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ABSTRACT The recent increase in sedentary lifestyles has highlighted the importance of physical activity
in our daily lives. Although fall accidents are a common cause of injuries among the elderly, walking is
one of the simplest physical activities available. Therefore, walking route selection and identification of
walking behavior in different scenarios remains a widely researched area. This paper is about developing
a walking-route recommender system that proposes a safe route to the user and reduces the probability of
fall accidents. We determine route candidates after the start and endpoints are fed to the system. Then the
tripping risk involved in each route candidate is identified by performing several walking simulations of a
digital human model on a three-dimensional laser-scanned point cloud. Finally, a safe route is determined
after considering the user’s age and the tripping risk. It was confirmed that tripping risk could be competently
estimated according to the considered age group.

INDEX TERMS Navigation, fall prevention, tripping risk, walking simulation, digital human model, point
cloud.

I. INTRODUCTION
Since ‘‘stay home’’ is recommended worldwide to prevent
COVID-19 infection, the physical movement has drastically
reduced. Health-care workers and medical experts recom-
mend walking as a critical determinant for alleviating the
onset of lifestyle-related diseases. Knowing the value of
mobility for a better Quality of Life (QoL) can increase moti-
vation to perform at-home exercises [1]. In Japan, walking has
been embraced by individuals of all age groups but is espe-
cially popular among those aged 50 years, and the elderly [2].
Walking is a routine exercise, but it is challenging to maintain
the motivation for such a time-consuming and monotonous
activity. The motivation for walking can be maintained by
(a) ensuring an appropriate amount of exercise, (b) alerting
users of the beneficial effects of training, and (c) providing a
safe route. In a related research (a), Claes et al. developed a
smartphone platform to present the degree of physical burden
during exercise to users [3]. This degree of burden was esti-
mated from acceleration and heart rate data measured through
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wearable devices attached to the chest. In another research to
promote awareness of training effects (b), Hargreaves et al.
performed a walking program for 12 weeks. They presented
the target number of steps set according to the individual
based on the individual’s record of past steps [4]. An increase
in self-efficacy was observed as the average number of steps
per day increased. In another research to support safety
assurance (c), Lee et al. developed a system to predict falls
using a smartphone’s acceleration sensor [5]. The importance
of ensuring safety (c) is exceptionally high because there
are several instances where walking is discontinued due to
difficulties after a fall.

Fall risk is affected by the walking environment that
involves geographical features and human features, such as
exercise capacity. In a research on determining the fall risk in
an environment, Curl et al. developed a checklist for assessing
the road surface for walkability. The checklist items were
decided by interviewing older adults in detail where they
needed to pay attention while walking and where falling
probability was high [6]. In another research on determining
fall risk affected by exercise capacity, Begg et al. developed
a system to display the minimum toe clearance information
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to the user by measuring the foot’s trajectory while walking
in real-time [7]. These researches presented the fall risk to
pedestrians to ensure a safe road and to warn of danger. In this
situation, although pedestrians can recognize dangerous loca-
tions through the warning system while taking a walk, they
are not aware of a safe path where they can walk with a lesser
risk of falling.

Currently, no work has been done that recommends a safe
route to pedestrians before they begin the activity. Therefore,
this paper presents a walking-route recommender system that
proposes a safe route with lowered fall risk. We performed
the route recommendation based on fall risk calculation.
The environment map data of the concerned area is used to
determine the recommended route. The fall risk is calculated
through an existing tripping risk quantification method using
a digital human model on a three-dimensional (3D) laser-
scanned point cloud of the walking environment. The remain-
der of this paper is organized as follows. The Introduction
section is followed by Related work, in which a system-
atic yet brief literature survey is provided. The following
section describes the proposed walking route recommenda-
tion method based on fall risk calculation. This section is
followed by a use case of the proposed method, and the paper
is finally concluded.

II. RELATED WORK
In this section, we report recent research advances related
to this paper. We divide the literature into four areas: route
recommendation systems, fall risk calculation, and Estima-
tion, using 3D maps for navigation and behavior study of
pedestrians.

A. ROUTE RECOMMENDATION
Simulation and recommendation of evacuation methods is
a type of route recommendation where public spaces are
considered [8]. Such types of researches help design evac-
uation strategies to reduce casualties and damages in the
events of natural or man-made disasters. Other researches
have highlighted the importance of walking route recom-
mendations for promoting good health [9]. Recent research
has proposed an application-based safe route planning solu-
tion using COVID-19 occurrence data for cyclists and
pedestrians. This study aims at keeping the users away
from virus transmission spots [10]. Environmental factors
such as air cleanliness [11], land use mix, infrastructure,
aesthetics and accessibility [12], transport carbon foot-
print [13], and post-rain accumulated water [14] and traf-
fic factors [12] such as traffic volume and speed, quality
of path surface, and safety level of road crossings have
also been made primary factors for route recommendation
algorithm design. The Land Use Regression (LUR) model
was used to model the concentration of black carbon to
be calculated in the route candidates for home-to-school
commuting [11]. Other researches have aimed at design-
ing route recommendation algorithms for the specific ben-
efit of Chronic Obstructive Pulmonary Disease (COPD)

patients [15], visually impaired users [16], and Patients with
Motor Disabilities (PWMD) [17]. Such researches have given
more importance to the customization of the algorithm using
user-specific necessities. Gharebaghi et al. have proposed a
Fuzzy Approach for PWMD user (on manual wheelchair)-
specific route recommendation in which the user’s confi-
dence while dealing with obstacles such as uneven pavement
and slopes is used to personalize the route [17].

B. FALL RISK CALCULATION AND ESTIMATION
Fall risk calculation is another primary aspect considered
in this paper. Therefore, we report the recent works that
have significantly contributed to this area. Three categories
of researches have evolved, namely: reasons contributing to
falls, fall prevention strategies, and fall risk factors [18]. Iden-
tifying the risk factors that contribute to falls helps us design
optimum fall prevention strategies. Jensen et al. have cate-
gorized these risk factors as extrinsic and intrinsic (health-
related) [19]. Extrinsic risk factors include the environmental
conditions present in the individual’s surroundings, such as
clutter, land or floor elevation patterns, loose rugs leading to
tripping hazards, lack of railings or grab bars to hold in stairs
and bathing areas, and poor lighting. Intrinsic factors include
the individual’s mental and physical condition. Assessment
models such as Home Assessment Profile (HAP) [20], cumu-
lative risk score [21] and FROP-Com (Fall Risk for Older
Adults in the Community) [22] were developed for risk calcu-
lation by considering the extrinsic factors. A fall risk assess-
ment algorithm for the Japanese inpatient population was
proposed recently by considering nine individual intrinsic
factors that contribute to increased risk of falls [23]. Fall risk
assessment can be done in static and dynamic situations. The
intrinsic factors are dynamic since the individual’s condition
changes as they progress in the environment. Simulation
techniques, on the other hand, can predict fall risk in ‘what-
if’ situations [24]. Such simulation is beneficial in evacuation
scenarios where environmental factors play a significant role.

C. USING 3D MAPS FOR NAVIGATION
3D digital maps are becoming increasingly on-demand for
applications involving smart cities, high-tech living, and
autonomous navigation. These are the next step of digi-
tal cities, and an essential tool for storing spatial informa-
tion [25]. 3D maps have been proved to be more beneficial
to identify specific intricate locations for pedestrian navi-
gation when compared to 2D maps. Three main support-
ive aspects that can be delivered better through 3D maps
compared to 2D are self-orientation, navigation decision,
and the knowledge of spatial information [26]. 3D maps
are generally constructed using camera-based approaches.
Novel data management and processing methods are also
being introduced. Jeong et al. proposed odometry estimation
for live 3D point cloud registration and error minimization
to remove moving vehicles and pedestrians from 3D point
clouds using 2D semantic segmentation [27]. These processes
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were achieved to ensure low computational time and efficient
3D map construction.

D. BEHAVIOUR STUDY
Studying the behavior of pedestrians in specific environments
helps us design more efficient navigation systems tailored to
the needs of the users. Environmental features are the most
prominent factors that affect pedestrian behavior. Studies
have shown that people prefer straight, direct paths rather
than zig-zag paths, irrespective of the energy expenditure
involved [28]. Additionally, visual environmental features
can influence the walking speed of pedestrians. The walking
speed was reported lower in spaces with a higher degree of
natural characteristics such as greenery. In such spaces, peo-
ple also tend to find city noises more annoying as compared
to less natural spaces [29]. The noises we encounter while
walking also significantly affect our walking speed. Peo-
ple increase their walking speed as they hear traffic noises,
whereas relaxation sounds such as birdsong relax the individ-
ual and lower their walking speed [30]. However, it was also
observed that active commuting (biking and walking) is often
evaded due to psychosocial and personal barriers rather than
environmental barriers [31]. The usage of smartphones can
have an impact on a pedestrian’s priorities. In a Korean study,
smartphone walkers reported safety and route quality as
essential for route selection. On the other hand, walkers with-
out smartphones considered distance and positive walking
experience to bemore critical [32]. Using smartphones during
walking has an apparent effect on the walking speed accom-
panied by distracting behavior [33]. Accessibility and street
connectivity were also strongly correlated to walkability in
the pedestrian street by Jabbari et al.. Here, accessibility was
calculated by Angular Segment Analysis by Metric Distance
(ASAMeD), and street connectivity was calculated through
the space syntax measure of connectivity [34]. An agent-
based study showed that landmarks tend to improve the user’s
correspondence with the navigation routes. Therefore, land-
marks play an essential role in route planning and also tend
to lead agents towards green areas more frequently [35].

III. WALKING ROUTE RECOMMENDER SYSTEM BASED
ON FALL RISK
A. SYSTEM CONFIGURATION
This study proposes a system that recommends safe walking
routes. At first, the user inserts the start and endpoints of their
route. The system determines multiple routes between the
two points. The travel distance and the fall risk by tripping
are estimated for each route. Finally, an appropriate and safe
walking route is determined for the user based on the fall risk,
distance, and user’s age. The path structure is acquired from
Google Maps, and the roughness present on the surface of the
road (which largely determines the fall risk) is acquired from
a 3D laser-scanned point cloud of the environment (called 3D
map).

Figure 1 shows the walking-route recommender system.
The system consists of a tripping risk calculator (A1) and

FIGURE 1. System configuration (DB: database).

a recommender (A2). Part (A1) creates the database of the
tripping risk by walking simulation on the 3D map [36].
Part (A2) creates a route candidate group from the start to
endpoints based on Google Maps and determines the tripping
risk along every route candidate using the tripping database.
Finally, the route La that minimizes the user’s tripping risk in
their age group is recommended.

B. CALCULATING FALL RISK USING 3D MAPS AND
DIGITAL HUMAN MODEL
The tripping risk calculation part (A1) prepares a tripping
risk database along each walking route. This database is
vital to determine the optimum route that involves the lowest
probability of tripping. An existing technique calculates the
tripping risk, namely, simulation of the walking situation on
a 3D laser-scanned point cloud [36]. Our route recommender
system is visualized by a 3D laser-scanned point cloud of the
Nihon University campus of Japan. The fall risk calculation
method is reported below in further detail.

1) ESTIMATION OF THE WALKING SURFACE AND PATH
STRUCTURE FROM THE LASER-SCANNED POINT CLOUD
This method first includes the extraction of a point cloud
representing the walking surface [36]. This extraction is
done by the popular region-growing method [37]. The path
graph illustrating the environment’s route connectivity is
constructed based on the obtained point cloud distribution.
Figure 2 shows the image of an original point cloud and a
path graph showing the various route connections of the same
point cloud. From this path graph, the walking trajectory from
the start point to any target point and the possible walking
motions on the 3D point cloud can be simulated [38].

2) SIMULATION WITH THE DIGITAL HUMAN MODEL (DHM)
Walking simulation using the DHM is performed on the
actual environment model mentioned in the
section III-B1 [39]. The DHM had 41 degrees of freedom,
and the dimensions of each segment of the body are based on
the gait database [40].
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FIGURE 2. The generated navigation graphs from point cloud data.

The simulation is realized in three steps as proposed
in [36]. The first step is to select nodes and edges between
q0 and qe or the start and endpoints, respectively. The sec-
ond step is to determine the walking trajectory sk based
on an optimization algorithm. The third step simulates the
walking motion, i.e., full-body motion during the walking
trajectory sk . The simulation generates the motions of each
step referring to the flat-walking motion data captured in the
gait database [40] and the walking-related parameters (step
length and toe clearance) [41].

3) CALCULATION OF THE TRIPPING RATE
The tripping rate is calculated in a Monte Carlo simula-
tion [42], where the walking simulation is executed many
times with different walking parameters [36]. In each trial,
occurrences of tripping or non-tripping are estimated by sim-
ulating the collision between the DHM foot and the walking
surface. The toe clearance Ct is the difference between the
current toe height of the DHM and the height of the road
surface where the next step will be placed during the walking
simulation. Figure 3 shows the foot of the DHM and the road
surface for determining the toe clearance Ct in two differ-
ent situations of safe and tripping surfaces. In other words,
Ct ≤ 0 represents the conditionwhen the toes of the swing leg
of the DHMmodel are positioned at a lower height compared
to the walking terrain, such that tripping probability is high.
When the foot of the DHM interferes with the road surface
as shown in Figure 3(b), i.e., the condition of Ct ≤ 0 is
encountered, it is judged as tripping.

The number of tripping occurrences Ctrip in each trial of
walking simulation is calculated by Equation 1. The ratio of

FIGURE 3. Conditions for determining tripping risk in simulation.

the number of tripping occurrences Ctrip to the total number
of simulations Nsim is termed as the tripping rate r(q0, qe)
while walking from point q0 to qe. Therefore, the tripping
rate r(q0, qe) is given by Equation 2.

if Ct ≤ 0 then Ctrip = Ctrip + 1 (1)

r(q0, qe) =
Ctrip
Nsim
× 100 [%] (2)

The algorithm described in this section is used to calculate
the tripping rate involved in a particular walking trajectory
between the start position q0 to the end position qe to quantify
the fall risk.

C. RECOMMENDATION OF THE OPTIMUM WALKING
ROUTE CONSIDERING TRIPPING RISK
Part (A2) of the proposed system refers to the tripping risk
database obtained in part (A1) and recommends route can-
didates to the user, avoiding routes with high tripping risk as
shown in Figure 1. A group of route candidates L is generated
from the map data (Google Maps).

A route candidate group is termed as L = {Li | 0 ≤ i ≤ N }
where Li is the ith route candidate. The total distance to be
walked if the ith route candidate Li ∈ L is selected, is repre-
sented as d(Li). The structure of the route candidate group Li
is shown in Figure 4. The ith route candidate consists of relay
points pj between the start point p0 and the end point pM such
that pj | 0 ≤ j ≤ M . Next, the fall risk t(Li) along each route Li
is calculated based on the tripping risk data obtained during
the step (A1). Finally, a safe route with low tripping risk is
recommended as the route La that minimizes the tripping risk.
The route recommendation method is detailed below.

1) GENERATION OF THE ROUTE CANDIDATE GROUP L
A route candidate group is prepared to compare the fall risk
involved in each route. After the user specifies the start and
endpoints (p0 and pM , respectively) of the walking route, the
shortest-route L0 between p0 and pM is determined by the
shortest-route search method [43]. Moreover, theN th shortest
path search method [44] generates route candidate groups
L = {Li} in the order of decreasing distance d(Li).
As shown in Figure 5, all relay points of the shortest route

are considered as branch point candidates in the N th shortest
path searchmethod [44]. The shortest route search is executed
from the start to each branch point and from the branch to the
endpoints. The distance covered in each shortest route for all
branch points is calculated. The shortest path among these
moving distances is finally selected. This process is repeated
N times to find the N thshortest path.
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FIGURE 4. Structure of the route candidates.

FIGURE 5. Procedure for determining the Nth shortest path.

2) COORDINATE TRANSFORMATION OF ROUTE
CANDIDATES AND WALKING TRAJECTORY
The coordinate system represents the relay points of the route
candidates Li and the walking simulation trajectory sk in the
tripping risk database. The relay points pj along the route
candidates Li (Li ∈ L) are expressed by their longitude and
latitude in the geographical coordinate system. Alternatively,
the start point q0 and endpoint qe along the trajectory sk
created in section III-B2 are represented in the Euclidean
coordinate system of the point cloud data. Thus, these data
are converted to a common rectangular coordinate plane (9
series) [45].
(a) Transformation from geographical coordinates

The geographical coordinate system is converted into
a rectangular coordinate plane through a conventional
coordinate transformation formula [45]. This helps to
express the relay points ĝj along route Li in rectangular
coordinates.

(b) Transformation of point cloud coordinates
The next step is to construct the coordinate trans-
formation matrix T . Eight landmark points (such as
corners) are selected from the 3D map and desig-
nated as xi (i = 0, 1, 2, . . . , 7). The corresponding
eight points yi (i = 0, 1, 2, . . . , 7) on the rectangular
plane are also manually selected from Google Maps.
Now the X and Y coordinates are designated as X =
[x0, x1, x2, . . . , x7],Y = [y0, y1, y2, . . . , y7]. A coordi-
nate transformation matrix T is calculated from xi to yi
to satisfy yi = Txi. Using the obtained matrix T , the
coordinates of the start q̂0 and the end points q̂e of the
walking trajectory sk are expressed in the rectangular
plane coordinate system as follows:

[q̂0, q̂e] = T × [q0, qe] (3)

This coordinate transformation gives the route candidate
L = {L ′i} (L

′
i = {p̂j}), and the walking simulation trajectory

FIGURE 6. The positional relationship of p̂j , p̂j+1, q̂0, q̂e.

FIGURE 7. Condition to calculate the distance (d ).

group S = {s′k | 0 < k < Ns} in the rectangular plane
coordinate system is also obtained. Each walking simulation
trajectory can be represented as s′k = {q̂l | 0 ≤ l ≤ e}.

3) DETERMINING THE WALKING TRAJECTORY s′k
BELONGING TO THE ROUTE L′i
The walking trajectories s′k belonging to each route candidate
L ′i are searched from the walking trajectory group S = {s′k}
of the tripping risk database. As shown in Figure 6, the start
and end points of the walking trajectory s′k are set to q̂0 and
q̂e, respectively, and the relay points of the routes are set
to p̂j. After ensuring that q̂, p̂j, and p̂j+1 satisfy Equations 4
and 5, the distance d between the line segment connecting
p̂j, p̂j+1 and the point q̂0 or q̂e is calculated by Equation 6.
In Equation 6, n is the normal vector of the line segment
connecting p̂j, p̂j+1 and the point on the walking trajectory
s′k (q̂0 or q̂e).

(p̂j+1 − p̂j) · (q̂− p̂j) > 0 (4)

‖ q̂− p̂j ‖<‖ p̂j+1 − p̂j ‖ (5)

d(q, pj, pj+1) =
‖ (q̂− p̂j) · n ‖
‖ n ‖

(6)

As shown in Figure 7, Equations 4 and 5 are satisfied when
the foot of the perpendicular line from the point q̂ to the
line segment connecting p̂j and p̂j+1 coincide with the line
segment itself. When the distance d from route L ′i is less than
or equal to the threshold l for points q̂0 and q̂e, then trajectory
s′k belongs to L

′
i as shown in Equation 7.

d (q̂0, p̂j, p̂j+1) ≤ l ∧ d (q̂e, p̂j, p̂j+1) ≤ l (7)

The walking trajectory s′k belonging to the route L
′
i is defined

as a walking trajectory group sL ′i = {s
′
k}.

4) CALCULATION OF THE FALL RISK
The tripping rate r(q̂0, q̂e) is obtained from the tripping risk
database created in section III-B by specifying the walking
trajectories sL ′i on the route L

′
i and the user’s age (younger or

elderly people). The largest value among the tripping rates
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TABLE 1. The coordinates of the start point p0 and end point pM .

FIGURE 8. The positions of the start and end points.

{r(q̂0, q̂e)|s′k ∈ L ′i}(q̂0, q̂e ∈ s′k ) of the walking trajectory
group L ′i = {s

′
k} is considered as the tripping risk t(L ′i ) of

the particular route L ′i . The fall risk is averaged for each age
group of users (younger or elderly people) to determine the
tripping rate corresponding to the age group.

5) DETERMINING THE RECOMMENDED ROUTE La

Finally, the recommended walking route La that minimizes
the fall risk among the route candidate groups L ′i is deter-
mined, where t is the calculated fall risk in the route candidate
group L ′i as mentioned in section III-C4.

La = arg min
L ′i∈L

{t(L ′i )} (8)

IV. CASE STUDY FOR VALIDATING THE PROPOSED
METHOD
A. CONDITION
The walking simulation for calculating the fall risk was per-
formed using the DHM and a 3D laser-scanned point cloud
of the environment. The conditions and results are described
in this section.

1) SELECTION OF THE START AND END POSITIONS
The first step is to input the start p0 and end pM positions
of the desired walking route and the user’s age. The two
pairs of start and end positions selected for this case study
are shown in Table 1 and Figure 8. The optimum route La
was recommended for both young and older adults in each
condition. An extensive route search follows this.

2) POINT CLOUD DATA FOR CALCULATING THE FALL RISK
A 3D laser-scanned point cloud published by Nihon Univer-
sity was used for calculating the tripping probability. This

FIGURE 9. The point cloud data.

point cloud was measured by a ground-based laser scanner
RIEGL V2-6000 by Nihon University in August 2020. They
measured it at 63 places in the engineering faculty of the
campus. These individual point cloud data were combined
as one-point cloud data to calculate the tripping rate after
calibration. The point cloud data used is shown in Figure 9.
The total number of points after the combination into a single
point cloud were 104, 903, 184 points (600× 400 m).

3) DHM FOR SIMULATION
The walking simulation for calculating the fall risk was
performed using a DHM [40] under the conditions shown
in Table 2. The motion capture data of seven young and
seven older adults were used for the simulation. The walk-
ing simulation was repeated 500 times in the Monte Carlo
simulation for each subject. The walking parameters, swing
ankle height displacement, and the walking stride are updated
based on age-dependent statistics distributions during the
Monte Carlo simulation. The tripping rate was calculated
with N = 3500 (7subjects ∗ 500) simulations for each
young and elderly group. The parameter settings of sub. 1–7
correspond to the DHM of a young person, whereas those in
sub. 8–14 correspond to the DHM of an elderly individual.
To represent the route recommendation mathematically, con-
sidering 57 pairs of manually specified start q0 and end points
qe, the system generates the walking trajectory group S =
{s(q0,i,mqe,i)}(i ∈ [1, 57]) to simulate the walking motion
by DHM on each trajectory. The tripping rate is calculated
for the young (sub. 1–7 in Table 2) and the elderly (sub. 8–14
in Table 3) people separately. Given the walking trajectory
s(q0,i, qe,i) and the age group A, we could obtain the tripping
rate rA(q0,i, qe,i) on the specific walking trajectory.

B. RESULT
This section shows the results of the proposed walking route
recommendation system. Figure 10 shows a walking simula-
tion using the reported DHM. The calculation results of the
routes and their fall risk are shown in Figures 11 and 12.
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TABLE 2. DHMs for walking simulation.

FIGURE 10. A walking simulation representing a DHM in the point cloud.

TABLE 3. The result of fall risk in condition 1.

The points with the highest fall risk are marked by a red circle
in Figures 11 and 12. Tables 3 and 4 represent the distance
d(Li) and the estimated fall risk r for each route Li and age
group. Hence, the safest route for young and older adults
can be reported as La = L1 in condition 1 and La = L0 in
condition 2.

C. DISCUSSION
As shown in Tables 3 and 4, the recommended route can
minimize the fall risk r of both young and elderly people
were La = L1 in condition 1, and La = L0 in condition 2.
It has been reported in previous studies that routes that include
steps of height 50 mm have an average fall risk of 23 %
for young people and 30% for elderly [36]. The fall risks
of routes L1 and L2 exceeded 23 % for people of both age
groups in condition 2, and both routes included occurrences
of step height exceeding 50 mm. Hence, it can be said that
our proposed fall risk calculation method is reliable.

FIGURE 11. The result of the recommended route in condition 1.

TABLE 4. The result of fall risk in condition 2.

Comparing the fall risk by age group in the same route Li,
the fall risk during walking increases with age as shown in
Tables 3 and 4. In Japan, people aged fifty and above are
approximately seven times more likely to trip than people in
their twenties [46]. This trend was mirrored in the calculated
tripping risks r . We entered the age group (young or elderly)
of each subject to the database for identifying the differences
in the tripping risk between young and elderly subjects. The
simulation results using the 14-subject database clearly show
the difference in the fall risk between the two age groups. This
indicates that the DHMs of the young and elderly subjects
clearly made a unique impact on the fall risk.

The recommended routes for conditions 1 and 2 were
L1 and L0, respectively. In condition 1, the fall risk of L1 was
2.2 % for young and 4.4 % for elderly subjects. The route
with the lowest fall risk was recommended because routes
with very high and low fall risks were included in the route
candidates. However, suppose the user gives preference to
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FIGURE 12. The result of the recommended route in condition 2.

long-distance coverage for their walk. In that case, the rec-
ommender system can select moderate fall risk and more
extended distance coverage, which makes L2 as the optimum
selection for condition 1. For condition 2, the fall risk of
L0 was 12.8 % for young and 24.2 % for elderly subjects.
The route with the lowest fall risk was selected. Unlike con-
dition 1, in the case of condition 2, all other route candidates
show high fall risk, especially for the elderly. Therefore,
the best route recommendation is L0, no matter the distance
preferences.

In condition 1, if we observe the locations projecting
the most significant fall risks (marked with a red circle in
Figure 11), routes L0 and L2 included both curbs and road
bumps or unevenness (see Figure 13), and ditches immedi-
ately before the curb. The fall risk was higher at these sites
than along L1 because the step height was relatively large.
Therefore, it was confirmed that routes L0 and L2 with an
estimated high fall risk were avoided, while the safest route
L1 was proposed to the user.

Figure 14 shows the difference in fall risk between the
young and the elderly from Tables 3 and 4. In condition 2,
the difference in fall risk was 11.4 % for L0, 22.9 % for L1,
and 10.1 % for L2. Although the recommended routes for
the young and elderly subjects were the same in the case
study results reported in this paper, routes with significantly

FIGURE 13. An example point showing high tripping risk.

FIGURE 14. The difference in tripping risk between the elderly and
younger subjects.

different fall risks for the young and the elderly subjects
were confirmed. In route L1, older adults’ fall risk was sig-
nificantly higher than young people compared with other
routes. Although L1 can be recommended for young people
because the fall risk is low, it should not be recommended for
older adults because of high fall risk, thus, an unsafe route.
The efficiency of route selection can be further improved by
adopting a route such as L1, as the youth route candidate.
In the case of older adults, excluding such routes from the
candidate routes group would prevent dangerous route rec-
ommendations. A safer and more age-appropriate route can
be proposed by choosing the route based on the fall risk linked
to each age group and the distance covered.

Furthermore, suppose an individual (preferably young) is
looking for a challenging activity, apart from fall-risk reduc-
tion. In that case, the proposed methodology can escalate
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motivation to exercise by recommending challenging routes
to strengthen the user’s body functionality. In the future,
we aim at performing route recommendations considering the
user’s physical ability irrespective of age by evaluating the
user’s ability through pre-tests and measurements. In addi-
tion, the route’s safety can be evaluated more realistically
by adding indices such as the existence of stairs, road sur-
face conditions, post-rain water accumulation, presence of a
pedestrian crowd, adequate brightness, and collision proba-
bility with vehicle traffic. In terms of tripping risk calculation,
in real situations, pedestrians tend to fall due to tripping and
tend to lose balance due to other terrain features, such as step
down and uneven surfaces. The current version of the recom-
mender system focuses only on the calculation of tripping risk
by identifying the probability of collision between the toes
of the swing leg and walking terrain surface. However, future
work will cover additional factors associated with falling risk,
such as losing balance due to uneven walking terrain and
stepping down situations.

V. CONCLUSION
This paper proposed a walking route recommender system
to support pedestrians. We confirmed that the system could
propose a safe route by calculating the tripping rate through
walking simulation of a DHM on a 3D laser-scanned point
cloud. The system could also propose an age-appropriate
route by calculating the tripping risk according to the age
group.
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