
Received November 22, 2021, accepted January 4, 2022, date of publication January 14, 2022, date of current version January 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3143160

CAPTON—Centralized All-Path Transmission for
Over-Subscribed Datacenter Networks
NAN ZHOU AND JACK Y. B. LEE , (Senior Member, IEEE)
Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong

Corresponding author: Jack Y. B. Lee (jacklee@computer.org)

This work was supported in part by the General Research Fund from the Hong Kong Research Grant Council under Grant GRF/14206521,
and in part by the Chinese University of Hong Kong under Direct Grant 4055156.

ABSTRACT This work addresses an often-overlooked challenge in designing datacenter traffic control
schemes. Specifically, most existing schemes were designed for network topologies with non-blocking
network core. While this enabled the development of elegant solutions, core networks in practice are more
likely to be over-subscribed by the access layer network due to cost considerations. Consequently, existing
traffic control schemes may perform sub-optimally in real-world over-subscribed datacenter networks. This
work proposes a new centralized flow-based scheduling scheme called CAPTON which schedules flow
according to remaining flow size and link capacities to avoid congestion in over-subscribed networks. CAP-
TON employs all-path transmission to exploit all available paths and redundant links between source and
destination hosts to maximize resource utilization and eliminate the need for routing. Unlike switch-based
approaches, CAPTON does not require additional support from network switches and thus can be readily
deployed in current datacenters equipped with commodity switches.

INDEX TERMS Datacenter, networking, scheduling, congestion, over-subscription.

I. INTRODUCTION
Datacenter is one of the essential building blocks for today’s
global Internet services. Unlike the wider Internet, networks
within a datacenter are highly structured and optimized for
very high bandwidth (10’s to 100’s Gbps) with very short
delay (<100 us) [2]. While conventional Internet protocols
such as TCP/IP can and do work in a datacenter network,
their performances are often far from optimal [4], [10], [14].
For this reason, researchers have developed specialized proto-
cols [4], [10] and novel traffic engineering schemes [1]–[3],
[5]–[9], [11]–[14] to improve applications’ network perfor-
mance within a datacenter.

In this work, we investigate a practical issue in datacen-
ter networks that have received relatively little attention in
the literature. Specifically, most of the existing work was
developed based on the assumption that the core network,
i.e., the network interconnecting top-of-rack (ToR) switches,
is non-blocking, otherwise known as the ‘‘big switch’’
model [1]–[3] (Fig. 1). This model removes the core net-
work from resource allocation calculations, thereby enabling
the development of many elegant solutions for traffic
engineering [1]–[3], [14], [28].
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However, in large datacenters, the core network is far
more likely to be over-subscribed due to cost considerations
(e.g., 3:1 over-subscribed according to [24] and our con-
versations with CDN service providers). In over-subscribed
datacenter networks, the combined access bandwidth of all
host links will exceed the bisection bandwidth of the core and
hence, core network congestion can no longer be ignored.

Our investigation reveals that core network over-
subscription can substantially degrade the performance of
current datacenter traffic control schemes, including the state-
of-the-arts such as Pfabric [1], PIAS [2], and Hyline [14]. For
example, the mean Flow Completion Time (FCT) of Pfabric
for the websearch workload in a 3:1 over-subscribed topology
could increase by ∼300% compare to non-over-subscribed
topology (c.f. Section III).

This study develops a new traffic control scheme
called CAPTON - Centralized All-Path Transmission for
Over-subscribed Datacenter Networks to address the chal-
lenge due to over-subscription. There are four salient features
in the design of CAPTON.

First, CAPTON adopts all-path transmission where pack-
ets of a flow are transmitted over all available equal-cost paths
between the source and the destination to reduce flow com-
pletion time (FCT). This eliminates the need for routing and
exploits the availability of multiple alternative paths between
sender and receiver. Second, CAPTON employs a central

8208 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-5699-6749
https://orcid.org/0000-0002-3583-6428
https://orcid.org/0000-0003-3306-6148


N. Zhou, J. Y. B. Lee: CAPTON—Centralized All-Path Transmission for Over-Subscribed Datacenter Networks

FIGURE 1. The big switch model for datacenters assumes full bisection
bandwidth, congestions happen only at first and last hops
(ingress/egress port) of the topology.

controller to schedule the flows’ transmission order to reduce
FCT and to prevent congestion. Third, CAPTON imple-
ments a scheduling threshold where flows smaller than that
(e.g., 10 MSSs) are transmitted without scheduling to elim-
inate the performance penalty due to scheduling delay. Last
but not least, CAPTON does not require any support from
or runtime configuration of the network switches (e.g., for-
warding table) and thus could be readily deployed in current
datacenter networks using commodity switches.

We implemented CAPTON in NS2 [25] and evalu-
ated its performance using two standard datacenter work-
loads [27], [28]. For example, compared to Pfabric [1] – the
benchmark for near-optimal performance, CAPTON can
reduce the FCT under the websearch workload by 18% and
45% at core network load of 50% and 100% respectively in a
3:1 over-subscribed network.

The rest of the paper is organized as follows: Section II
reviews some previous relatedwork; Section III demonstrates
the over-subscription challenge by evaluating current state-
of-the-art schemes in an over-subscribed network topology;
Section IV presents the architecture and design of CAPTON;
Section V evaluates CAPTON’s performance and compares
it to current state-of-the-art; and Section VI summarizes the
study and outlines some future work.

II. RELATED WORK
We review some previous related work in this section by
dividing them into distributed and centralized approaches.

A. DISTRIBUTED APPROACHES
In distributed approaches, hosts perform traffic control inde-
pendently based on either implicit or explicit feedback from
the network. Early work focused on a unique problem in dat-
acenter – the in-cast problem where large number of senders
transmit data to the same receiver simultaneously [4], [10].
This transmission pattern is a result of common datacenter
workloads such as map-reduce [27] and web search [4].
In these scenarios, the aggregate data rate of multiple data
flows could cause serious congestion at the network links
leading to the receiver.

The best-known work to tackle the in-cast problem is the
Datacenter TCP (DCTCP) proposed by Alizadeh et al. [4].
DCTCP makes use of the ECN feature in supported net-
work switches to detect and response to congestion more
quickly than TCP’s built-in congestion control algorithm.
In another approach, Wu et al. developed ICTCP [10]
to dynamically adjust the TCP receive window accord-
ing to the estimated bandwidth left on the receiving inter-
face to limit the transmission window of the sender to avoid
congestion.

Beyond the in-cast problem, another group of previous
work focused on optimizing FCT and related performance
metrics. For example, PDQ [9] adopted a distributed preemp-
tive scheduling approach to schedule flows according to their
level of criticalness. Compared to ordinary TCP, PDQ could
achieve shorter FCT and meet the flows’ deadlines.

In another work, Alizadeh et al. developed the well-known
Pfabric [1] scheme which implemented the Ideal algo-
rithm [1] that approximates the Shortest Remaining Process-
ing Time First (SRPT) scheduling discipline using priority
queueing at network switches. Bar-Noy et al. [20] subse-
quently proved that Pfabric can achieve FCT performance
to within 2 times the optimal. However, Pfabric is difficult
to deploy as it requires network switches with an infinite
number of priority levels. Nevertheless, due to its proven
2×-optimal property, Pfabric is often used as the benchmark
for comparison.

Subsequent studies had further employed the SRPT prin-
ciple, e.g., Munir et al. proposed PASE [8] which adopted
SRPT and the distributed switch-based flow scheduling
approach in PDQ. In PASE, each link in the datacenter has
an arbiter to perform priority scheduling, and an arbitration
message from the end host traverses all arbiters along the
path to obtain scheduling decisions before data transmission
begins. PASE was shown to outperform even Pfabric in sim-
ulations. However, it requires an arbiter for each link and
custom processing in network switches, making deployment
more challenging.

In contrast, Montazeri et al. proposed Homa [3], which
does not require separate per-link arbiters by extending the
end-host-based scheduling approach in pHost [5]. It also
adopted SRPT as the approximation target and employed an
RPC-based protocol to coordinate flow scheduling entirely
between end hosts. This is possible because Homa assumes
that the host access links are the only bottlenecks, i.e., the
big-switch model, where their utilizations are known to the
hosts.

In another approach, Bai et al. developed a more readily
deployable scheme called PIAS [2], which employed priority
queues available in existing switches to implement aMultiple
Level Feedback Queue (MLFQ) mechanism to approximate
the Least Attained Service First (LAS) discipline. Unlike
SRPT, LAS does not require prior knowledge of the flow size
before transmission takes place and is thus easier to deploy.
The tradeoff is potentially lower FCT performance compared
to Pfabric due to the choice of LAS vs SRPT.
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TABLE 1. Average FCT (ms) For Existing Schemes With and Without Core
Network Oversubscription.

B. CENTRALIZED APPROACHES
There are several different centralized approaches targeted
at different problems in datacenter networks. For exam-
ple, routing-specific approaches such as Hedera [11] collect
switch statistics to find elephant flows to re-route the traffic
to achieve load balance and to avoid potential congestion.
Rate-specific approaches such as SDTCP [12] employed
Software Defined Networking (SDN) where SDN-enabled
switches report congestion status back to the controller via
OpenFlow [19] so that the controller can regulate flows to
avoid congestion.

In another study, Perry et al. proposed a fine-grained sched-
uler called Fastpass [7] where a centralized arbiter performs
packet-level scheduling and routing to achieve zero queuing
in the network fabric. The tradeoff is higher complexity due to
the packet-level scheduling/routing processing required [6].
In a follow-up work, Perry et al. proposed Flowtune [12]
where individual flow is sub-divided into flowlets. The cen-
tral controller then schedules flowlets instead of individ-
ual packets to reduce its complexity. Flowlet pre-calculates
routes and employs the network utility maximization (NUM)
framework developed by Nagaraj et al. [6] to optimize the
congestion control parameters according to various utility
functions.

In a recent work, Abbasloo et al. proposed Hyline [14]
which employed a central controller to schedule and route
flows to optimize FCT performance. The Hyline scheduler
approximates SRPT by taking into link capacity constraints
in routing and scheduling individual flows. It also adopted a
scheduling threshold so that flows smaller than it can transmit
without incurring the scheduling delay.

In addition to FCT which measures the performance of
individual flows, another class of studies – co-flow [15]–[18],
focused on the performance of not one, but a group of flows
that need to be all completed before processing can proceed
further. Not surprisingly, the resultant routing and scheduling
problem is far more complex, but it is orthogonal to this
work. The principles adopted in the proposed CAPTON could
be further extended to support co-flow scheduling and is a
subject for future work.

The above-related works have all significantly advanced
the performance of datacenter networks. Nevertheless, the
commonly employed big-switch model poses a significant
challenge to their real-world deployment as datacenter net-
works are more likely to be over-subscribed due to cost

FIGURE 2. Topologies used in our experiments.

and scalability considerations. As over-subscription breaks
the assumption of access-link-only bottlenecks, the existing
schemes’ performance in such environments is far from well-
understood.We address this open problem in the next section.

III. IMPACT OF CORE OVER-SUBSCRIPTION
In this section, we first investigate the impact of core network
over-subscription on three state-of-the-art DCN traffic con-
trol schemes, namely Pfabric [1], PIAS [2], and Hyline [14].
Fig. 2 depicts the DCN topology employed – a common
2-stage leaf-spine topology with 144 hosts (12 per rack),
12 TOR switches, and 4 core switches. All access links
are 10 Gbps, totaling 120 Gbps per rack. By configuring the
core links between 10 Gbps and 30 Gbps, we can then setup
an access-to-core bandwidth ratio of 3:1 (120 Gbps access
to 40 Gbps core) and 1:1 (120 Gbps access to 120 Gbps core)
respectively.

We adopted the websearch workload [27] where 11/12 of
the traffics are inter-rack that need to traverse the network
core. The offered total traffic load was set to 32.76% of
the total access link bandwidth, resulting in an inter-rack
traffic load close to 30%. We recorded the FCT of all flows
completed and summarized the average FCT for all three
schemes in Table 1.

Without core network over-subscription, this level of traffic
load is well within the system’s capacity so the FCT perfor-
mances of all three schemes are excellent, withHyline achiev-
ing the shortest average FCT, followed by Pfabric and PIAS.
By contrast, once we switched to the 3:1 over-subscribed net-
work setup, all three algorithms’ FCT performance degraded
significantly. Interestingly, the three schemes’ relative perfor-
mances are now reversed, with PIAS achieving the shortest
average FCT, followed by Pfabric and Hyline.

Generally, the performance degradation increased with
larger flow size in the over-subscribed setup as shorter flows
were scheduled with higher priority. Longer flows with lower
priority thus suffered more from the congestions in the net-
work core. Overall, the average FCT of Pfabric, PIAS, and
Hyline were increased by 315%, 142%, and 900% respec-
tively under 3:1 over-subscription.
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FIGURE 3. System architecture and design.

It is worth noting that even at 3:1 oversubscription, the
core network is running at 90% average utilization which
is still within the core’s capacity. However, randomness in
the traffics means that the short-term load could momentar-
ily exceed the core capacity, leading to packet losses and
timeouts. The above results clearly demonstrate that core
network over-subscription could not be ignored and should
be incorporated into the traffic control scheme.

IV. ARCHITECTURE AND SYSTEM DESIGN
In this section, we first present CAPTON’s design principles
and then delve into the details in the sub-sections. There are
four key design principles in CAPTON:

• It employs a central controller to schedule flows subject
to access and core link capacity constraints to prevent
congestion in both access and core links. This addresses
the core network over-subscription problem discussed
earlier.

• It adopts an all-path transmission scheme by sending
packets of each flow over all available equal-cost short-
est paths simultaneously. This effectively eliminates the
need for dynamic routing and path selection, as the
available paths between all source-destination pairs are
known and can be pre-calculated. This not only enables
utilization of all available links but also eliminates the
complexity and scalability challenges in dynamically
routing a large number of flows in a datacenter.

• To reduce the impact of scheduling delay, CAPTON
implements a scheduling threshold to allow flows
smaller than a pre-set size to bypass the central scheduler
to transmit immediately. Longer flows are still scheduled
by the central controller so that congestions are kept at
a low level.

• CAPTON is designed to make use of dumb switches,
without the need for any advanced features such as ECN,
priority queueing, or even dynamic forwarding table
updates. This not only reduces the network switch costs
but also allows CAPTON to be deployed in a wide range
of current and future datacenter networks.

FIGURE 4. Difference between all-path controller and routing-based
controller transmission.

A. SYSTEM OPERATION
Fig. 3 depicts the architecture of CAPTON, the design of the
end host and the central controller. When an application cre-
ates a new flow, it is intercepted by the CAPTON host layer
sitting in-between the application and the underlying trans-
port. The host layer then checks if the data size exceeds the
pre-defined scheduling threshold, and if so, sends a request
to the central controller to schedule transmission. Otherwise,
it proceeds to transmit the flow immediately without involv-
ing the central controller.

For unscheduled flows, the host always transmits data at
full line rate. In contrast, the transmission rate for scheduled
flows is set by the central controller. In both cases, data are
sent over all available links including redundant links so as
to maximize throughput to reduce FCT. To support this, the
host’s TCP layer is modified to allow transmission at a con-
trolled data rate. Moreover, as opposed to conventional TCP
operations where multiple TCP flows may transmit simul-
taneously and share the host’s link bandwidth, CAPTON
effectively serializes TCP flows within a host so that only
one flow is transmitting at any given time. This contributes to
approximating the SRPT scheduling discipline [32].

The central controller keeps track of all active flows and
schedules the start and stop of flow transmissions by sending
GRANT/STOPmessages to the host’s CAPTON layer, taking
into consideration the set of active flows and their remaining
flow size, the size of the new flow, access and core link
capacities as well as their current utilization. Note that the
central controller does not need to perform routing due to
the use of all-path transmission, which reduces its complexity
considerably.

B. ALL-PATH TRANSMISSION
The goal of all-path transmission is to make full use of
all alternative equal-cost paths between the source and
the destination for transmitting data of a flow. Datacenter
ToR switches are typically inter-connected via multiple core
switches for redundancy as well as for capacity scaling.
In routing approaches [14], [28], one of the alternative paths
between the source and destination will be chosen for a
flow. This has two potential limitations. First, this single-path
approach limits the per-flow bandwidth to that of a single core
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FIGURE 5. Control messages.

link. Although core links typically have higher bandwidth,
their available bandwidth will be reduced during demand
peaks. Splitting a flow across multiple core links allows the
available bandwidth frommultiple core links to be aggregated
for potentially higher transfer rate for shorter FCT.

Second, implementing dynamic flow-level routing is a
non-trivial problem in its own right. In addition to the obvious
overheads and potential scalability challenge in computing
routes for all the flows in the network, to implement the routes
the controller will need to send forwarding table updates
to all switches along the path and wait for them to com-
plete the update before the flow can begin transmission. The
delay in updating switch forwarding tables is often ignored
in previous studies but its magnitude could be significant
(e.g., in ms [33]) compared to the flow duration.

Therefore, we propose all-path transmission as depicted
in Fig. 4 to split the data of each and every flows across
all equal-cost paths to maximize the utilization of all
available access and core links. As a result, switch for-
warding tables entries for all destinations could be pre-
computed offline, eliminating the need for and delay in
switch forwarding table updates. All-path transmission in
the core switches can be implemented using per-destination
round-robin packet sprayingwhich is widely supported in off-
the-shelf switches [21], [27].

A potential issue in all-path transmission is packet
reordering as most flows are transported over TCP where
out-of-order packet arrivals could trigger spurious retrans-
missions. However, this problem is more severe in cases
where the alternative paths have unequal costs (e.g., delay,
bandwidth). Datacenter networks are typically far more sym-
metric such that alternative paths have similar, if not the same,
delay and bandwidth [21]. Moreover, CAPTON’s all-path
transmission scheme further ensures that the loads on alter-
native paths are the same so that even queueing delays
will be similar. Therefore, packet reordering is negligible in
CAPTON. In fact, we did not observe any spurious retrans-
mission due to packet reordering in all of our experiments
in Section V.

C. END HOSTS
The end host implements two CAPTON components. First,
the CAPTON host layer is responsible for intercepting flow
data from applications and communicating with the central
controller to schedule their transmission. In the Linux oper-
ating system, this can be implemented using API hooks on
the socket’s library so that no modification of the application

is needed - an important, if not essential, feature for practi-
cal deployment. Most applications perform computation and
then generate data in a burst for transmission. The CAPTON
host layer first buffers the data to determine the flow size. If it
is equal to or smaller than the preset scheduling threshold
then it simply passes the data on to the transport layer for
transmission. Otherwise, it sends a Request-to-Transmit (RT)
message, as depicted in Fig. 5, to the central controller which
contains the flow ID (FID), the source/destination switch
port, source/destination rack, and flow size for the flow.

The central controller then schedules a time and data rate
for the host to begin transmitting data for the flow. Note that
the central controller does not send to the host the scheduled
time to begin transmission. Instead, at the scheduled time,
it sends a Grant message to the host to start the transmission.
This approach avoids the need to synchronize the clocks of
the hosts with the central controller which is a non-trivial
problem in its own right. The tradeoff is a slight delay in
delivering the Grant message, which is in the order of 100 us
in datacenters (see Section V). Conceivably, the delay could
be compensated for in the schedule as the path’s propagation
delay is known but our results show that even with the delay,
CAPTON still outperforms existing schemes over a wide
range of setups.

In addition to granting transmission, the central controller
could also suspend an ongoing transmission by sending the
host a Stop message for the flow. This may occur when a new
flow enters the system with a higher priority than the ongoing
flow (see Section IV-D), thus pre-empting the lower priority
flow.

The second CAPTON component in the host is the TCP
module. Technically, it is not a newly created module but a
modified version of the existing TCP module. For example,
in Linux, TCP is implemented as a pluggable congestion con-
trol module that can be loaded/unloaded at runtime as there
are multiple TCP variants to choose from. CAPTON requires
modifications to the chosen TCP variant, e.g., the default TCP
variant known as Cubic [31], to control transmission at the
data rate set by the controller.

One way to implement this modification is to override
TCP’s transmission window by the maximum value allowed1

so that TCP’s Slow-Start and AWnd limit are both bypassed.
Outgoing packets’ transmission rate can then simply be
implemented using Linux’s built-in pacing mechanism.

D. CENTRAL CONTROLLER
The central controller is the brain of the CAPTON platform
as it keeps track of the network topology and orchestrates
all data flows’ transmissions to prevent congestion and to
improve FCT performance. It consists of a flow register for
processing new flows, a flow maintainer for maintaining
the active flow list, and a scheduling module running the
CAPTON scheduler to calculate the transmission schedule

1Linux kernel stores transmissionwindow size as a 32-bit unsigned integer
which has a maximum value of 4,294,967,295.
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FIGURE 6. Pseudocodes for the CAPTON Scheduler.

for all data flows. In this section, we first discuss the principle
of the CAPTON scheduling algorithm, and then explain how
the CAPTON scheduler coordinates with other components
inside the central controller.

The CAPTON scheduler is a centralized, flow-based
scheduler that aims at approximating the SRPT discipline.
Fig. 6 lists the pseudocodes for the CAPTON scheduler.
The inputs are the set of flows to be scheduled, and the
output is the transmission scheduled for the flows, including
flows permitted to transmit at a set data rate and flows to be
suspended.

The algorithm begins by initializing all flow states to be
suspended and all link states to be unused. Note that due

FIGURE 7. CDF of workload size (in packets) used in the experiments.

to all-path transmission, multiple access and core links are
simply aggregated into a virtual link in the algorithm. Next,
it updates the remaining flow size, denoted by f.size, of all
flows transmitting since the last iteration i-1 by

f .size = f .size− f .rate · (Tcur − Ti−1) (1)

where f.rate is the transmission rate assigned in the previous
iteration i-1, Tcur and Ti−1 are the current time and past
execution time of iteration i-1, respectively.
It then iterates through each flow in increasing order of

their remaining flow size. It first checks if both the source
and the destination access links have bandwidth available to
accommodate the flow. Note that CAPTON allows only one
flow to transmit/receive at a time even if there is more than
one flow pending at the host. However, a host could transmit
and receive simultaneously as links are full-duplex.

Next, it checks if the flow is intra-rack which does not need
to traverse core links and so can be marked to transmit. Other-
wise it checks if the flow’s data rate can be accommodated by
all the core links along the path, and if so, marks the flow to
transmit. The algorithm terminates when all flows have been
processed or the number of flows marked to transmit equals
to the number of hosts in the network.

The CAPTON algorithm is executed each time a Request-
to-Transmit message is received or when a flow completes
transmission. For flows that are scheduled to transmit, their
completion time, denoted by f.end can be calculated from
their remaining flow size f.size divided by the assigned trans-
mission rate f.rate:

f .end =
f .left
f .rate

(2)

Thus the earliest completion time among all flows deter-
mines the latest time, denoted by Ti+1, for the next iteration
i+ 1 of the CAPTON algorithm to execute:

Ti+1 = Tcur +min {f .end |∀f ∈ F} (3)

where Tcur is the current time and F is the scheduled flows
set. Note that if a new Request-to-Transmit request arrives
before Tnext then the scheduler will run immediately.
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TABLE 2. Ratio of bytes retransmitted for websearch.

TABLE 3. Simulation parameters.

E. SCHEDULING THRESHOLD
An inherent tradeoff in centralized flow scheduling is the
additional delay incurred in sending a request to the controller
and waiting for the response before transmission can take
place. Datacenter networks typically have very short propa-
gation delay, e.g., RTT within 100 us [13], but nonetheless
could be significant for short flows. For example, a flow
of 10 MTUs (i.e., 15 KB) in theory can be transmitted in
a mere 1.2 us over a 10-Gbps link so the additional delay
incurred in centralized scheduling is significant for very short
flows.

One approach to tackle this problem is to relax the schedul-
ing requirement by allowing flows smaller than a given size –
scheduling threshold, to transmit right away without being
scheduled. The intuition is that given the small flow size,
it is unlikely to cause congestion at the switches even if the
flow collides with another flow. This technique has also been
employed in other centralized schedulers such as Hyline [14].

The challenge is in determining the scheduling threshold
to be used. Too small a threshold then few flows could
benefit from the delay reduction. Too large a threshold then
the unscheduled flows could cause congestion. The opti-
mal scheduling threshold depends on a multitude of fac-
tors, including workload characteristics (e.g., flow size and
arrival pattern), network topology, traffic load, and even the
scheduling algorithm adopted for the scheduled flows. This
is clearly a non-trivial problem and previous work such as
Abbasloo et al. [14] has proposed mathematical models to
optimize the scheduling threshold.

Nevertheless, our experiments show that existing model
(e.g., [28]) for optimizing the scheduling threshold could
be too aggressive in networks with core over-subscription.
Therefore, based on our experimental results, we adopted
a simple fixed scheduling threshold of 10 MSS’s. Despite
its non-adaptive nature, we found that the fixed schedul-
ing threshold works well across a wide range of setups

(see Section V), thereby simplifying CAPTON’s implemen-
tation and deployment significantly.

V. PERFORMANCE EVALUATION
In this section, we report results obtained from simulated
experiments to evaluate the performance of CAPTON and
compare it to three state-of-the-art schemes, namely Pfab-
ric [1] - a widely used benchmark, PIAS [2] – a distributed
approach, and Hyline [14] – a centralized approach.

We implemented CAPTON in NS2 [25] and employed the
original NS2 implementations from Pfabric [1], PIAS [26],
and Hyline [29] for comparisons. Thus all four approaches
were simulated using the same simulator (NS2) to improve
the performance results’ consistency and comparability.

The datacenter network simulated is a leaf-spine topology
with 144 hosts, 12 TORs, and 4 core switches, with 12 hosts
under each TOR switch, resulting in an over-subscription
ratio of 3:1. All links in the topology are 10-Gbps links. The
end-to-end RTT between a source-destination pair across the
core fabric is 85.2 us [2]. For all schemes compared, per-
flow-based ECMP was adopted as the routing strategy except
for CAPTON where routing is not needed due to its all-path
transmission scheme.

The buffer size for all links was set to 2 BDP, The RTO
for Pfabric was set to 3 × RTT as suggested in [1], the
ones for PIAS and CAPTON were 200 ms (the simulators’
default), and 4 ms for Hyline as suggested in [14]. For cen-
tralized schemes (i.e., Hyline and CAPTON), we accounted
for scheduling delays by including the time required for the
host to communicate with the central controller before the
flow can start its transmission.

The scheduling threshold for Hyline was chosen according
to the model proposed in [28]. A key parameter in optimizing
the threshold is the network load. As core over-subscription
was not considered in the original Hyline study, its network
load is equivalent to both access-link load and core-link
load. However, this is no longer true in over-subscribed
networks so the choice of access versus core load as the
network load parameter will lead to different scheduling
thresholds.

To cover both cases, we ran two sets of simulations for
Hyline in each experiment, one using scheduling threshold
calculated from access load (denoted by Hyline_Access) and
the other using scheduling threshold calculated from core
load (denoted by Hyline_Core) as summarized in Table 4.
By contrast, CAPTON employs a fixed scheduling threshold
of 10 MSS’s for all experiments.

We adopted two datacenter workloads widely used by
previous works to generate the flow traces: the websearch
workload [4] and the datamining workload [27]. Fig. 7 plots
their cumulative distributions, showing that the datamin-
ing workload have considerably more short flows. In the
experiments, we allow all flows to run until completion.
Finally, we excluded delays due to switch forwarding table
updates which are needed in routing-based schemes such as
Hyline.
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FIGURE 8. Average FCT (ms) of Pfabric PIAS, Hyline and CAPTON in websearch workload for a) All flows, b) flows in (0∼100 KB], c) flows
in (100 KB∼10 MB], d) flows in (10 MB∼).

TABLE 4. Scheduling threshold for hyline [28].

A. WEBSEARCH WORKLOAD
In the first experiment, we generated a trace of 100,000 flows
using the Websearch workload over a range of access loads
from 18.2% to 36.4%, resulting in corresponding core loads
of 50% to 100%.

We compare the performance of Pfabric, PIAS, Hyline,
and CAPTON in terms of average FCT. Fig. 8a shows the
overall average FCTs for all load scenarios. The result shows
that CAPTON achieved the shortest overall FCT performance
across all loads tested. Both Pfabric and PIAS performed
closely at lighter loads (e.g., 18.2%) but the gap widens
as load increases. For example, at access load of 29.1%,
Pfabric’s mean FCT at 7.61 ms is already 99% higher than

CAPTON at 3.82 ms. Both Hyline setups exhibited substan-
tially higher FCT. At the 29.1% access load, Hyline_Core and
Hyline_Access achieved FCTs of 43.06 ms and 36.122 ms,
which are 1127% and 945% higher than CAPTON.

Next, we divide flows into three groups based on flow size,
i.e., small (0∼100 KB], medium (100 KB ∼ 10 MB], and
large (10 MB or longer) which reveal the different tradeoffs
attained by the four algorithms. There are three observations.
First, Pfabric achieved the best FCT for small flows (Fig. 8b).
This is to be expected as, by design, Pfabric assigns higher
priority to shorter flows. Its performance at medium (Fig. 8c)
and long flows (Fig. 8d), while not the best, is still very good.
This shows why Pfabric is often employed as the benchmark
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FIGURE 9. Average FCT (ms) of Pfabric PIAS, Hyline and CAPTON in datamining workload for a) All flows, b) flows in (0∼100 KB], c) flows
in (100KB∼10 MB], d) flows in (10 MB∼).

for performance comparison, even though it was not designed
for practical deployment.

Second, PIAS also performed very well, except at higher
loads as shown in Fig. 8a. The results in Fig. 8b to 8c reveal
that the primary contributor to PIAS’s higher FCT at high
loads is the substantial FCT increases in medium-sized flows
(Fig. 8c).

Third, Hyline exhibited substantially higher FCTs in all
flow sizes. The performance is noticeably lower than the
results in its original studies [14], [28]. The primary differ-
ence for the experiments was the 3:1 over-subscription in
the core network where Hyline did not account for. In par-
ticular, we observe that Hyline’s model sets the scheduling
threshold to a relatively large value (c.f. Table 4). As a
result, over 87% (Hyline_Access) and 90% (Hyline_Core) of
the flows ended up transmitting unscheduled (see Table 5).
In comparison, CAPTON’s fixed scheduling thresholds
of 10 MSS’s resulted in only 17.9% of the flows transmitting
unscheduled.

The large amount of unscheduled flows in Hyline reduced
its central controller’s ability to schedule and route flows
to prevent congestion. This results in congestion inside the
core network which not only triggers retransmissions but
also timeouts in more severe cases. Therefore, further inves-
tigations are needed to explore if and how Hyline could be
extended to support over-subscribed network topologies.

TABLE 5. Unscheduled flow % for websearch.

TABLE 6. Unscheduled flow % for datamining.

By contrast, CAPTON exhibited zero retransmission in all
test cases because it schedules all flows longer than 10MSS’s,
and the unscheduled short flows are sufficiently short to not
cause congestions at the core even under the highest load
tested.
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There are also tradeoffs in CAPTON. Flows longer than the
scheduling thresholds will incur additional scheduling delay.
This is more significant in short flows as shown in Fig. 8b
where CAPTON’s FCT is higher than Pfabric precisely by the
extra scheduling delay. PIAS also achieved lower FCT than
CAPTON for short flows until the load exceeded 30.9%.

In contrast, CAPTON’s gains in FCT reduction can more
than compensate for the additional scheduling delay in
medium and long flows as shown in Fig. 8c and 8d. Thus
the workload characteristics, in particular, the proportion of
short flows, will impact the relative performance of different
algorithms. We further investigate this using the datamining
workload in the next section.

B. DATAMINING WORKLOAD
In this section, we investigate the algorithms’ performance
under the datamining workload. Compared to the websearch
workload, the datamining workload has a larger proportion of
small flows as shown in Fig. 7. In fact, more than 80% of the
flows are smaller than 10 MSS’s. For CAPTON this means
over 80% of the flows will not be scheduled by the CAPTON
scheduler. Thus, it will be interesting to see how CAPTON
performs under such challenging workloads.

Fig. 9a to 9d plot and compare the algorithms’ FCT per-
formances. In terms of overall FCT, CAPTON continued to
achieve the lowest FCT over the range of load tested. The
gap between CAPTON and the benchmark Pfabric consid-
erably narrowed compared to the same under the websearch
workload. This is because the datamining workload’s heavy
proportion of short flows - in particular, flows shorter than
CAPTON’s scheduling threshold, reduced the among of traf-
fics being scheduled, thereby forgoing the SRTF optimization
of the CAPTON Scheduler.

For small flows in Fig. 9b, CAPTON’s FCT performance in
fact improved over the websearch workload. This somewhat
counterintuitive result is due to the increased proportion of
unscheduled flows under the datamining workload, which
did not incur extra scheduling delays. Pfabric still performed
better though as it employs priority queueing for different
flow sizes.

For medium flows in Fig. 9c, CAPTON now underper-
formed Pfabric slightly, due to the increased queueing delay
caused by the larger number of unscheduled flows. Neverthe-
less, CAPTON achieved substantially lower FCT than PIAS
and Hyline even under the lightest load of 18.2%.

Finally, for large flows in Fig. 9d, CAPTON outperformed
the other algorithms, with Pfabric being a close second,
followed by PIAS. Hyline’s FCTs are significantly higher
across all load levels. This is not surprising as, under the data-
mining threshold, over 97% of the flows were smaller than its
scheduling threshold andwere thus not being scheduled at all.

C. SCHEDULING DELAY
Centralized approaches such as CAPTON and Hyline require
host to send their flow information to the controller for
scheduling purposes so they will incur extra scheduling delay

as discussed earlier. For CAPTON the scheduling delay has
three components: (a) the transmission time for the control
messages; (b) the propagation delay between the host and the
CAPTON controller; and (c) the execution time of the CAP-
TON Scheduler. We provide an estimate of the scheduling
delay below.

The transmission time for control message of size 68 Byte
(inclusive of Ethernet header of 40 bytes) over a 10-Gbps
link is 0.0544 us. The round-trip propagation delay was set
to 85.2 us following [2]. The CAPTON Scheduler runtime
can vary, depending on the topology, the set of flows to be
scheduled, and the hardware it runs on.

To obtain an estimate of the runtime, we sampled the
actual runtime of the CAPTON Scheduler executed on one
CPU core of the Intel I7-6700 CPU, during the websearch
experiments under an access load of 36.4%. The samples
showed amaximumof 640 active flows, resulting in a runtime
up to 10 us. Thus, altogether the scheduling delay is 95.2 us.
This is also close to the assumption (100 us) in the Hyline
study [14]. Therefore, we simply adopted 100 us as the
scheduling delay in simulating both Hyline and CAPTON.

VI. SUMMARY AND FUTURE WORK
This work demonstrated the impact of over-subscription in
datacenter networks on the performance of traffic control
schemes. It is clear that over-subscription must be accounted
for and incorporated into the traffic control scheme to achieve
consistent performance in practical datacenter networks. The
proposed CAPTON scheme is relatively simple to deploy, due
to the use of dumb switches and the elimination of routing
altogether and performed consistently well under the wide
range of scenarios tested.

This work is only the first step though as it shows that
existing traffic control schemes should be revisited in light
of over-subscription. This not only applies to centralized
schemes, but also distributed schemes as well. More work is
thus warranted to investigate this new line of research.
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