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ABSTRACT In recent years, multimodal biometric systems are increasingly employed in many application
field due to several advantages in terms of universality, recognition rate. and security. Among various
acquisition technologies, Ultrasound shows important merits, because it allows obtaining volumetric images
of the human body and hence a more accurate description of characteristics and to verify liveness. In this
work, a multimodal ultrasound recognition system based on the fusion between 3D hand geometry and 3D
palmprint features is proposed and experimentally evaluated. The system acquires a volumetric image of
the whole hand and for both characteristics, several 2D images are extracted at different depth levels. From
each image, 2D features are extracted and then properly combined to achieve a 3D template. Recognition
performances are evaluated through verification and identification experiments by employing a homemade
database. Experiments are carried out first for the two unimodal biometrics and successively, by fusing the
two modalities at score level. Results have shown that fusion is able to dramatically improve the recognition
performances of the single biometrics, achieving an Equal Error Rate of 0.08% and an identification rate of
100%.

INDEX TERMS Image processing, ultrasound imaging, multimodal biometrics, palmprint, hand geometry.

I. INTRODUCTION

The immense necessity for security solutions and devices
favored the development of increasingly advanced recog-
nition systems including the biometric systems, which are
emerging in various applications where high personal secu-
rity is required. Biometric recognition consists to identify an
individual based on physical and behavioral characteristics,
progressively substituting the existing personal authentica-
tion methods based on PIN and password.

At present, biometric systems based on characteristics as
fingerprint, palmprint, face, iris systems are employed in
a wide range of civilian applications. Among the others,
hand-based biometrics are showing popularity as they present
supposedly unique and time-invariant anatomical structures
greatly exploitable for recognition [1].

Hand geometry is well-established biometrics, as it has
been employed in applications for many decades throughout
the world [2]. Its main merits include universality, invariance
for a long time, collectability, and acceptability, while its
distinctiveness is not among the best. Due to these reasons,
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hand geometry is used mainly in verification rather than
identification modality [3], [4].

Palmprint has similar merits as hand geometry, but it
also exhibits a very rich texture, which can be appreci-
ated with high-resolution images. This approach is exploited
mainly in law or forensic environments [5], [6]. Another
approach, which is suited for access control applications,
consists to extract only principal lines and main wrinkles; in
this case, lower resolution images can be collected [7], [8].
In recent years, wide research activity has been devoted to
3D palmprint, which is able to overcome several limits of
2D palmprint [9]-[12].

Inrecent years, multimodal systems, which combine two or
more biometric features, are becoming more and more popu-
lar because they result better than unimodal ones, in terms of
recognition rate, universality, allowing to authenticate users
for which one of the single biometrics cannot be measured,
and security [13], [14].

Several hand-based multimodal systems have been pro-
posed in literature based on the fusion of hand-geometry and
palmprint [15]-[17], which have the advantage to give more
distinctiveness to hand geometry through palmprint traits.
In general, it is desirable to extract both palmprint and hand
geometry features from a single image, with the benefit of
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using only one sensor for image acquisition, with cost-saving
and improvement of the acceptability from users, which are
not forced to use different acquiring devices.

Different technologies have been experimented with for
collecting images of the human hand, including optical,
thermal, ultrasonic. The optical one is mostly based on the
use of CCD cameras to collect 2D or 3D images [18],
[19] while thermal images are usually acquired by using
infrared radiation [20]. Contactless biometry is currently
widely investigated [21]-[23], principally for users accept-
ability and reasons of personal hygiene and customs because
some people resist placing their hands on the device that
is touched by other individuals and also respect the pan-
demic requirements. However it seems not as reliable yet as
conventional methods.

Ultrasound is an imaging modality that has been widely
used in many different application fields including Medical
Diagnostics [24], Non Destructive Evaluation [25], Indoor
Localization [26]. Systems able to collect ultrasound images
of human regions cannot be contactless, yet they have several
peculiarities that make them suitable for biometric authenti-
cation [27]. The most important one is probably the capability
to penetrate the human body in a non-invasive and healthy
way, allowing the possibility to provide volumetric images
of regions of the human body without exploiting ionizing
radiations such as rays-X and electromagnetic waves but only
sound waves that cannot be risky for the health of the individ-
ual. This feature implies: a more accurate (3D) description of
the characteristic, consequently improving recognition accu-
racy; possibility to extract different biometrics from the same
acquired volume to implement a multimodal system; capa-
bility of detecting liveness of the sample by checking vein
pulsing, which, together with the intrinsic difficulty of cre-
ating a fake of under-skin features, makes the system almost
unspoofable. In addition, ultrasound images are not affected
by environmental changes of light, temperature, or humidity,
by impurities of the hand like grease or ink and may allow to
extract features also in presence of skin abrasion.

Various features have been extracted with ultrasound
methods, the most popular being fingerprint [28], [29],
for which micromachined sensors were recently realized
and integrated into portable devices [30]. Other biometrics
include inner geometry of fingers or palm hand [31], [32],
hand veins [33]-[36], and palmprint [37]-[39]. An ultra-
sound system able to acquire a volume of the whole hand was
proposed as well [40]. More recently, a preliminary database
was established with this system, allowing to experimentally
evaluate a recognition system based on 3D hand geometry
features [41].

In the present work, a multimodal recognition system
based on the fusion between 3D hand geometry and 3D
palmprint features is proposed and experimentally tested.
An improved and more accurate procedure for extracting 3D
hand geometry features than the one proposed in [41] is first
derived; then, by automatically selecting a square region of
the palm, 3D features of palmprint are achieved as well.
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Verification and identification experiments, carried out on
the same database used in [41], are finally performed for
the two single biometrics and for the fusion between them,
implemented through a weighted average of the single scores.

The rest of the paper is organized as follows: section II
describes the acquisition modality of the 3D image, section III
illustrates 2D and 3D features extraction for both hand geom-
etry and palmprint, section IV reports verification and iden-
tification results for hand geometry, palmprint, and fusion,
section V reports the conclusions.

Il. 3D ULTRASOUND IMAGE

The setup for collecting 3D ultrasound images of the whole
human hand has been described in detail in [41]. It is
composed of an advanced ultrasound research scanner [42],
which drives a commercial 192 elements linear array (LA435,
Esaote S.p.A., Genoa, Italy). The probe, which has a central
frequency of 12 MHz, a pitch of 200 um, and an elevation
aperture of about 3.5m, is bound to a numerical pantograph
(by Delta Macchine CNC, Vazia (RI) —Italy). Volunteer’s
hand is immersed in a container full of distilled water. A vol-
umetric image is obtained by moving the probe, which is
immersed as well, along the elevation direction. While the
probe is moving over the whole hand, B-mode images are
collected and saved. Several parallel scans are needed to
cover the whole volume of 166 x 200 x 27 mm?; collected data
are realigned in a postprocessing phase so that the volume is
represented as an 8-bit grayscale 3D matrix (416 x 500 x
68 voxels). The relatively low resolution, which is 0.4 mm
in any direction, is due to the limited internal memory of the
scanner (256 MB). An example of 3D rendering of a human
hand is shown in Figure 1. It is obtained by removing dark
voxels, representing water, through an opportune threshold-
ing operation.

50
x[mm] o O

FIGURE 1. Example of 3D rendering of a human hand.

In order to extract features of both hand geometry and
palmprint, 2D renderings are extracted at different depths
from the 3D volume by projecting the external surface of
the hand on the xy plane. Also, this surface can be trans-
lated along z inside the skin and then projected again on the
Xy plane, obtaining in this way 2D images of the hand at
several under skin depths. In a previous work [41], six of
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FIGURE 2. 2D hand renderings extracted at increasing under skin depths with step 50 xm: (a) is the shallowest one and corresponds to a 100 xm and

(n) to a depth of 750 xm. Each image has a resolution of 416 x 500 pixels.

such 2D images were extracted with a depth ranging from
100 pwm to 600 pwm with step 100 wm to define 3D templates
for the hand geometry. In the present work, by performing
opportune interpolation along z-axis, a much higher number
(14) of 2D hand images were extracted, to achieve richer 3D
features. Also in this case the shallowest image was extracted
at 100 wm while the deepest one at 750 pum; the step was
50 pm.

Figure 2 shows the 2D images extracted at 14 differ-
ent depths with the above-described procedure. As can be
observed, as depth increases, the images show overall light-
ing. This behavior is caused by the presence of more residual
water pixels on the shallowest images. Due to this problem,
even if the image at depth of 50 um was extracted as well,
it has not been considered in further elaboration because it
results too dark.

IIl. FEATURE EXTRACTION

Features for both hand geometry and palmprint are extracted
from the 14 images shown in Figure 2. For the hand geometry
they are represented by a number of measurements taken from
the human hand, like the size of palm, lengths and widths
of fingers, while for palmprint by principal lines and main
wrinkles.

A. HAND GEOMETRY

A procedure for extracting features from a 2D ultrasound
image of the hand is first described. Then, three kinds of 3D
templates are defined by opportunely combining 2D features.

1) 2D TEMPLATE

The procedure used for extracting a 2D template from each
of the images in Figure 2 is very similar to that presented
in [41] and [43]. At first, short-tailed noise and details are
removed on the 2D image through a median filter, which
is an effective method to distinguish out-of-range isolated
noise from the edges. The resulting image is binarized with
a suitable threshold and a reference point, p,, is defined at
the middle point on the wrist boundary. Then, the distance
between this reference point and each point D; on the contour
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FIGURE 3. (a) Feature points extracted from the hand shape and the
26 distances defining the 2D template; (b) ROI extraction for Palmprint
from two feature points of Figure 3a.

of the hand is calculated with the Euclidean distance formula:

Dy = \J(x — 50 + (v — yi)? (M

where i varies from 1 to N, (Xp;, yp;i) are the coordinates of
boundary pixel in the clockwise direction from the reference
point p,. Several feature points are then extracted; they are
shown in Figure 3a with different colors:
« finger peaks, in red, calculated as local maxima of D;.
« valleys between fingers, in yellow, calculated as local
minima of D; and named ‘‘base points™.
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« other finger base points, in green, defined as points that
have the same distance from the peak as the other base
point for the thumb, index, and little fingers.

« middle point, in blue, defined as the arithmetic mean
between the two base points of each finger.

« extra point, in pink, defined as the point on the right
boundary of the hand that is at the same distance from
pr as the left base point of the thumb.

Starting from these points, 26 distances are calculated to
define the 2D template. As can be seen from Figure 3a,
they include fingers’ width and length (in red), for a total
of 20 distances, the whole hand length (in yellow), the three
distances among thumb, index, and little fingers (in blue) and
palm width and length (in green).

2) 3D TEMPLATE

A 3D template is obtained by combining 2D templates
extracted at 14 levels of depth. Three kinds of combinations
are evaluated:

o Mean Features (MF): 3D template is characterized by
the same number of lengths as the 2D template, where
each length is computed as the mean value of the lengths
obtained at each depth.

o Weighted Mean Features (WMF): similar to MF, but in
this case, each length is represented by a weighted mean
of the lengths obtained at various depths.

o Global Features (GF): 3D template contains all lengths
computed at every depth.

B. PALMPRINT

Similar to hand geometry, feature extraction firstly consists
to obtain 2D templates at each depth and then to combine
them in order to generate a 3D template, which contains
information on principal lines’ depth.

1) 2D TEMPLATE
The procedure for extracting a Region OF Interest (ROI)
for palmprint from the whole hand is shown in Figure 3b.
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FIGURE 4. 2D palmprint ROI extracted for all the images of the whole hand in Figure 2 (a) is the shallowest one, and (n) is the deepest. As depth
increases, images become lighter, and palm lines progressively disappear.

A square is generated by defining a side of length 53.2 cm
starting from the point corresponding to the valley between
ring and little fingers towards the left base point of the index.
This kind of approach is usually used to guarantee a repeat-
able ROI extraction in optical palmprint [9]. This operation
is carried out for each of the images of Figure 2 and the
corresponding 2D palmprints are shown in Figure 4. It is to
underline that, in previous works [37], [38] where ultrasound
palmprint images were collected with a single probe swept,
no reference point was available to align the image, making
necessary additional processing during the matching opera-
tion to take into account for possible translations or rotations
of the image when it is collected.

2D feature extraction procedure adopted is based on a
classic “line-based” approach [44]-[46]. The input image
(Figure 5a) is first preprocessed by performing a bicubic
resize from 133 x 133 pixels to 266 x 266 pixels and a
contrast adjustment. The main algorithm basically consists
of scanning the image along four directions (0°, 90°, 180°,
270°) and then summing the four binary images obtained. For
each scanning direction, two main operations are performed:
identification of the first edge of lines, performed by using
derivatives, and deletion of isolated points and short lines
following the same approach as in [46]. Figure 5b shows the
result of the first operation obtained for the direction 0°, while
Figures 5c to 5f the features extracted along the four direc-
tions and Figure 5g their logical sum. Some morphological
operations [47] are finally performed to obtain the final 2D
template (see Figure 5h).

2) 3D TEMPLATE

A procedure for achieving 3D templates, able to provide
information on lines’ depth, from ultrasound palmprint
images, was proposed in [46], [48]. In these works, 2D tem-
plated are extracted for each depth. The shallowest one, which
is assumed to be the richest one of information, is dilated and
compared through an AND operation with the immediately
deeper one. The result is dilated, stored, and compared with
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(2)

FIGURE 5. Palmprint feature extraction step by step: (a) 2D grayscale image at 350 xm; (b) image obtained after detection of edges; (c) feature extraction
along direction 0° (d) 90° (e) 180° (f) 270°; (g) logical sum; (h) final 2D template.

()

FIGURE 6. The 14 templates extracted from the corresponding 2D palmprint images of Figure 4.

the next deep 2D template, and so on until the deepest one.
In this way, the 3D template is represented by a matrix A(, j,
n), where n is the number of 2D palmprint images collected at
various depths. The dilate operation allows to consider that,
as the under skin depth increases, the principal lines may not
be perpendicular to an xy plane. The AND operation can be
considered as a filter for spurious traits that may be present
in deeper images. With this procedure, the depth information
of the line is associated with the number of “1”” scored at
each A(i, j) pixel and is usually plotted as a color scale 2D
image [46], [48].

In the present work, a similar method is applied but, this
time, the 3D template generation procedure does not start
with the shallowest 2D template (Figure 6a) because, as can
be seen in Figure 4, shallowest images are quite dark and,
furthermore, they present some artifacts that progressively
disappear by increasing the depth. Best results are obtained

7918

by starting the procedure with the template extracted at depth
of 350 um (Figure 4f). The 3D template is then generated
by performing dilation and AND comparison towards both
shallower and deeper 2D templates.

It should be highlighted that the choice of the dimension g
of structuring element employed for the dilatation operation
results quite delicate because if it is too high, the 3D template
could contain some spurious traits, whereas if it is too low,
some principal information could be eliminated.

Figure 7 shows the 3D template obtained from the 14 2D
templates of Figure 6, by setting 8§ = 5, in a color scale
representation, where every pixel can assume a value which
varies in a range from O to 13. Such value represents the
number of 2D templates that contain a determined white
pixel, that is, the depth of a single trait. Therefore, a blue pixel
(value 0) is achieved whenever no white pixel is present in
any 2D template while a dark red one (value 13) when all 2D
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FIGURE 7. (a) Example of 3D template obtained from 2D templates of
Figure 6 in a color scale representation; (b) Corresponding gray scale
image extracted from the hand image at a depth of 350 xm.

templates exhibit white pixels. For comparison, the 350 um
depth 2D palmprint (Figure 4f) is reported as well.

IV. RECOGNITION RESULTS

Recognition performances are tested by executing verifica-
tion and identification experiments on the same database used
in [41]; however, in this work, a few more samples, which
were discarded in the previous work, were recovered through
some dedicated image processing. In this way, a total number
of 110 samples, collected from 50 different users of age
ranging from 18 to 55 of which 36 males and 14 females,
is achieved. The majority (47) however were students with
age ranging from 18 to 29, while the age of the remaining
three ranges from 50 to 55.

A. VERIFICATION EXPERIMENTS

Verification modality allows to authenticate a person by
checking his claimed identity. It performs a one to one com-
parison between a query template, obtained by the sample
released by a user, and a reference template stored in the
database. Verification experiments are performed by com-
paring each template with all others in the database both
for hand geometry and palmprint. Fusion between these two
characteristics is finally implemented.

1) HAND GEOMETRY

The comparison between two templates is performed using
absolute distance function both for 2D and 3D templates,
according to [41], where it was demonstrated that this func-
tion provides best results:

26

AD =} 10; —Ri @

i=1

where Q; and R; are the i"* distances of query and reference
templates, respectively.

If the score is the result of a comparison between two
templates belonging to the same user, a genuine score is
registered; instead, if the score results from a comparison
between templates of different users, an impostor score is
registered. To decide if a user is authenticated or not, a pre-
defined threshold is set. If the matching score exceeds such
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FIGURE 8. DET curves obtained for 2D hand geometry images extracted at
each of the 14 depths.

threshold, it is authenticated, otherwise, it is rejected. Two
types of errors can be committed: False Rejection Error
occurs when a genuine score is lower than the threshold, False
Acceptance Error occurs when an impostor score is higher
than the threshold.

For each value of the threshold, False Acceptance Rate and
False Rejection Rate are computed through the ratio between
the occurrences of false acceptance and false rejection and
the total scores, respectively. In order to evaluate the perfor-
mances of biometric systems, a parameter called Equal Error
Rate (EER) is often used. This error occurs in correspondence
with the threshold value for which FAR = FRR. Recognition
performances of various biometric systems are usually com-
pared through Detection Error Tradeoff (DET) curves, which
plot the False Rejection Rate against the False Acceptance
Rate. Figure 8 shows the DET curves obtained exploiting 2D
images at various depths. The closer the plot to the Cartesian
axes, the higher the recognition accuracy. As can be seen,
the best results are obtained with the deepest images. In the
figure, the EER is simply calculated as the intersection of
each curve with the first bisector (FAR = FRR). Table 1
resumes EER values for all the curves; the lowest one is
achieved at a depth of 750 um.

Recognition performances were also evaluated by exploit-
ing 3D templates defined in the previous section: GF, MF,
and WMF. Figure 9 shows the DET curves obtained. For
comparison, the DET curve of the best 2D result, at a depth of
750 pm, is also plotted. As can be seen, the results achieved
with 3D templates by considering GF and MF improve those
achieved with 2D templates. Particularly, GF exhibits the best
accuracy, further improving results presented in [41]. EER
values obtained with 3D templates are reported in Table 1.

2) PALMPRINT
The matching score between two 2D palmprint templates is
obtained by a classic pixel-to-area approach [9], [46]. This
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TABLE 1. EER values calculated for various 2D and 3D hand geometry

15 g
200 pm

10+ "‘\ % 350 um J

False Rejection Rate (%)
r

0 5

10 15

methods.
Hand Geometry
2D 3D
Depth Level EER Method EER
100 um 3.10%
150 pm 2.81%
200 pm 2.47% Global Features 0.63%
250 pm 1.76%
300 pm 2.64%
350 pm 1.04%
400 pm 1.33%
450 pm 1.35% Mean Features 0.74%
500 pm 1.29%
550 pm 1.47%
600 pm 1.36%
650 pm 1.76%
700 pm 0.98% Weighted Mean Features | 0.93%
750 pm 0.82%
5
< —2D
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O
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=
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=1
—
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FIGURE 9. DET curves for 3D templates obtained with global features,
mean features, weighted mean features. 2D best DET curve (at a depth of
750 pm) is also reported for comparison.

method mainly consists of a logical AND operation between
corresponding pixels of two binary images:

2 .
Sap(R, Q) = m;gmz,p ®Tol.)) ()

where Tr and Ty are the reference and query templates,
respectively, n X n is the dimension of the template and Sg
and Sp are the sum of pixels of value “1” in Tk and Ty,
respectively.

Figure 10 reports DET curves computed by using 2D tem-
plates at the 14 depth levels. As can be seen, the lowest EER
value is obtained by considering the depth of 350 pm.

As far as 3D templates are concerned, eq. 3 is modified to
account for the number of occurrences of each pixel:

2 n n
S3p(R, = — Tr(i,j, 1 To(i,j, 1
3p(R, Q) SRHgZZ ®(i.j, 1) @ To(i. j, 1)

i=1 j=I
®IOr(,)) — Op(i, )l < (4
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FIGURE 10. DET curves obtained for 2D palmprint images extracted at
each of the 14 depths.
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FIGURE 11. DET curves obtained with 3D palmprint templates by
varying o value.

where « is a parameter whose values range from O to the
number of 3D template levels, Tr(i, j, 1) and Tp(, j, 1) are
the 3D reference and query templates at level 1, respectively,
and Og(i, j) and Op(i, j) are the occurrences of value “17.
The additive term |Og(i,j) — Og(i,j)| < o ensures that
the comparison between the 3D templates produces a “1”
only if the occurrences of corresponding pixels in the two
templates differ for a maximum of «. Therefore, « is directly
proportional to the acceptable difference of such occurrences.

Figure 11 reports the DET curves obtained with 3D tem-
plates by varying « in arange from 3 to 9 and by setting 8 =5,
together with that relative to the best 2D case. We can observe
that the 3D method improves the recognition performances
of the 2D one for most values of «. Particularly, the best
recognition capability is obtained for « = 6. All the EER
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TABLE 2. EER values calculated for various 2D and 3D Palmprint methods.

Palmprint
2D Il 3D
Depth Level EER Method EER
100 pem 4.29%
150 pm 4.60% 3D (a=3) | 1.60%
200 pm 3.72%
250 pm 3.97% 3D (a=4) | 1.54%
300 pm 2.26%
350 pm 1.61% 3D (a=5) | 1.48%
400 pm 2.08%
450 pm 2.55% 3D (a=6) | 1.18%
500 pm 4.73%
550 pm 5.86% 3D (a=7) | 1.64%
600 pm 8.88%
650 pm 8.61% 3D (a=8) | 1.78%
700 pm 8.58%
750 pm 9.32% 3D (a=9) | 2.04%

values of the curves plotted in Figures 10 and 11 are reported
in Table 2.

It should be noted that these recognition results are
worse than those achieved in previous works, by using both
water [46] and gel [48] as a coupling medium. This behavior
is to be attributed to the far lower resolution of images col-
lected with the setup employed in this work, due to the much
greater scanned volume with the same available memory.

3) FUSION

Fusion between different characteristics can be carried out at
various levels such as sensor-level, feature-level, score-level
and decision-level [23], [49], [50]. Among them, score level
fusion, which is performed after matching operation, is the
most popular because it results quite easy to implement and,
on the other hand, it guarantees adequate information content.

A score level decision is made by performing a combi-
nation among the scores achieved by each of the biomet-
rics involved [51]. This operation is usually carried out by
assigning appropriate weight to each score. As in previous
works [9], [39], [52], the weight is chosen to be inversely
proportional to the EER obtained for each biometrics:

n 1

Ruw =Y wiRi, wi=—"— &)

i=1 2= e
where w; represents the weight of R;, e; is the respective
EER, and n is the number of the characteristics. Figure 12
shows DET curve obtained with the MW fused feature and,
for comparison best DET curves previously obtained for 3D
palmprint and 3D hand geometry. As can be seen, the fusion
of the two features dramatically improves the recognition
performances concerning the single modalities, achieving an
outstanding EER value of 0.08%.

In order to better investigate and highlight the reason for
this improvement, an analysis of genuine and impostor distri-
butions as well as of the plots of FAR and FRR as a function
of the threshold was carried out for all three cases reported
in Figure 12. Figure 13 shows the achieved results. As can
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FIGURE 12. DET curve obtained by the fusion in comparison with those of
the best 3D palmprint and hand geometry methods.

TABLE 3. EER values for the plots of Figure 12.

Method || EER
3D HG GF 0.63%
3D Palm (0=6,5=5 ) 1.18%

Fusion 3D Palm - 3D HG 0.08

be seen, as a consequence of the weighted mean described
by eq. 5, distributions of both genuine and impostor scores
are translated to an intermediate position between those of
the two single biometrics. This operation determines a min-
imization of the overlapping area between the genuine and
impostor curves and hence of recognition errors. An example
of how fusion can improve recognition performances can be
given by observing the very low genuine score (about 0.4) in
the palmprint distribution that is completely compensated by
the corresponding scores in the hand geometry distribution.

The EER values obtained from each characteristic are
resumed in Table 3.

B. IDENTIFICATION EXPERIMENTS

While verification allows to authenticate a person, identifica-
tion modality has the purpose of establishing the identity of
an unknown person. Identification experiments were carried
out for 3D hand geometry (GF), 3D palmprint (¢ = 6) and
fusion between them as in the previous section. For all cases,
it is assumed that each template is compared with all the other
templates contained in the database. The resulting matching
scores are memorized in 110 tables, each for acquisition,
where every table contains 109 scores, resulted from compar-
isons of a determined acquisition, ordered from the highest to
lowest. Successively, the normalized difference between the
lowest genuine score and the highest impostor score is com-
puted for each table and its distribution is plotted in Figure 14.
As can be seen, for both hand geometry (Figure 14a) and
palmprint (14b) the Normalized Score Difference is lower
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FIGURE 13. Impostor and genuine distributions and FAR/FRR curves obtained for: (a) and (b) 3D Hand geometry global
features; (c) and (d) 3D Palmprint with « = 6, 8 = 5; (e) and (f) Fusion of 3D Palmprint and 3D hand geometry.

than zero for the 8% and 2% of the tables, respectively. These values were obtained when the lowest genuine is lower
The presence of some negative values of normalized differ- than the highest impostor and in this case the individual
ences corresponds to an identification rate lower than 100 %. isn’t correctly identified. As far as the fusion is concerned
7922
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(Figure 14c), instead, the Normalized Score Difference is
always higher than 0, hence ensuring an identification rate
equal to 100%.

V. CONCLUSION
In this work, a multimodal recognition system based on the
fusion of hand geometry and palmprint, obtained through

VOLUME 10, 2022

ultrasound images, is proposed and tested. The system
acquires a volumetric image of the whole hand and for both
characteristics, several 2D images are extracted at different
depth levels. From each image, 2D features are extracted
and then properly combined to achieve a 3D template. Ver-
ification and identification experiments are carried out on
a homemade database in order to test the performances of
the system, first for hand geometry and palmprint separately
and, successively, by fusing the two modalities. Through such
experiments it is demonstrated that the fusion dramatically
improves the recognition performances of the system with
respect to the single biometrics, achieving excellent results:
EER of 0.08% and recognition rate of 100% in verification
and identification modality, respectively.

The multimodality could be further extended by extract-
ing, from the same collected volume, other biometrics like
internal hand geometry [32] and palm veins [33], [34], [36],
still improving system’s universality, recognition accuracy
and resistance to fraudulent attacks. As a matter of fact, it is
quite impossible to fake inner organs and, furthermore, the
proposed system can easily certify aliveness by automatically
checking vein pulsing. Due to these characteristics, it seems
especially suited for high-security applications.

Other merits of the proposed technique are found in the
intrinsic properties of Ultrasound, i.e., the insensitivity to
change in environment humidity, light or temperature as well
as to several types of contamination, like ink or grease stains,
on the skin.

Further improvements of the proposed systems currently
under work include the upgrading of the memory of the ultra-
sonic scanner to allow acquisition of higher resolution images
and the reduction of the time needed to collect the volumetric
image of the hand. It is also under test the possibility to
use gel as a coupling medium between the probe and the
human hand, instead of water, as successfully experimented
for palmprint recognition [37], [48], [54]. This acquisition
modality is expected to make the system more acceptable by
people than the present wet one.

It is also under planning the establishment of a wider
database, to verify the reliability of the achieved recog-
nition results. Such a database would be also used to
experiment with features extraction, matching and fusion
methods expecially feature-level [23] and machine learn-
ing techniques [55], which requires extra samples for
training.
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