURE 12. MLPNN model trend tested with test B0007+CS2_36 batteries
dataset.

validating the indicator proposed within the ‘‘research frame-
work’’ defined in this paper.

Thus, the method and indicator provide speed in estimating
the ‘‘fade capacity’’ and simplicity. It is expected that if
more complex neural networks (deep learning) with this new
indicator were used, the results would be even better, but that
may be a motivation for future work.

V. CONCLUSION AND FUTURE RESEARCH WORK
In this paper, a new HI (DSR) of the degradation state of
LIBs is presented, which is sensitive to aging and can even
anticipate total failure (EOL). Both the sensitivity and accu-
racy are due to the fact that the DSR is calculated with the
charging voltage and the charging times in determined volt-
age ranges (excluding the total charging/discharging process,
temperatures, resistances, impedances, etc.), so the use of this
DSR indicator is much faster to measure and estimate than
traditional SOH.

In the same way, these two variables (voltage and time)
can be measured directly during battery operation and
very quickly, making it possible to determine the battery

degradation level at all times (online), with the advantage that
this entails for SOC calculating and batterymaintenance. This
makes it very easy to implement in any BMS system.

Using these two variables (voltage and time), the newly
proposed DSR indicator can be calculated easily (no regres-
sion model is needed) and quickly (measuring these variables
and performing two operations (subtraction and division).
In addition, this new HI (DSR) can be obtained at any time
during battery operation and being able to choose between
any voltage range and different currents.

As has been shown, the DSR indicator has very accurate
results when used as input models owing to its high sensitivity
and similarity in the battery capacity evolution, which makes
the computational effort, for model development, very low
and makes high-accuracy prediction models.

In this paper, the empirical results of the developed models
are presented and compared with other data-driven methods.
In addition, the results of three GPR and MLPNN models
trained with data from four batteries and validated with dif-
ferent battery datasets are presented. The results have high
accuracy (R2

= 0.98) for unknown data in both models.
Therefore, in conclusion, the method used can be repli-

cated in other scenarios, since both the GPR and MLPNN
models were tested with ‘‘real’’ unknown datasets. The
authors consider that these tests suggest that the indicator and
model can be replicated for any lithium-ion battery.

Future research work related to this study may focus on
the development and implementation of this new method
of evaluating battery degradation in a real BESS. Thus, the
new indicator (DSR) can be evaluated and compared with a
traditional SOH.
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