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ABSTRACT This article presents Maximum Visibility Approach (MVA), a new time series forecasting
method based on the Complex Network theory. MVA initially maps time series data into a complex network
using the visibility graph method. Then, based on the similarity measures between the nodes in the network,
MVA calculates the one-step-ahead forecasts. MVA does not use all past terms in the forecasting process, but
only the most significant observations, which are indicated as a result of the autocorrelation function. This
method was applied to five different groups of data, most of them showing trend characteristics, seasonal
variations and/or non-stationary behavior.We calculated errormeasures to evaluate the performance ofMVA.
The results of statistical tests and error measures revealed that MVA has a good performance compared to the
accuracy obtained by the benchmarks considered in this work. In all cases, MVA surpassed other forecasting
methods in Literature, which confirms that this work will contribute to the field of time series forecasting
not only in the theoretical aspect, but also in practice.

INDEX TERMS Time series forecasting, complex networks, visibility graph, forecasting model.

I. INTRODUCTION
Among the strands in the field of Time Series Analysis
is the creation of methods to study time-correlated data
and make predictions [1]. This is a dynamic research area
that has attracted the attention of the scientific community
over the past few decades [2]. Applications of time series
modeling and analysis encompass several fields of science,
including: medicine [3], robotics [4], cyber defense [5],
defense strategy [6], army mission analysis [7], finance
[8], [9], social sciences [10], economics [11], seismology [12]
and criminology [13]. In order to make estimates of the future
terms of a time series, it is necessary to make the hypothesis
that each observed data is somehow correlated with past data.
Thus, it is natural to establish mathematical models that try to
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explain such correlations and describe the observed data as a
function of time.

Autoregressive integrated moving average (ARIMA) is
one of the most popular forecasting methods in the liter-
ature [2], [14], [15]. This model is attributed to George
Box and Gwilym Jenkins [15] and is essentially a linear
regression model that describes movements of a stationary
and univariate time series, that is, time series free from
trends [16]–[18]. ARIMA is also a combination of other
models, such as the autoregressive (AR) [16], moving
average (MA) [16], [17], [19] and the autoregressive moving
average (ARMA) [16], [20]. In the case of a time series
with seasonality, SARIMA, a variation of ARIMA, can
be applied [21]. There are also some extensions that are
applicable to nonlinear [22] or non-Gaussian [20] time series.

Data mining is defined as the ‘‘process of automatic
extraction of knowledge from large databases, using machine
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learning, pattern recognition, database techniques, and statis-
tics’’ [23]. According to [24] the six pure Machine Learning
methods submitted in the M4-competition performed poorly,
none of them outperforming the combination approaches
and only one achieved accuracy better than Naive2. Under
the influence of forecasting competitions, several combined
methods have been created in the quest to achieve better
accuracy [24]. See these examples: in [25] a hybrid tech-
nique based on bagging approach is proposed to achieve
more accurate forecasts; [26] shows a combination between
ARIMA and artificial neural network (ANN) to predict
internet traffic data; [27] calibrated an ensemble structure
based on ARIMA, multilayer perceptron (MLP) and long
short-term memory (LSTM) with the objective of predict
healthcare expenditures; and [28] which presents some hybrid
approaches, including mixing the exponential smoothing
model and ANN in order to forecast the price of agricultural
products.

A wealth of content can be found in the literature on
time series data mining, some of which are based on
complex networks [29]–[32], [33]. In [30], one can find
an approach for time-series forecasting based on complex
network analysis. Specifically, this method is based on node
similarities [34] extracted from a network constructed using
the visibility graph method [35]. In this article, it is referred
to as the Mao-Xiao approach (MXA). Its accuracy is better
than other methods for a variety of applications including
methods using fuzzy logic [36], [37], bandwidth interval-
based forecasting methods [38], and hybrid fuzzy logic and
visibility graph approach [39].

This study presents Maximum Visibility Approach (MVA)
which is a new time series forecasting technique based on
the complex network theory. This presentation follows the
subsequent steps. Initially, some basic concepts, necessary
to understand the method proposed here, are revisited and
then MVA is described. The results of the tests carried
out with five different datasets are then presented, with
the objective of comparing the performances obtained by
the MVA and the benchmarks: a state-of-the-art Mao-Xiao
approach (MXA) [30], dynamic auto-ARIMA, support vector
machine (SVM) [40], long short-term memory (LSTM) [41],
multilayer perceptron (MLP) [27], hybrid additive ARIMA-
ANN [26], hybrid additive ETS-ANN [42] and naive
estimation.

II. BASIC THEORY
This section provides a brief presentation of the basic
concepts and techniques required to describe the MVA.

A. VISIBILITY GRAPH
According to [35], the visibility graph transforms a time
series into a complex network. Each time-series observation
is associated with a vertex of a complex network. Let (ti, yi)
and (tk , yk ), be two distinct points of a time series. Take
any other point (tu, yu) between them. The points (ti, yi) and
(tk , yk ) are considered visually related if the following rule is

FIGURE 1. Scheme for visibility graph approach: A 10-elements time
series is mapped into a graph where each node represents a bar, and
each edge represents the connection between two bars. Source: Drawn
by the authors.

satisfied:

yu < yk +
(
tu − tk
tk − ti

)
(yk − yi) . (1)

In Fig.1, the ith bar relates to the ith network node. The rule
described by equation (1) is illustrated in Fig.1. It can be seen
that each connection between two bars corresponds to a link
between the two respective nodes in the complex network.

The visibility graph theory has established itself as an
efficient approach for probing the dynamics underlying real
complex systems from time series [31]. According to [35],
the network obtained from this particular mapping inherits
several properties of the time series, and its study reveals
nontrivial information about the series itself. This mapping
makes the structure of the time series be conserved in the
graph topology: periodic series convert into regular graphs,
random series into random graphs, and fractal series into
scale-free graphs [35].

B. PREVIOUS WORK: THE MAO-XIAO APPROACH
The forecasting method presented by [30], here in this paper,
called the Mao-Xiao Approach, is an innovative method-
ology to provide time series forecasting based on complex
networks. Essentially, a time series with n observations
is transformed into a network through the visibility graph
method [35]. Second, the Node SimilarityMatrix (NSM), that
is, the matrix that contains the similarity measures between
each two pairs of nodes, is calculated by themethod explained
in [34]. The last line of the NSM gives the similarity between
the last node and each of the first n − 1nodes, then the
node k , with the highest similarity value, is taken and a linear
equation is calculated considering both nodes: Nn(tn, yn) and
Nk (tk , yk ). The first estimation of the (n + 1)-th point is
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calculated by (2):

ỹn+1 = yn +
(yn − yk )
(tn − tk )

(tn+1 − tn). (2)

Next, a refining is proposed according to (3):

ŷn+1 = wn · yn + wn+1 · ỹn+1. (3)

The weights wn and wn+1 are, respectively, calculated by:

wn+1 =
dk→n

dk→n+1
(4)

and

wn =
dn→n+1

dk→n+1
. (5)

In (5) and (4), the notation dk→n refers to the hori-
zontal distance between observations n and k [39], there-
fore, considering the points (tk , yk) and (tn, yn), hence
dk→n = tn − tk .

C. SIMILARITY BETWEEN TWO NODES IN A GRAPH
Two nodes in a graph are said to be similar if they share the
same predefined characteristics. Some techniques produce
measures of similarities between vertices of a network and
according to [34], [43], [44] such measures are the basis of
the link prediction theory. For instance, can be cited similarity
based on random walk process [30], [33], [34], the cosine
similarity [45], the Jaccard similarity [46], and the inverse
log-weighted similarity [47].

In this work we use the Dice similarity [48]. In order to
present its definition, consider n(2) as the cardinal of the set
2. In the ComplexNetwork context, given any two vertices of
a network, the Dice similarity [48] is calculated taking twice
the number of common neighbors over the sum of the degrees
of both vertices,

sDICEij =
2 · n

(
N (vi) ∩ N

(
vj
))

ρ (vi)+ ρ
(
vj
) , (6)

where N (vi) relates to the neighbor set of the vertex vi and
ρ(vi) is the vertex degree of the vertex vi. It is not difficult
to conclude that the Dice index range is from zero to 1. The
result is zero if both vertices does not share any neighbor and
it is 1 if both neighbors sets are equal.

D. SLIDING WINDOW
Both the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) quantify the influence of
past observations on the current value of the time series.
Additionally, ACF or PACF can indicate whether previous
values cause, or not, a significant impact on the current
observation. Considering that some past values may not
be statistically significant to predict the next term of the
time series, it is reasonable to disregard such data in the
forecasting process. The set of past observations considered
in the forecast is defined as a window.

Given the set Y = {y1, y2, . . . , yn}, a sliding window, Zi,
over Y is a subset with fixed number of elements, k , which,

during the simulation, changes at each iteration i, according
to the following rule:

Z1 = {y1, y2, . . . , yk} ,

Z2 = {y2, y3, . . . , yk+1} ,

. . . ,

Zn−k+1 = {yn−k+1, yn−k+2, . . . , yn} . (7)

The sliding window process is based on the methodology
walk-forward validation presented by [49].

E. STATISTICAL HYPOTHESIS TESTING
In order to analyze the quality of the prediction, it is necessary
to use hypothesis tests. Initially they are applied to investigate
the characteristics of the original time series and finally to
evaluate the characteristics of the forecast residuals.

With the purpose of testing whether the data is level
or trend stationary we apply the Augmented Dickey-Fuller
(ADF) test [50] and confirm the obtained results with
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [51].
To check whether the data is independently distributed
we use the Ljung-Box test [52]. This test is essential to
verify whether ARIMA residuals have white noise signal
characteristics. With the objective of identifying the data
seasonality we perform the Webel-Ollech [53], which is
basically a combination of the methods modified QS [54] and
Friedmann [55] tests.

F. FORECASTING PERFORMANCE INDICATORS
Given the set {y1, y2, . . . , ym} and the respective predicted
values

{
ŷ1, ŷ2, . . . , ŷm

}
, the performance indicators are

1) Mean Absolute Error (MAE),

MAE =
1
m

m∑
t=1

∣∣ŷt − yt ∣∣ , (8)

2) Mean Absolute Percentage Error (MAPE),

MAPE =
1
m

m∑
t=1

∣∣∣∣ ŷt − ytyt

∣∣∣∣ , and (9)

3) Root Mean Squared Error (RMSE),

RMSE =

√√√√ 1
m

m∑
t=1

[
ŷt − yt

]2. (10)

The performance indicators were used to compare the
simulation results obtained in this work.

III. MVA: NEW FORECASTING METHOD
The Maximum Visibility approach (MVA) is a new method
based on the complex network theory, inspired by the
technique proposed in [30], which, in this work, is called
the Mao-Xiao approach (MXA). The first step of the MVA
considers the autocorrelation function (ACF) related to the
given time series. The ACF gives the correlation between
the last observation and any kth observation, hence this step
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guarantees that only the statistically significant elements will
be used in the forecasting task.

The next step is to transform the given time series into
a complex network. The literature presents some methods
which are able to map a given time series into a complex net-
work: visibility graph [35], horizontal visibility graph [56],
multiscale limited penetrable horizontal visibility graph [31]
and phase space reconstruction [57]. In this work, we chose
the visibility graph approach due to the technical reasons
described in the section II-A, but mostly due its ease of
implementation and low computational cost.

After constructing the network, we calculated the node
similarity matrix (NSM). In this matrix, each si,j represents
the similarity calculated between nodes Ni and Nj.
Let ŷ(n+1)/k be the pre-estimator for the time-series next

term, that is, y(n+1), considering only the influence of yk .
This pre-estimator is calculated using a linear equation, based
on the connection between both observations: yk and yn.
We introduced a multiplicative parameter, α, to the original
angular coefficient, as shown in (11). Consider the points:
(tk , yk) and (tn, yn). The expression that gives ŷ(n+1)/k is:

ŷ(n+1)/k = yn + α
(
yn − yk
tn − tk

)
·
(
t(n+1) − tn

)
, (11)

where α is divided into two parts: a constant K ≥ 0 and γn,k ,
which are the autocorrelation between yk and yn.

α = γn,k − K . (12)

Observing the equation (11), the closer α is to zero,
the greater is the effect of yn on ŷ(n+1), approximating the
forecasting result to that obtained from the naive estimation.

We define Ym(n+1) as the vector that contains all pre-
estimators for y(n+1), calculated through the influence of the
first m lags. Ym(n+1) is written as:

Ym(n+1) =
(
ŷ(n+1)/(n−m+1), . . . , ŷ(n+1)/(n−1)

)
. (13)

Let si,n be the similarity value between nodes Ni and Nn,
associated to the time-series terms yi and yn, respectively
and calculated based on the Dice similarity, according to
described in the equation (6). If the last m nodes, prior to yn
are considered in order to estimate y(n+1), then the NSM has
dimension m + 1 and the last row of the NSM contains the
similarities between all lastm observations and yn. We define
Smn as the vector formed by the firstm elements of the last row
of the NSM. Therefore, Smn is seen as:

Smn =
(
sn−m+1,n, sn−m+2,n, . . . , sn−1,n

)
. (14)

It is possible to find sk,n = si,n with k 6= i, therefore more
than one node can share the highest level of similarity with
yn. Define ISmn as the vector composed by the indexes of the
elements contained in Smn which present the highest level of
similarity to yn. The one-step-ahead MVA estimator, ŷ(n+1) is
calculated as:

ŷ(n+1) = MAX
{
ŷ(n+1)/k ∈ Ym(n+1)

}
+ h (En) ,∀k ∈ ISmn ,

(15)

where h (En) is a non-linear function of the error obtained in
the estimation of yn, that is En = ŷ(n) − yn. The non-linear
function h (En) is given by:

h (En) = −Ene−K ·J |En|, (16)

where J is positive constant. For some time series, h (En) is
considered zero. The decision of not include h (En) in (15)
is taken by observing the results achieved by MVA in the
validation phase.

A. THE MODEL PARAMETERS
According to presented in the equations (12) and (16) there
are two parameters, K and J , respectively that must be
defined before the forecasting process. In order to find the
best values for K and J capable of providing the best fit in the
data we proposed a partitioning of the original time series into
three sets: training, validation and testing sets. The simulation
has to be performed on the training and validation sets many
times as necessary and after that, the best values of K and J
are applied to the testing set to ascertain the method’s ability
to make predictions.

In order to generate the results presented in the section IV
we kept J constant and variate K , until find the best sum
of squared error (SSE) considering the validation set. For
example, initially takeK from 1 to 6, using step of 1. Suppose
K = 3 gives the best SSE in the validation set. Secondly
refine the search considering K from 2 to 4, in steps of 0.1.
Suppose K = 2.6 gives the smallest SSE in the validation
set. Now refine the search from 2.5 and 2.7, using steps of
0.01. Suppose K = 2.66 gives the smallest SSE. Refine
the pursuance one more time, searching from 2.65 to 2.67,
with steps of 0.001. Register the value of K associated to the
smallest SSE. This procedure is repeated considering other
values of J .

We started with J ∈ {1, 10, 100, 500}. For most cases,
higher values of J produces the effect of not considering the
non-linear term. After testing some values of J we create a list
of the obtained SSE’s. Given the randomness of the real time
series, there is no guarantee that the pair (J ,K ) related to the
smallest SSE achieved in the training and validation phase
will produce the smallest SSE in the testing set, however,
we kept this procedure to find the pair (J ,K ) to be used in
the testing phase.

B. ALGORITHM DESCRIPTION
We present two algorithms: (1) Steps of the MVA forecasting
task, where the only interest is to calculate the MVA one-
step-ahead estimator when the parameters K , J are known;
and, (2) Steps to provide accuracy comparison against other
methods.

Consider a n-element time-series {y1, y2, . . . , yn}. Firstly
we define the window size w. This is done by taking the
first (w− 1) lags, which are in the statistical relevance region
provided by the ACF graph, see section II-D.

See the chart illustrating the steps presented in the
algorithm 1.
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Algorithm 1 Steps of the MVA Forecasting Task
Input: (K , J ,w)
Output: ŷMV ,n+1
Data: Y={yn−w+1, . . . , yn−1, yn}
1) Read the data.
2) Normalize the data. See (17).
3) Transform the window into a network using the visibility
graph approach. See section II-A.

4) Calculate the Node Similarity Matrix (NSM) using
the Dice Similarity approach. See (6).

5) Create S(w−1)n , the last row of the NSM. See (14).
6) Find and register the nodes associated to the the
greater value in S(w−1)n .

7) Calculate the pre-estimators related to the nodes
registered in the previous step. See (11).

8) Calculate ŷMV ,(n+1), taking the maximum of the
pre-estimators calculated in the previous step.
See (15).

FIGURE 2. Steps of the MVA forecasting task. Source: Drawn by the
authors.

With the purpose of compare MVA accuracy against
other forecasting methods, we recommend using the steps

presented in the algorithm 2. The sets K and J contains the
values of k and J , respectively, which will be tested in order to
find the best MVA parameters to be used in the test set. Also,
if one is only interested in estimate the next term of the time
series usingMVA but wants to search for the best parameters,
then the algorithm 2 applies, but the validation and training
sets must merge to contain (n− w− 1) elements and the test
set has to be composed by the last element yn. The search for
the best parameters can be done based on the methodology
described in the section III-A.

Algorithm 2 Steps for Accuracy Comparison Against Other
Methods
Input: (K, J,w)
Output: ŷMV ,n+1
Data: TrSet = {yw+1, yw+2, . . . , yw+t }

// Training Set

Data: ValSet = {yw+t+1, yw+t+2, . . . , yw+t+v}
// Validation Set

Data: TeSet = {yw+t+v+1, yw+t+v+2, . . . , yn}
// Test Set

for (∀K ∈ K) ∧ (∀J ∈ J) do
for i ∈ {1, 2, . . . , t + v} do

Read the i-th window:
{z1 = yi, z2 = yi+1, . . . , zw = yw+i−1}.
Calculate ŷw+i using the algorithm 1.

Calculate and register

SSE(v) =
t+v−1∑
k=t+1

(
ŷw+k − yw+k

)2.
Take the pair (J∗,K∗) associated to the min {SSE}.
for i ∈ {1, 2, . . . , n− w− t − v} do

Read the i-th window:
{z1 = yt+v+i, . . . , zw = yt+v+w+i−1}.
Calculate ŷw+t+v+i using the algorithm 1.
Register ŷw+t+v+i.

Calculate MAE, MAPE and RMSE according to
(8),(9) and (10), respectively.

C. WHY MVA WORKS
At the beginning of Section III, MVA is defined as a
forecasting technique based on the complex network theory,
more specifically, MVA seeks for relations between nodes
of a complex network to provide forecasts. In a complex
network, two nodes tend to be linked if they have a higher
similarity index [30]. Therefore, taking into account that
MVA provides forecasts based on the previous time-series
observations which present the greatest similarity index with
yn, we can expect that MVA will succeed in capturing the
patterns contained along the time series. Why MVA is called
maximum? Because the final estimator is obtained taking the
maximum of the pre-estimators. This means that the method
is creating a new term that, based on the visibility graph
approach, will be linked to yn and to all other yk which has
the same highest level of similarity with yn.
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The natural visibility graph maps a time series into a
complex network based on the direct visibility criteria, that is,
two points in the time series becomes a linked pair of vertices
in the network, if and only if, there is an unobstructed straight
line connecting both points in the time series plot.

Given the definition of the visibility graph mapping, all
points yk which has the maximum level of similarity with yn
have an unobstructed link to ŷn+1. Therefore, if we take as
one-step-ahead the maximum of the pre-estimators, so we are
forcing that all points, which originated the pre-estimators,
be connected to the next-term estimator in the complex
network domain.

IV. RESULTS AND ANALYSIS
In this section, we present the performance comparison
among the forecasting approaches: MVA, MXA [30],
ARIMA, SVM, LSTM, MLP, Hybrid additive ARIMA-ANN
(HAAA), Hybrid additive ETS-ANN (HAEA) and naive esti-
mation. Tomeasure the accuracy quantitatively, we calculated
the error measurements defined in the equations (8), (9),
and (10). It is important to point out that all forecasting
processes are one-step-ahead type.
MXA was chosen as a comparative method because,

according to [30], it is considered a successful complex-
network-based forecasting method with a good prediction
performance. The ARIMA model was chosen because it
is widely used as a benchmark in the literature, so if
MVA is more accurate than ARIMA, then MVA can
be taken as a benchmark against other new prediction
methods. The methods SVM, LSTM and MLP are also
being considered benchmarks given to the wide amount
of works who use these methods to provide time-series
forecasts. Inspired on the results of the M4-competition,
presented by [24], combination methods tend to perform
better than the pure one, therefore, we considered important
compare the MVA forecasting results to other succeeded
hybrid methods. We choose the Hybrid additive ARIMA-
ANN (HAAA) and Hybrid additive ETS-ANN (HAEA).
Lastly, we also considered the naive estimation because,
despite its simplicity, for some kinds of time series, it has
beaten ARIMA and even some hybrid models in terms of
performance.

Before starting each forecasting process, we characterized
the respective time series. First, by running the ADF and/or
KPSS tests, we determine if each time series is level, trend
or non-stationary. Next, we tested seasonal behavior using
the Webel-Ollech test. Finally, through the Ljung-Box test,
we check if there is any dependence between the pairs of the
time-series observations.

Here, the only pre-processing job was: (a) to delete
or properly replace all ‘‘NA’’, non available, data; and
(b) normalizing the data according to de following rule:

zi =
yi − min(Y )

max(Y )− min(Y )
, (17)

where Y is the original dataset. Actually, the normalization
process, or any other is not necessary. We did that with the
purpose of having comparable results, free of any scale. In the
case of ARIMA, we used the R function,auto.arima, which
automatically performs all necessary preprocessing to obtain
the best ARIMA model. The size of the window used in each
forecasting process was chosen considering the results of the
autocorrelation function, so only the most significant terms,
statistically speaking, were taken into account. It is important
to emphasize that the mathematical derivations to obtain the
best K and J to be considered on MVA is beyond the scope
of this work. Hence for each forecasting simulation, we found
the pair (J∗,K∗) using simulation according to explained in
section III-A.

In order to compare the forecasting performance achieved
from MVA, ARIMA, MXA, MLP, LSTM, SVM, HAAA,
HAEA and naive estimation we chose the following time
series: three classic time-series from different fields, provided
by the R datasets package; a Brazilian econometric time
series composed of daily closing prices of the Bovespa index;
and one recursive time series that was artificially generated.

It is important to point out that the accuracies obtained
by each method, considering each time series, were taken
from the same test set. We are emphasizing that this measure
was taken to ensure that comparisons between methods were
made fairly.

A. CHARACTERIZATION OF THE FIVE TIME SERIES
This section is dedicated to showing the particularities of
each time series used in this research. The appropriate
hypothesis tests, presented in the section II-E, were chosen to
characterize the series as stationary, seasonal or independent.

• Consider the monthly number of passengers for
international airlines, in thousands of people,
from 1949 to 1960. This a 144-element time series,
which in the R astsa package is called AirPassengers,
but which is also presented by [58]. ACP shows that
the first 40 past observations impact the current value,
so this set was chosen to compose the first window.
In this forecasting process MVA had K = 0.886, J = 6
and the nonlinear term, expressed by equation (16)
is considered in the model. The sizes of the training,
validation and testing sets are 77, 36 and 31, respectively.

• In agreement with [59], ‘lynx’ is a time series of annual
numbers of lynx trapped in Canada from 1821 to 1934.
There are 114 observations in this time series. The
ACF indicates that the first 77 past terms may contain
significant information with respect to the current
element. Additionally, the most significant values of
autocorrelation between terms occur from time to time,
suggesting that the series has a seasonal behavior,
which was confirmed through the application of theWO
test. In order to provide the one-step-ahead forecasting,
we chose w = 77, and we settled MVAwith K = 0.633,
J = 3 and the presence of the nonlinear term in the
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TABLE 1. The characteristics of the five time series.

model. The sizes of the training, validation and testing
sets are 90, 13 and 11, respectively.

• Ibovespa is the most important performance indicator
of stocks traded on the Brazilian financial market [60].
It was created in 1968 and has since served as a
reference for investors worldwide [60]. The third time
series is made up of daily closing prices of Ibovespa
from January 1, 2019 to July 28, 2020. The 389 data
used in this simulation were taken from the Yahoo
Financewebsite and theACF indicates window of length
200. According to the proper statistical tests this is
a non-stationary dataset, with no trend, seasonal and
with dependency among its observations. In this case,
we calibrated MVA with K = 0.844, J = 150 and the
presence of the nonlinear term in the model. The sizes of
the training, validation and testing sets are 245, 50 and
94, respectively.

• The fourth dataset is the 60-element time series named
‘‘nhtem’’ on the R datasets package which regards the
mean annual temperature, in degrees Fahrenheit, in New
Haven, Connecticut, from 1912 to 1971 [61]. In this
forecasting process MVA had K = 1.087, J = 500
and the presence of the nonlinear term in the model. The
sizes of the window, training, validation and testing sets
are 10, 30, 20 and 10, respectively.

• The last dataset comprises a recurrence-based time
series with 100 observations. Each observation is given
by the following law:

yt = 0.54yt−1 + 0.17yt−2 + 0.3yt−3 + 0.4wt , (18)

where wt is a random variable normally distributed with
zero mean and variance 1. Additionally, y0 = 10, y1 =
9.5, y2 = 9 and t ∈ {0, 1, 2, . . . , 99}. In this forecasting
process MVA had w = 85, K = 2.263, J = 600 and the
presence of the nonlinear term in the model. The sizes of
the window, training, validation and testing sets are 85,
89, 4 and 7, respectively.

The Table 1 summarizes the characteristics of the five time
series presented in this work, showing all their features,
confirmed by proper statistical tests.

B. ADJUSTING THE MACHINE LEARNING MODELS
One of the most determining steps in creating a suitable
forecasting model based on Machine Learning approaches
such as ANN and SVM models is the choice of the input
variables.

TABLE 2. Hyperparameters considered in each SVM model.

TABLE 3. Hyperparameters considered in each LSTM model.

1) THE SVM MODELS
In this work we started the search for the best SVM hyper-
parameters according to was considered in [40]: C = 10
and ε = 0.1. The kernel choice is for the radial basis
function (RBF) starts with γ = 0.1 since, according
to [62] and [63], this kernel has good performance in time
series forecasting problem, it is able to capture nonlinear
characteristics of the time series and presents less numerical
problems.

We applied the SVM models in the training set, for
multiples combinations of (C, ε, γ ). The set which provided
the smallest MAE was applied to the testing set. Some
forecasting strategies were tested to perform the SVM. Firstly
we compared the 10-fold cross validation technique [40] to
the ‘‘leave one out cross validation’’ (LOOCV) [64]. The
second one gives better results in the training sets. However,
the walk-forward validation technique, presented by [49], and
used in all other methods, gave the smallestMAE considering
the training sets. The table 2 shows the parameters considered
in the SVM models.

2) THE LSTM MODELS
AnLSTMmodel is an recurrent networkmodel withmemory,
that is, this model can remember information from earlier
points in the network [27]. The architecture of an LSTM
consists of units called memory cells, self-connections and
gates which are special multiplicative units [41]. According
to [27] the connections keeps in memory the temporal state
of the memory cells and the gates control the flow of
information.

We considered a LSTM model according to proposed
by [27]. The hyperparameters used to reach the best accuracy
in the validation set, for each time series, are described in the
table 3. The column called ‘hl’ gives the number of neurons
in the hidden layer.
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TABLE 4. Hyperparameters considered in each MLP model.

3) THE MLP MODELS
According to [27], a Multilayer Perceptron (MLP) is a
variant of the original model proposed by Rosenblatt in [65].
The MLP mathematical and structural model is presented
by [27]. The training assignment is done based on the
backpropagation approach, which is a supervised learning
method [66].

The neuron functioning occurs according to described in
equation (19):

Ok = f

(
w∑
i=1

yn−iβki + bk

)
, (19)

where f (τ ) is the activation function, yn−i is the i-th input, w
is the number of inputs, and βki and bk are, respectively, the
weight and the bias associated to the input yn−i [27].

We considered a MLP structure composed by three layers
of nodes: an input layer, a hidden layer and an output
layer. All neurons were processed by the sigmoidal activation
function, except for the output layer for which a linear
activation function was used. The forecasting tasks were
produced by the mlp function included in the nnfor R
package. For each time series, the testing set is the same
considered to all other forecasting methods and the forecasts
were combined using the median operator. The table 4 shows
the hyperparameters which provide the best accuracy in the
training and validation sets.

To enable reproducibility, we set the seed at 2, so all
randomly generated initial weights will always be the same.

C. ADJUSTING THE HYBRID MODELS
The last two time series forecasting methods are hybrid
approaches. These are additive combinations of ANN with
ARIMA and ANN with ETS. We consider the number of
nodes in the ANN model’s input layer to be equal to the
window size considered for all other forecasting methods.
We tried other values of w, but in all cases, the obtained
accuracy, relative to the validation sets, only got worse.

According to [40] and [67], a three-layer feed-forward
ANN model is commonly used for time series forecasting.
We normalized the training and testing data to fit in the
interval [0, 1] according to equation (17). The hyperbolic
tangent function was used as the transfer function between
the input and the hidden layers because it resulted in the
best accuracy. We chose the linear function as the transfer
function between the hidden and the output layers due to its
robustness for continuous output variables [40]. The optimal

TABLE 5. Parameters considered in each ANN-ARIMA model.

TABLE 6. Parameters considered in each ANN-ETS model.

number of neurons in the hidden layer, h, was obtained by trial
and error, but initially we used previous practical results [68]:
h = 0.5i, where i is the number of input data. The
initial model weights were chosen considering a uniform
distribution in the interval [−0.1, 0.1], with seed 2. Each
training assignment was performed minimizing the mean
absolute error.

1) THE ARIMA-ANN MODELS
The hybrid additive approach combining ARIMA and ANN
was implemented according to described in [26] using the
Khashei-Bijari approach [67]. The table 5 shows the best
number or nodes in the hidden layer for each time series.
These parameters were defined from the accuracy obtained
on the training and validation sets.

2) THE ETS-ANN MODELS
The ETS models are composed by a family of time series
models with a basal state space model containing an error
term (E) and a level, trend (T) or seasonal (S) components.
The hybrid additive approach combining ETS and ANN was
implemented according to described in [28]. The ETS-models
were defined based on the R function ‘‘ets’’ from the package
forecast. This function is able to calculate the best ETSmodel
which fits with the given time series. The table 5 shows the
best number or nodes in the hidden layer for each time series.
These parameters were defined from the accuracy obtained
on the training and validation sets.

D. COMPARING THE ERROR MEASUREMENTS
In the last three sections we described the five datasets
used in this work and we presented all eight forecasting
techniques and their respective set of parameters considered
in each forecasting process. In this sectionwe show the results
obtained in terms of MAE, MAPE and RMSE, according
described in the equations (8), (9) and (10), respectively. The
accuracy results are presented in the table 7.

According to what is presented for the Air Passengers
dataset in table 7, MVA outperformed all other methods
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TABLE 7. Comparative performance indicators obtained from the forecasting process of the five time series considering the nine techniques.

based on the MAE, MAPE and RMSE values. For this time
series, MVA had its superiority confirmed by the Diebold-
Mariano(DM) test when compared to all methods except for
LSTM and SVM for which the quality of the forecasts are
statistically equivalent. Since the DM test did not find any
method to be superior to MVA and considering that its errors
are the smallest, we can conclude that MVA is the most
accurate method, among all those who participated in this
study, to make predictions for this time series.

Considering the results of tables 7 and 9 for the Lynx
time series, MXA, naive, Additive-ARIMA-ANN (HAAA),
LSTM and MLP are less accurate than MVA, quantitative
and qualitatively given that their values of MAE, MAPE and
RMSE are higher than MVA’s, and the DM test indicates
MVA’s superiority. However, MVA, ARIMA, Additive-ETS-
ANN (HAEA) and SVM showed similar results considering
error measures and statistical comparison. In order to
illustrate the closeness of these methods to the real values in
the test set, we have plotted the comparison graph for lynx
time series and presented it in Fig. 3.

FIGURE 3. Forecasts for lynx time series considering MVA, ARIMA,
Additive-ETS-ANN and SVM. Source: Drawn by the authors.

Comparing the accuracy results obtained by each method
for the IBOVESPA time series, MVA outperformed all other
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TABLE 8. Comparative MVA’s RMSE when calculated from Jaccard, Dice
and Inverse Log-Weighted similarities considering the five time series.

methods. Naive is the only method which provided similar
results, statistically speaking, confirmed by the DM test.
Definitely, in order to produce forecasts for the IBOVESPA
time series, MVA is the most indicated method among all
methods considered in this study.

The fourth time series, was chosen precisely because it is
a dataset with characteristics that are difficult to define. How
would all methods respond in the forecasting process for this
time series? It is classified as trend stationary, seasonal and
not-independent dataset, however, the p-values obtained from
each hypothesis test is very close to the 10% type I error.
It was expected that most methods would present statistically
similar results, therefore the most accurate method would
have to be defined based on the error measures. According
to the results presented in the table 7 MVA outperforms all
other methods in terms of MAE, MAPE and RMSE, thus,
it is considered the most accurate method in the forecasting
assignment for this time series.

Lastly, we present the results for a recurrence based time
series artificially created. This dataset was created with the
intention of favoring the ARIMAmethod, since the sequence
is based on an AR(3) model. ARIMA was expected to
achieve the best results, however, MVA had the best accuracy.
The conclusion is similar to that obtained in the case of
the air passengers time series, since MVA obtained the
smallest errors, but tied with other methods in the statistical
comparison of the quality of the estimation. None of the
considered methods was classified by the DM test as superior
to MVA.

We consider important to emphasize that all MVA fore-
casts, presented in this work, were obtained based on using
the Dice similarity. We considered using other methods, such
as Jaccard [46] and the Inverse Log-weighted [47], both
cited in the section II-C. In order to compare the results,
the obtained RMSE was taken into account, for each time
series.

The Jaccard method led to the same results obtained
from the Dice similarity index, considering the five time
series presented here. The Inverse Log-weighted similarity
produced similar results to those presented here. Better if
compared to that obtained fromDice, for the Lynx time series
and worse in the other cases. The comparative analysis of the
MVA accuracy based on the different measures of similarities
is beyond the scope of this article, but we ratify that this is an

important topic to be considered since improved versions of
MVA can be developed.

E. TIME COMPLEXITY OF MVA
As we commented that one of the advantages of MVA is
its low computational cost, it is important to present a brief
discussion about the time complexity of the method. Defining
n as the size of the window to be mapped in a graph, consider
the following worst-case time complexity analysis for each
step of the MVA algorithm.

1) Read the time series data - Complexity: O(n).
2) Normalize the data - Complexity: O(n).
3) Map the time series into a network (visibility graph) -

Complexity: O(n2). See [69].
4) Calculate the Dice similarity - Complexity: O(dn2),

where d is the maximum degree of the vertices in the
graph. See [70].

5) Use of the function which.max to find the nodes which
share the greatest similarity with yn - Complexity:O(n).

6) Calculate the pre-estimators - Complexity: O(n).
7) Take the maximum among the pre-estimators - Com-

plexity: O(n).

All these steps are performed sequentially, so the complex-
ity of the whole algorithm is given by the maximum among
the individual complexities, that is, O(dn2). Obviously, the
maximum value for d is (n − 1), so in the worst case
scenario, our code is O(n3). However, this is very unlikely,
given the inputs are real time series, so, rarely, is one
observation connected to all other observations. In summary,
the complexity for MVA depends on the maximum degree of
the vertices in the graph, but based on the randomness of the
real time series, this maximum degree is relatively low, for
example, considering the time series used in this article, the
maximum degree were always less than 5% of the time series
length. Therefore, MVA can be considered approximately
O(n2) in most applications.
Just for an example, we ran the simulation of the

MVA with fixed K and J , considering 95% (also very
unlikely) of the data to compose the window. So the
algorithm just read the data, normalized it, constructed
the complex network, calculated the dice similarities of
all pairs of vertices, found the greater value among all
values, calculated the pre-estimators considering only the
points which presented this greater level of similarity with
the current observation, and finally took as the MVA one-
step-ahead estimator the maximum value among all pre-
estimators. We ran this simulation for an artificial time
series AR(1) composed by: 100, 500, 1000, 5000 and 10000
points, which means networks with 95, 475, 950, 4750 and
9500 vertices. The execution times were, respectively, 0.007,
0.183, 0.340, 6.827 and 27.927 seconds, which is in con-
sonance with quadratic time complexity. The simulations
were performed in a Intel(R) Core(TM) i7-2630QM CPU @
2.00GHz with 8.00GB (RAM) processor based on x64 under
Windows 8.1.
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TABLE 9. P-values obtained from the application of the Diebold-Mariano test in the forecasting residuals of the five datasets.

F. MVA: MAIN ADVANTAGES AND DISADVANTAGES
Among the advantages observed with the use of MVA in
the forecasting task are the ease of implementation, low
computational cost and adaptability to different types of time
series, considering characteristics of stationarity, seasonality
and dependence between observations. This study showed
that the only pre-processing necessary is to delete or properly
replace the ‘NA’ data (not available) if any, no further pre-
processing is necessary, thus, the prediction process can be
carried out considering the original data. Given the inclusion
of the non-linear term, MVA is able to quickly correct the
error made in the previous prediction. We can point out as a
disadvantage the lower capacity to predict the reversal of the
trend of the time series. The biggest errors produced by MVA
were mainly at trend reversal points.

V. CONCLUSION
In summary, this study presents the Maximum Visibility
Approach (MVA) as new time series forecasting method.
To calculate the forecast with MVA, we used the visibility
graph technique to map a given time series into a complex
network, and then calculate the node similarity matrix using
the Dice approach. All nodes with the higher similarity index
with the node associated to the last time-series observation are
eligible to impact the calculation of the MVA one-step-ahead
estimator, ŷMV ,(n+1).
Just in order to compare the performances, we chose the

comparative methods ARIMA, the Mao-Xiao approach [30],
naive estimation, support vector machine (SVM), artificial
neural networks (ANN), long-short term memory (LSTM),

multilayer perceptron (MLP) and the hybrid additive models
ARIMA-ANN and ETS-ANN. The nine methods discussed
in this work were applied to five different time series. Each
dataset has some or none of the characteristics: seasonal
behavior, level or trend stationarity, and dependence between
pairs of observations. It is important to note that the time
series used in this work also have different time horizons:
daily, monthly, annual, and weekly data. The performance
results were measured using the mean absolute error (MAE),
mean absolute percentage error (MAPE), and root mean
squared error (RMSE). Additionally, the Diebold-Mariano
test [71] was considered to evaluate the statistical comparison
between accuracy achieved by MVA and each benchmark.

Considering the MAE, MAPE and RMSE values, MVA
outperformed all methods for all time series, except for the
Lynx time series, in which the methods ARIMA, additive
ARIMA-ETS and SVM reached the same level of accuracy
as that obtained by MVA. This set of results reveals that
our proposed method is capable of presenting at least similar
accuracy when compared to other well-established methods
in the literature, considering varied applications and datasets
with different time horizons. Therefore, our method can
contribute not only in the academic field, but also in practical
aspects.

According to discussed in the section IV-F, we can
point as advantages of MVA the ease of implementation,
low computational cost, in most applications O(n2), and
the adaptability to forecast multiple types of time series,
considering characteristics of stationarity, seasonality, and
dependence between its observations. Another advantage is
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the fact that, except for excluding or replacing the non-
available data (NA), the forecasting process can be carried
out considering the original data. In the case of performing
sequential forecasts MVA is able to quickly correct the error
made in the previous forecasting given the inclusion of the
nonlinear term in the model. We consider the disadvantage of
MVA its low ability to predict trend reversal in time series.
The biggest errors produced by the MVA were mainly in the
reversal points.

Despite the good forecasting performance of MVA shown
in this work, this method can be improved. As future
works, we can mention: the investigation of the impact on
accuracy obtained by using different time series mapping
methods in complex networks; the creation of a hybrid
methodology to combine MVA with MLP, LSTM, ANN or
other prediction methods based on machine learning, such
as the Elman Recurrent Neural Networks (ERNN), similarly
to what was proposed by [72]; develop a mathematical
formulation that calculates the best parameters J and K, based
on the observations which compose the training set; propose a
version of MVA which provides h-step-ahead forecasts, with
h > 1; study adequate data preprocessing to increase MVA’s
forecasting accuracy; provide the comparative analysis of
the MVA accuracy based on the different measures of
similarities; and develop amultidimensional version ofMVA,
in which more than one time series can provide information
in order to improve the accuracy in the forecasting process of
one or more time series at the same time.

We will end this article by making it clear that the
results presented here do not mean that MVA will be able
to outperform all forecasting methods, considering all time
series. However, such results certainly indicate that MVA
is an excellent option of approach to be considered in time
series forecasting processes, both for research purposes and
for practical use.
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