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ABSTRACT When verifying the validity of a formula in a system model by a model checker, a common
feature is the generation of a linear witness or counterexample, which is a computation path usually showing
a single reasonwhy the formula is valid or, respectively, not. For systems represented with Labeled Transition
Systems (LTS) and a subset of ACTLW (Action-based Computation Tree Logic with Unless operator)
formulae, a procedure exists for the generation of witness automata, which contain all the interesting finite
linear witnesses, thus revealing all the reasons of the validity of a formula. Although this procedure uses
a symbolic representation of LTSs, transitions of a given LTS are traversed one by one. In this paper,
we propose a procedure which exploits the symbolic representation efficiently to traverse several transitions
at once. We evaluate the procedure on models of a communication protocol from industry and a biological
system. The results show it to be at least several times faster than the former one. Witness automata were first
introduced to allow for compositional generation of test sequences. We propose two more possible uses. One
is for the detection of multiple errors in a model by exploring the witness automaton for a formula, instead
of only one, which is usually the case with a single witness. The other one is for the detection of previously
unknown system properties. As witness automata can be rather large, we show how some existing tools could
help in examining them through visualization and simulation.

INDEX TERMS Automata, formal verification, logic, model checking.

I. INTRODUCTION
Model checking is an automated technique for verifying
whether the behavior of a finite-state system model has
a specified property or not [1]. A Labeled Transition Sys-
tem (LTS) can, for example, be used to model the system,
and the property can be specified with Action-based Compu-
tation Tree Logic with Unless operator (ACTLW) [2]. Like
ACTL (Action-based Computation Tree Logic) [3], ACTLW
is a propositional action-based branching-time temporal logic
interpreted over LTSs [2], thus serving to describe the occur-
rence of actions rather than the validity of atomic proposi-
tions over time as with Computation Tree Logic (CTL) [1].
Despite the name, ACTL is not a straightforward action-based
‘‘version’’ of CTL. That is why ACTLWhas been introduced.
It can express all the properties expressible in ACTL, but,
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nevertheless, in contrast to ACTL, it has model checking
algorithms and formulae patterns analogous to CTL [2].

A common feature of model checking is the generation of
a linear witness or counterexample for the formula being ver-
ified. In the case of the action-based logics, a linear witness
or counterexample is a sequence of actions. A linear witness
(respectively, counterexample) usually shows a single reason
why the formula is valid (respectively, invalid) in the system.
In [4], witness automata are introduced for a subset of ACTL
formulae. A witness automaton contains all the interesting
finite linear witnesses for a formula, thus revealing all the
reasons of its validity. It is shown how to employ witness
automata to generate, in a compositional way, a test sequence
to cover a branch in a system consisting of a chain ofmodules.
Later on, an algorithm has been developed and implemented
for witness automata generation for ACTL formulae [5], and,
subsequently, adapted for ACTLW formulae [6]. The algo-
rithm for both kinds of formulae relies on the information
on the sets of states of the LTS satisfying the subformulae
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of the given formula, which can be obtained by preliminary
model checking. Guided by the structure of the formula and
this information, it visits the states of the LTS and traverses
transitions from them one by one, by a depth-first search by
recursion.

In order to enable formal verification of finite-state sys-
tems with larger state spaces, symbolic methods using Binary
Decision Diagrams (BDD) [7] have been introduced [8]. The
use of these methods can be advantageous in two ways [9].
One is that the sets of states and transitions are represented
implicitly with logical functions and these with BDDs, which,
in many practical cases, have much smaller space require-
ments than explicit set representation by listing all their ele-
ments. The other is that the symbolic representation allows
for processing a whole set of states or transitions at once,
which can be more time-efficient than handling each element
separately, i.e., in an enumerative way.

The existing algorithm for the generation of witness
automata has been implemented as an extension of a symbolic
model checker, so that the sets of states satisfying the subfor-
mulae can be generated efficiently. The main motivation for
the present paper was the fact that, although the implementa-
tion of this algorithm uses symbolic representation for LTSs
in the form of BDDs and BDD-based functions for navigating
the LTS after the symbolic model checking, it cannot take
advantage of the symbolic representation to traverse several
transitions at once, because the depth-first search is inherently
enumerative.

Themain contribution of this paper is the generation of wit-
ness automata for ACTLW formulae by using symbolic meth-
ods based on BDDs which avoids the enumerative traver-
sal. Basically, it consists of two steps. First, all interesting
potential witnesses for an ACTLW formula are represented
in the form of a symbolically represented formula automaton.
Second, a witness automaton is obtained by performing a
synchronous product between the formula automaton and the
LTS. The advantage of this approach is that the synchronous
product can be implemented symbolically in such a way
that several transitions of the LTS are traversed at once in a
breadth-first manner. The evaluation results show it to have
significantly lower witness automata generation times than
the old one.

Another contribution of this paper are two more proposals
on witness automata employment in addition to their use for
the compositional test sequence generation. The first one is to
use them to detect multiple errors in a model by exploring a
witness automaton, instead of only one, which is usually the
case with linear witnesses. Note that a counterexample for a
formula is a witness for its negation, and vice versa. There can
be multiple counterexamples for a formula, revealing single
but possibly different errors in the model. Model checking of
a formula returns only one counterexample. To detect multi-
ple errors, model checking of the formula has to be performed
several times. Every time, the currently revealed error has to
be eliminated because, otherwise, the same counterexample
would be generated next time [10]. In our case, a single check

of the negation of the formula can give a witness automaton
which contains all the counterexamples and, thus, reveals all
the errors. The second proposal is to use witness automata
to detect previously unknown system properties, which can,
for example, be useful for the analyses of biological systems.
As witness automata can be rather large, we also show how
some existing tools can help in examining them through
visualization and simulation.

For the evaluation of the new procedure for the generation
of witness automata and illustration of the two kinds of
applications, we use a model of the Bounded Retransmission
Protocol (BRP), which is a well-known industrial benchmark
case study from the verification literature (e.g., [11]–[15]),
and a model of the lactose operon regulatory biological sys-
tem, which is one of the classic examples used for test-
ing formal methods in the area of computational biology
(e.g., [16]–[18]).

The rest of this paper is organized as follows. The next
section reviews related work. Section III describes the means
of system modeling and property specification. Section IV
defines finite linear witnesses. In Section V, the definition of
witness automata is given and the procedure of their genera-
tion described. Section VI briefly describes the implementa-
tion of the procedure. In SectionVII, we present the two kinds
of its application and the evaluation results. Section VIII
discusses the work presented in this paper and possible future
work. The paper is concluded in Section IX.

II. RELATED WORK
The proposed process of witness automata generation is sim-
ilar to the verification of safety properties with automata [1].
In both cases we seek the intersection between an automaton
that describes a system and an automaton of the property
which is a negation of a safety property. The key differ-
ence between the two is that, in the case of verification, the
main objective is to determine whether the intersection is
empty, which indicates that the system satisfies the safety
property, and the other way around if it is nonempty. In our
work, we employ a nonempty intersection further to obtain
a witness automaton containing paths which explain how
the property expressed with the automaton is present in the
system, or, differently speaking, why the safety property is
not satisfied. Another difference is that property automata
are usually employed to express a state-based property, typi-
cally specified with a state-based logic, such as LTL (Linear-
time Temporal Logic), whereas, in this paper, a property
automaton represents sequences of actions instead of states.
Moreover, our property automata, at least in part, follow the
desire not to recognize all the sequences satisfying a property,
but only the ‘‘interesting’’ ones, thus giving witness automata
which include only so-called viable witnesses (e.g., [5]).

Since the invention of symbolic model checking [8], there
has been much work that used and implemented symbolic
methods inmodel checking and formal verification [19]–[21].
Most of the work in this field combines symbolic model
checking with BDDs [22]–[24]. The terms counterexample
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and witness were first used in combination with symbolic
model checking in [25]. Whereas quite a lot of work has been
done regarding counterexamples [26], [27], witnesses, and,
even more so, witness automata, are still a rather unexplored
topic.

In the context of system correctness assurance, besides the
already mentioned work on witness automata as defined in
this paper, we know only of the work on witness automata
related to software verification (e.g., [28], [29]). The authors
introduced witness automaton as a structure for storing, for
example, sequences of program line numbers and values of
variables found by a verification tool to lead to an error in
a program in order to apply them to the program by using
another tool, for example, to check if the former worked
properly.

In [10], an algorithm is proposed which returns, using our
terminology, several counterexamples for a Simulink model
and a property specified in the same language. Those coun-
terexamples are, in fact, sequences of operations (‘‘paths’’) in
the model which cause the violation of the property, whereas
a counterexample in that paper is defined as a sequence of
inputs which lead to a wrong output. The algorithm searches
for these counterexamples one by one by calling a model
checker. Each time it finds a new counterexample, it finds the
affected paths and calls the model checker again by directing
it away from them.

III. PRELIMINARIES
A. ACTION-BASED COMPUTATION TREE LOGIC WITH
UNLESS OPERATOR
ACTLW is a propositional action-based branching-time logic
interpreted over LTSs [2]. An LTS M is a 4-tuple M =

(S,Actτ ,D, sinit ), where S is a nonempty set of states, Actτ
is a set of actions including the internal action τ , D ⊆ S ×
Actτ × S is a transition relation, and sinit ∈ S is an initial
state. With (r, a, s) ∈ D we denote that the system can transit
from state r to state s by executing action a. State s is called
a successor of state r . For A ⊆ Actτ let DA(r) denote the
set of successors of state r which are reachable from r by a
transition labeled with an action from A. A transition of the
form (r, τ, s) is useful to represent the internal operation of
the system. Set Actτ can also contain external actions. The
latter are divided into input actions, labeled with ‘‘?’’, and
output ones, labeled with ‘‘!’’. For example, a! is an output
action, whereas a? is an input one. An LTSM is finite if and
only if S and Actτ are finite.
A path in an LTS is a finite or infinite sequence of states

and actions s0, a1, s1, a2, s2, . . . such that it starts in state s0,
and for each pair of consecutive states si and si+1, (si, ai,
si+1) ∈ D. We denote the path as π and the sequence of
actions on the path as act(π ). A finite path ends in a state.
We denote a state on the path as π (i), where π (0) is the first
state and π (i + 1) is the successor of π (i). The length of a
path π , denoted len(π ), is the number of states along it. The
length of an infinite path is ω. A fullpath is a path that ends in

a state with no successors or an infinite path [17]. A state or
an action is reachable in an LTS if and only if it is on a path
starting in its initial state.

ACTLW syntax for a set of actions Actτ consists of path
quantifiersEE (a path exists) andAA (for all paths), temporal
operators U (until) and W (unless), and actions α ∈ Actτ ,
including internal action τ , which can be a part of the action
formulae. The syntax includes the Boolean constant true,
as well as disjunction (∨) and negation (¬) operators. Labels
χ , ϕ, γ in the following definition represent the so-called
action, state and path formulae, respectively:

χ ::= α | ¬χ | χ ∨ χ

ϕ ::= true | ¬ϕ | ϕ ∨ ϕ | EE γ | AA γ

γ ::= [{χ}ϕ U {χ}ϕ] | [{χ}ϕW {χ}ϕ] (1)

The semantics of the state formulae, hereafter also called
ACTLW formulae, is defined inductively with the rules given
in Fig. 1, where a ∈ Actτ and /χ/ = {α | α |H χ}. With
the expression a |H χ we say that action a satisfies action
formula χ , whereas with s |HM ϕ we denote that ACTLW
formula ϕ is valid in state s of LTS M. To express that
path formula γ is valid on fullpath π of LTS M we write
π |HM γ . With the ACTLW syntax we can derive additional
operators and abbreviations. Instead of action formula α∨¬α
for any action α ∈ Actτ , we write true. For action or state
formula ¬true we write shortly false. For action and state
formulae, all the Boolean operators can be defined in the
usual way. The state s, such that s |HM ϕ holds, is called
a ϕ-state. Similarly, we call a transition (r, a, s) for which
a |H χ holds a χ -transition. If (r, a, s) is a χ -transition and
s is a ϕ-state, we denote this transition as (χ, ϕ)-transition.
Finally, ACTLW formula ϕ is valid in LTS M (M |H ϕ) if
and only if sinit |HM ϕ holds [2].

FIGURE 1. Definition of the meaning of ACTLW operators.

From Fig. 1 it can be seen that there are, basically, four
kinds of ACTLW formulae. They are obtained by combining
operators EE or AA and U orW, respectively. With the path
quantifiers, we express the validity of a path formula for either
one or multiple paths, whereas the temporal operators express
the validity of action and state formulae on an individual path.
ACTLW formula EE[{χ}ϕ U {χ ′}ϕ′}] is said to define an
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ACTLW operator EEU. The same applies to the other three
kinds of ACTLW formulae, thus, altogether, giving operators
EEU,EEW,AAU andAAW. For the purpose of this workwe
will, in fact, only use operator EEU. From the latter, we can
derive operators EEX and EEF in the following way [2]:

EEX{χ}ϕ , EE[{false}false U {χ}ϕ]

EEF{χ}ϕ , EE[{true}true U {χ}ϕ] (2)

The meaning of the three ACTLW operators in an LTS
is illustrated in Fig. 2. The formula with operator EEU
expresses that a path exists in the LTS such that a possibly
empty set of (χ, ϕ)-transitions is followed by a (χ ′, ϕ′)-
transition. Formula EEX{χ}ϕ states that the first transition
on the path is a (χ, ϕ)-transition, whereas EEF{χ}ϕ states
that a (χ, ϕ)-transition occurs eventually on a path.

FIGURE 2. Meaning of the ACTLW operators EEU, EEX and EEF.

In order to achieve an even more effective ACTLW syntax,
we can abbreviate the formulae further. Instead of {χ}truewe
write {χ} and define the following abbreviations:

EEX{χ} , EEX{χ}true

EEF{χ} , EEF{χ}true

EE[{χ} U {χ ′}] , EE[{χ}true U {χ ′}true] (3)

Similarly, we can shorten the expression {true}ϕ to ϕ.

B. NONDETERMINISTIC FINITE AUTOMATA
To define and generate witness automata we need the
notion of Nondeterministic Finite Automaton (NFA) with
a single initial state. An NFA A is a 5-tuple A =

(S, 6, δ, sinit ,F) [30], where S is a finite set of states, 6 is
a finite alphabet, δ ⊆ S × 6 × S is a transition relation,
sinit is an initial state andF ⊆ S is a set of final states. AnNFA
is, in fact, very similar to an LTS, with the exception of the
final states.

The alphabet represents a set of input symbols, which are,
in fact, like actions. A path in an NFA is defined analogously
to the one in an LTS. Afinite sequence (or a string) of symbols
w1 . . . ,wn from 6 is said to be accepted by A if and only if
there is a finite path π starting in the initial state of the NFA,
such that act(π ) = w1, . . . ,wn and the final state of the path
is in F . The language of A is defined as the set of finite
sequences of input symbols accepted by A. Two NFAs are
equivalent if and only if they have the same language.

IV. WITNESSES FOR ACTLW
For the definition of witness automata, we only need the
definition of finite linear witnesses for ACTLW formulae.

Consider LTS M and an ACTLW formula ϕ. A finite
sequence of actions act(π ) is a finite linear witness for s |HM
ϕ if and only if there exists a finite path π inM that starts in
state s and shows completely one of the reasons why s |HM ϕ

holds [5]. If s is the initial state of M, then act(π ) is a finite
linear witness for M |H ϕ. Let M be the LTS in Fig. 3 and
ϕ = EEF{b?} EEX{c?}.

FIGURE 3. LTS M.

Starting in the initial state of M three paths exist which
show that the ACTLW formula is valid inM. From these we
can derive finite linear witnesses η0 = a?, a?, b?, c?, η1 =
a?, b?, b?, c? and η2 = a?, c?, a?, b?, c?.

Finite linear witnesses cannot explain the reasons for
the validity of all kinds of ACTLW formulae in any LTS.
Therefore, we restrict the syntax of ACTLW formulae such
that, if valid in an LTS, they certainly have a finite linear
witness [6]:

χ :: = true | false | α | ¬χ | χ ∨ χ |

ϕ :: = true | ϕ ∨ ϕ | EE[{χ}true U {χ}ϕ] |

EE[{χ}false U {χ}ϕ] | EE[{false}ϕ U {χ}ϕ] |

EEX{χ}ϕ | EEF{χ}ϕ (4)

Despite being abbreviations, we deal with the formulae
with operators EEX and EEF separately. Therefore, such
formulae are included in (4).

A finite linear witness for a formula ϕ can be extended
arbitrarily by appending actions that are either related or
unrelated to the validity of the formula in a given LTS.
Regardless of the newly added actions, the sequence remains
a finite linear witness for the formula. If a finite linear witness
has no such suffix, it is called a viable finite linear witness
and denoted as a V-witness [5]. For a state formula ϕ with
the syntax given in (4) and LTS M with a finite path π =
s0, a1, s1, . . . , an, sn, where n ≥ 0, the sequence η = act(π )
is declared to be a V-witness for s0 |HM ϕ if and only if the
following applies:
• ϕ = true and η is an empty sequence of actions,
• ϕ = ϕ1 ∨ ϕ2 and η is a V-witness for s0 |HM ϕ1 and no
proper prefix of η is a V-witness for s0 |HM ϕ2 or η is
V-witness for s0 |HM ϕ2 and no proper prefix of η is a
V-witness for s0 |HM ϕ1,
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• ϕ = EE[{χ1}true U {χ2}ϕ2] and there exists 1 ≤ i ≤ n,
such that ai |H χ2 and η without first i actions is a
V-witness for si |HM ϕ2, for each 1 ≤ j ≤ i − 1,
aj |H χ1 and either aj 6|H χ2 or sj 6|HM ϕ2 holds,

• ϕ = EE[{χ1}false U {χ2}ϕ2], ϕ = EE[{false}ϕ1U
{χ2}ϕ2] and a1 |H χ2 holds, whereas η without the first
action is a V-witness for s1 |HM ϕ2,

• ϕ = EEX{χ2}ϕ2 and a1 |H χ2 and η without the first
action is a V-witness for s1 |HM ϕ2,

• ϕ = EEF{χ2}ϕ2 and there exists 1 ≤ i ≤ n, such that
ai |H χ2 holds, whereas η without the first i actions
is a V-witness for si |HM ϕ2, and for each 1 ≤ j
≤ i− 1 either aj 6|H χ2 or sj 6|HM ϕ2.

Hereafter we write shortly witness in place of viable finite
linear witness.

V. WITNESS AUTOMATA
Assume a finite LTS M and an ACTLW formula ϕ with
the syntax from (4). We define the witness automaton WA
for M |H ϕ as an NFA with a language which is the
set of all witnesses for M |H ϕ. To generate a witness
automaton WA for ACTLW formula in an LTS, we first
generate an NFA representing the formula and afterwards
calculate a synchronous product between that automaton
and the LTS. The automaton representing a formula ϕ for
a (finite) set of actions A is an NFA A = (S, 6, δ, sinit ,F),
where 6 ⊆ A and the language of which consists of
all the possible witnesses of ϕ for A. A finite sequence
η = a1, . . . , an of actions from A is a possible witness
of ϕ for A if and only if there exists such an LTS M =

(SM,Actτ , DM, sinitM ) that A is (a subset of) the set of
reachable actions ofM and η is a witness forM |H ϕ.
We limit the generation of the automaton to a set of

actions A for the following reasons. One is that some formu-
lae are valid in an LTS with an arbitrary labeled transition
between a certain pair of states. Consequently, there would
be infinitely many possible witnesses for such a formula,
implying that the automaton should contain infinitely many
transitions between a certain pair of states, each labeled with
a different action, but we would like the automaton to be
finite. Another reason is that, in order to calculate the syn-
chronous product between the automaton and the LTS for
which the witness automaton is to be generated symbolically,
the actions common to the formula automaton and the LTS
should be encoded with logical variables in the same way
in both. It should be noticed that if an action of the LTS
is not reachable, it does not affect the validity of a formula
in it. We, therefore, generate the automaton representing the
formula for a finite set of actions A and, generally, interpret
the latter as the set of reachable actions of any LTS for
which this automaton would potentially be used to generate
the witness automaton. In the implementation, however, A is
currently calculated as the set of reachable actions of the LTS
for which the witness automaton is being sought. To represent
the ACTLW formulae from (4), we developed an algorithm

(Algorithm 1) which generates a suitable NFA recursively,
based on the structure of the given formula ϕ and the set of
actions A. The generation of the NFA is called with the loop
parameter equal to true.

In general, the NFA for an arbitrary ACTLW formula
allowed by (4) is constructed by combining the basic forms
of NFAs shown in Fig. 4. To represent the (sub)formula true,
we introduced the single-state NFA (a), the language of which
contains only the empty string. This is in accordance with the
definition of witnesses in Section IV. NFAs (b), (c) (as well
as (d)), and (e) (as well as (f )) contain all the possible wit-
nesses for the (sub)formulae EEX,EEF, and EEU, respec-
tively, as defined in Section IV, assuming ϕ2 = true, except
that A is also taken into account. NFAs (d) and (f ) are
equivalent to (c) and (e), respectively. By constructing (d)
and (f ), we eliminated the loop in the initial state of (c)
and (e). To achieve that, we introduced an additional state,
resulting in slightly larger NFAs. Such NFAs are used to
simplify the implementation for certain kinds of ACTLW
formulae, as commented on later on.

We abuse the notation in the automata representing
ACTLW formulae a little. Even though the transitions in an
NFA are, by definition, labeled with a single action, we label
edges with formulae of the form χ ∧A, which represent mul-
tiple actions (analogous to multiple labeled edges). An action
between two states is meant to satisfy formula χ ∧ A if it is
in the set /χ/ ∩ A.

We distinguish between two types of ACTLW formu-
lae based on (4). There are formulae for which there is
no LTS M with the set of reachable actions A ⊆ Actτ , such
thatM |H ϕ and, otherwise, formulae for which such an LTS
does exist. We call the latter satisfiable formulae. The NFA
is not generated for the unsatisfiable ones. Even though (4)
does not allow for formulae with ϕ = false, a formula ϕ
can still be unsatisfiable. This is the case if ϕ is equivalent
to false for the given A. For example, formulae EEX{χ2}ϕ2,
EEF{χ2}ϕ2 and EE[{χ1} U {χ2}ϕ2] are unsatisfiable when
either ϕ2 is unsatisfiable or χ2∧A ≡ false. The latter holds if
either χ2 is equivalent to false or the actions that satisfy χ2 are
not in A. In both cases, the set of actions that satisfy χ2 ∧ A
is empty. Consequently, supposing that ϕ2 = true, it can be
seen from Fig. 4 that an NFA for such ACTLW formulae does
not exist and cannot be generated, because the label χ2 ∧ A,
in fact, does not define any transition.

For all previously mentioned basic formulae, if ϕ2 = true
and if they are satisfiable, Algorithm 1 returns exactly one
of the NFAs with the loops in the initial state from Fig. 4.
For example, for formula EEF{χ2}ϕ2, if χ2 ∧ A 6= false
and χ2 ∧ A 6= false, automaton (c) is returned, the language
of which contains all the strings beginning with a finite,
possibly empty, string of actions in A which do not satisfy
χ2 and ending with an action in Awhich satisfies χ2. With the
formula χ2 on the transitions to the non-final states we
express the requirements for actions from the definitions of
viable witnesses. Please notice that Algorithm 1 contains
conditional clauses which ensure the satisfiability of the
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FIGURE 4. Basic forms of NFAs for ACTLW formulae.

formula, but, for ease of presentation, the branches for the
unsatisfiability cases are not included.

Included in (4) and in Algorithm 1 are also formulae of the
form ϕ ∨ ϕ, e.g., ϕ = true ∨ true, which gives automaton
(a). A more complex example is a formula ϕ = EEX{χ1} ∨
EEF{χ2}. Generation of an NFA for such a formula requires
alternative composition (denoted with ‘‘+’’) of the NFAs
representing its disjuncts. We generate NFAs for subformulae
EEX{χ1} andEEF{χ2} separately. From these NFAs we then
construct the NFA for the complete formula by performing
the composition of the two. The NFA obtained by alternative
composition accepts all strings from the language of one
and the other NFA, thus representing the witnesses of both
subformulae. To simplify the composition, we do not allow
for the loops in the initial state of the composed NFAs. In
conclusion, to obtain the NFA for EEX{χ1} ∨ EEF{χ2},
we use the NFA of the form (d) and not (c) from Fig. 4 to
represent the disjunct EEF{χ2}. To express the requirements
for the absence of the loop generally, we call the generation of
the NFAs for the disjuncts by the loop parameter set to false
in Algorithm 1.

A sequential composition (denoted with ‘‘·’’) of two NFAs
is an NFA that accepts strings consisting of one of the
sequences of possible actions from the initial to a final state
of the first NFA, followed by one of such sequences for
the second one. We use sequential composition for ACTLW
formulae with nested subformulae, such as, for example, ϕ =
EEFϕ2, where ϕ2 = EEF{χ} and χ ∧A 6= false. In this case,
we generate an NFA for the nested subformula ϕ2 = EEF{χ}
(automaton (c) from Fig. 4) and an NFA for the outer formula
EEF{true}, which is short for EEF{true}true. Note that here
we treat ϕ2 as true, even though ϕ2 is ultimately a nested
ACTLW subformula. Therefore, we generate an NFA for the
outer formula as (c) from Fig. 4, however, as can be seen in
Algorithm 1, without the formula χ2 on the loop transition.
Finally, we perform sequential composition in such away that
we append the NFA representing the subformula EEF{χ} to
the NFA of EEF{true}. Note that the sequentially composed

NFA representing the nested subformula is allowed to have
the loop in the initial state, which is the reason for calling
its generation in Algorithm 1 with the loop parameter equal
to true. Therefore, in our example, we can use the NFA of
the form (c) instead of (d) from Fig. 4 to represent EEF{χ}.
However, the NFA representing the outer formula may con-
tain the loop in the initial state only if it is not a disjunct of
another one. That is why the generation of the NFA for an
outer formula is called with the loop parameter loop, as can
be seen from Algorithm 1. The value of the loop parameter is
determined by the instance of the procedure that calls it.

Formal definitions of the alternative and sequential com-
positions we use are given in Fig. 5, where P =

(SP, 6P, sinitP ,FP) and Q = (SQ, 6Q, sinitQ ,FQ). It should
be noticed that they do not work for arbitrary NFAs, i.e.,
with loops in arbitrary states. Such definitions usually require
that special empty transitions are introduced (e.g., [31]).
We wanted the implementation of the compositions to be
simple and the composed automata as small as possible. That
is why we introduced the loop parameter. As we need only
certain forms of NFAs, we can use the simpler composition
definitions and eliminate the loop in the initial states of the
components before the compositions, if necessary, in order
for them to work properly.

An example of alternative and sequential composi-
tions for automata P and Q representing ACTLW formu-
lae EEF{a}true and, respectively, EEF{d}true for A =
{a, b, c, d, e}, is given in Fig. 6. For the sake of simplicity,
we do not label actions with ‘‘?’’ and ‘‘!’’, and represent
multiple transitions between two states with one, labeled with
multiple actions. Note that the definitions from Fig. 5 include
unreachable states, which are not present in Fig. 6. It can be
seen that the alternative composition would not be correct if
the variants of P andQwith the loops in the initial states were
composed.

In the next step of witness automaton generation we com-
bine the NFA A representing the ACTLW formula and the
LTS M into a witness automaton WA by calculating the
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Algorithm 1: Procedure Automaton(ϕ,A, loop)
Data: ACTLW formula ϕ, set of actions A, Boolean parameter loop
Result: Automaton for satisfiable ACTLW formula ϕ
if (ϕ = true) then

return automaton (a);
else if (ϕ = ϕ1 ∨ ϕ2) then

if (ϕ1 = true ∨ ϕ2 = true) then
return automaton (a);

else if (ϕi for one of i = 1, 2 is satisfiable) then
return Automaton(ϕi,A, true);

else // if ϕ1 and ϕ2 are satisfiable
return Automaton(ϕ1,A, false) + Automaton(ϕ2,A, false);

else if (ϕ = EEX{χ2}ϕ2) and (χ2 ∧ A 6= false) then
if ϕ2 = true then

return automaton (b);
else // if ϕ2 is satisfiable

return automaton (b) · Automaton(ϕ2,A, true);

else if (ϕ = EEF{χ2}ϕ2) and (χ2 ∧ A 6= false) then
if (ϕ2 = true) then

if (χ2 ∧ A 6= false) then
if (loop = false) then

return automaton (d);
else

return automaton (c);

else if (χ2 ∧ A = false) then
return automaton (b);

else // if ϕ2 is satisfiable
if (loop = false) then

return automaton (d) with formula A instead of χ2 ∧ A
· Automaton(ϕ2,A, true);

else
return automaton (c) with formula A instead of χ2 ∧ A ·
Automaton(ϕ2,A, true);

else if (ϕ = EE[{false}ϕ1 U {χ2}ϕ2]) then
return the same automaton as for ϕ = EEX{χ2}ϕ2;

else if (ϕ = EE[{χ1}false U {χ2}ϕ2]) then
return the same automaton as for ϕ = EEX{χ2}ϕ2;

else if (ϕ = EE[{χ1}true U {χ2}ϕ2]) then
if (χ1 ∧ A = false) then

return the same automaton as for ϕ = EEX{χ2}ϕ2;
else if (χ1 = true) then

return Automaton(EEF{χ2}ϕ2,A, loop);
else if (χ2 ∧ A 6= false) then

if (ϕ2 = true) then
if (χ1 ∧ χ2 ∧ A 6= false) then

if (loop = false) then
return automaton (f );

else
return automaton (e);

else if (χ1 ∧ χ2 ∧ A = false) then
return automaton (b);

else // if ϕ2 is satisfiable
if (loop = false) then

return automaton (f ) with formula χ1 ∧ A instead
of χ1 ∧ χ2 ∧ A · Automaton(ϕ2,A, true);

else
return automaton (e) with formula χ1 ∧ A instead
of χ1 ∧ χ2 ∧ A · Automaton(ϕ2,A, true);

synchronous product of the two. In the synchronous product,
M andA are allowed to participate in a transition if and only
if the individual transitions in both are labeled with the same
action.

Assume M = (SM,Actτ , δM, sinitM ) is a finite
LTS with the set of reachable actions A and A =

(SA, 6, δA, sinitA ,FA) is the NFA representing the ACTLW
formula for A. The synchronous product of the two, denoted
M||A, is the NFA WA = (SM||A, 6M||A, δM||A,

sinitM||A ,FM||A) where:

SM||A = SM × SA
δM||A = {((sM, sA), a, (s′M, s′A))|(sM, a, s′M) ∈ δM

∧(sA, a, s
′

A) ∈ δA}

sM||A = (sinitM , sinitA )

FM||A = SM × FA (5)

By definition (5), SM||A may include unreachable, as well
as non-final, states with no outgoing transitions. We imple-
mented the synchronous product in such a way that non-final
states with no outgoing transitions are eliminated, whereas
unreachable states do not occur at all (see Section VI). If the
result contains any states from FM||A, it is a witness automa-
ton, and it is called a reduced WA. An example of a WA
with unreachable states eliminated and its reduced form for
ACTLW formula EEF EEX{a}true, its automaton A and
LTSM from Fig. 3 is shown in Fig. 7.

Please note that not all the conditions for viable witnesses,
described in Section IV, are checked when composing the
NFAs representing formulae. The checking is not always
possible, because the composed NFAs are generated inde-
pendently from each other. Consequently, only the conditions
from the definition of viable witnesses related to actions
are checked. This is one reason why the formula automata,
and, thus, witness automata, can contain some non-viable
witnesses. Another reason is that, in the case of formulae
of the form EE[{χ1}true U {χ2}ϕ2] and EEF{χ2}ϕ2 with a
normal formula ϕ2, i.e., not true, we have also decided not
to check all the conditions for actions. Notice that we left out
action formula χ2 on the transitions of the NFA of the external
formula leading to a non-final state, thereby allowing all the
actions which satisfy formula χ1∧A (in the case ofEEU) and,
respectively, all the actions from A (in the case ofEEF). If we
checked the condition expressed with action formula χ2 for
these kinds of ACTLW formulae, it could happen that there
were no witnesses for them. Therefore, we rather allow for
non-viable witnesses than to obtain no witnesses at all. For
example, consider the LTS obtained from the one in Fig. 3
by deleting the transition from state s1 to s4 and ACTLW
formula EEF{a} EEX{b}true. If we checked the condition,
in this case expressed with formula a, there would be no
witness for the validity of this formula in the LTS, and, if not,
there would be (two) viable witnesses. If, for example, a loop
with actions a and b were added in the initial state of that
LTS, there would, additionally, be non-viable witnesses with
repetitions of actions a and b in the beginning, and ending
with a and b.

VI. IMPLEMENTATION OF WITNESS AUTOMATA
GENERATION
Thewitness automata generation procedurewas implemented
(1.5 KLoC) in EST (Efficient Symbolic Tools) [32]. EST is
a toolbox for formal specification and symbolic verification
of finite labeled transition systems, which uses characteristic
functions and BDDs internally. The systems can be specified
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FIGURE 5. Definition of alternative and sequential compositions of NFAs.

FIGURE 6. Alternative and sequential composition of automata P and Q.

in a language similar to process algebra CCS (Calculus of
Communicating Systems) [33]. Every process and compo-
sition of processes in CCS is represented internally with
an LTS. EST supports the verification by model-checking
ACTLW and ACTL formulae, as well as some operations
regarding equivalence relations.

Before generating a witness automaton for a given formula
and LTS, we perform model checking. The result is not only
the truth value of the formula, but also the description of the
structure of the formula in the form of a (binary) subformulae
tree. The witness automaton generation is called only if the
LTS satisfies the ACTLW formula.

The subformulae tree is used by the symbolic implemen-
tation of Algorithm 1 (i.e., of procedure Automaton) for
the recursive formula automaton generation. Not included in
Algorithm 1 is the checking for syntax errors and unsatisfia-
bility for a given formula. Ultimately, the NFA is generated
for subformulae which are in accordance with (4) and meet

the conditions from Algorithm 1. We implemented three
distinct functions to build the basic kinds of NFAs shown
in Fig. 4. Their states are encoded with one or, respectively,
two logical variables. Finally, these NFAs are potentially
composed depending on the formula structure. The imple-
mentation of the alternative and sequential compositions is
a direct translation of the definitions given in Section V into
set operations with characteristic functions.

The implementation of the synchronous product of an LTS
and an NFA represented with BDDs is based on the descrip-
tion in Section V. However, in order to avoid the generation of
unreachable states, after generating the initial state, the states
and transitions of the product are generated gradually in a
similar way to the standard breadth-first search for reachable
states [34]. In the first step, the states reached from the initial
state by a synchronized transition of the LTS and the NFA
are generated and the new transitions added to the transi-
tion relation of the product. Afterwards, the states reached
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FIGURE 7. NFA A, WA and the reduced WA.

from any new non-final state generated with such transitions
are generated and the transitions added continuously until
no new states are generated. The result of the product is a
witness automaton (WA). To eliminate from it the non-final
states with no outgoing transitions, we implemented a sim-
ilar symbolic algorithm, which starts in the set of its final
states and searches in the breadth-first manner for the states
which are backward-reachable from them. The result is the
reducedWA. Thanks to the symbolic representation, in every
step, both algorithms generate the whole sets of states and
transitions at once, which is essential for the time efficiency
of the presented witness automata generation procedure.

VII. EMPLOYING WITNESS AUTOMATA
A. ERROR DETECTION
Suppose a system model specified as a parallel composition
of processes in the CCS-like language supported by EST
is to be verified. Generally, in order to be able to detect
errors in it with the help of witness automata, we pro-
pose to use a different variant of composition than in CCS.
Assume two concurrent processes with actions a? and,
respectively, a!, enabled. Originally, they would result in
action τ in the composed LTS [33]. Suppose that the required
properties are specified in terms of its external actions. Only
these and action τ would occur in the generated witness
automata, but not the actions participating in the communica-
tion, which might be the cause of invalidity of the properties.
So-called probes could be introduced in the model in order to
be able to observe the internal behavior anyway. These are
additional external actions, which add a lot of complexity.
We implemented a variant of composition similar to the one

of I/O automata [35]), in which the resulting LTS would go
to the next state by performing the output action a! instead
of τ , thus eliminating the need for a probe. For the purpose
of this section, we used this kind of composition exclusively.
It makes the specification of systems simpler and the internal
behavior observable in the witness automata, but it does not
impact the validity of the required properties.

Now, suppose that a system model specified with the
alternative kind of composition should satisfy some safety
properties, such that their negations can be expressed with
formulae in accordance with (4). In EST, to detect errors in
the model which falsify some of these properties, one would
call model checking with the option of witness automaton
generation for the formulae in turn. If a formula was valid
in the model, a witness automaton would be generated, and
one could explore (possibly internal) causes for the validity.
The generation of a witness automaton indicates that the
model contains one or more errors causing a violation of the
required property. Every witness reveals at least one error,
where by the term ‘‘reveal’’ we mean that the error is (a part
of) the cause of violation of the safety property being verified.
Please note that a witness can also exhibit other errors. A long
enough segment of the witness has to be explored in order
to find the errors revealed by it. All the witnesses have to
be explored in order to be sure that all the errors revealed
by the automaton were detected. Due to the viability of
witnesses, it is most convenient to explore the automaton
by starting from every final state and following the transi-
tions backwards. For each final state, as soon as a complete
explanation of the violation is found by following a sequence
of transitions backwards, the exploration further backwards
from the action reached is not needed. Next, we illustrate
the error detection with the help of BRP. Throughout this
section, we also show how some existing tools can be used
for visualization and exploration of witness automata.

The purpose of BRP is reliable transmission of data packets
between a producer (P) and a consumer (C) thereof through a
lossy channel. For transmission, the packets are divided into
consecutive chunks. A mechanism similar to the Alternating
Bit Protocol (ABP) is used to transmit the chunks [36]. The
transmission of a packet is successful if and only if the chunks
are received in the correct order and in a timely manner.
A sender and a receiver are in use. The role of the sender
is to gather the chunks of a packet from unit P, setting the
control bit in them, as well as appending the notifications to
the chunks. Possible notifications are IFST – the transmitted
chunk is the first and not the last chunk of the packet –,
IOK – the transmitted chunk is the last chunk of the packet –,
and IINC – for the rest of the chunks. For duplicate detection
at the receiver, the control bit in the first chunk is set to 0,
and in subsequent fresh chunks it alternates between 0 and 1.
Modified chunks are sent from the sender to the receiver in
a sequential manner through a lossy channel. The receiver
confirms the reception of each of the chunks to the sender
by sending an acknowledgment (ACK ) through another lossy
channel. If the control bit in the received chunk is different
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than in the previously received one, the receiver considers
it as a fresh chunk and passes its data and notification to
unit C . Upon sending a chunk, the sender starts a retransmis-
sion timer. It must not expire before the transmitted chunk
can reach the receiver and the acknowledgment for it can
be received by the sender, i.e., there must be no premature
timeout. The sender waits for either ACK from the receiver
or the expiration of the timer. In the case of expiration, the
chunk is sent again if the maximal number of retransmissions
has not been reached. Otherwise, the transmission of the
current packet is finished unsuccessfully. The receiver starts a
timer whenever a chunk is received. If it expires, the process
of receiving chunks of the current packet is stopped, and
unit C is notified with INOK . For each successfully trans-
mitted packet, the sender notifies unit P with IOK . A more
detailed description of BRP is given in [11]–[13], [37].

We first used a modified specification of BRP from [37]
written in the language of EST with packets containing
3 chunks and the maximal number of retransmissions equal
to 2. We introduced an error into the specification. Normally,
BRP alternates the control bit regardless of the chunk posi-
tion, even for the first chunk of the packets. In our case, each
first chunk had a control bit of value 0, which means that
there can be two consecutive chunks with no bit alternation.
The following safety property is valid in the correct system:
there does not exist a path where, after a transmission request
(denoted in the specification as external action REQ?) from
unit P, the receiver passes one of the notifications IINC , IOK ,
INOK (RINC !,ROK !,RNOK !) to unit C without passing IFST
(RFST !) first. In the case of the inserted error, the negation
of this property becomes valid, which yields that such a
path does exist [38]. We can specify this property in EST as
follows:

property F1 == EEF{REQ?}EE[{NOT RFST !}

U {RINC ! OR ROK ! OR RNOK !}];

TABLE 1. LTS size for BRP and lactose operon example.

Let us call the generated LTS BRP. We carried out weak
minimization over it, thus obtaining the smallest weakly
observationally equivalent LTS, denoted withBRP_W (please
see Table 1 for the sizes of the LTSs). After performingmodel
checking for formula F1, witness automata WA_BRP
and WA_BRP_W were generated for LTS BRP and,
respectively, BRP_W. Despite its size (please see Table 2),
WA_BRP_W could be explored in a 2D view by using
the dot program, which is a part of Graphviz (Graph visu-
alization software) [39]. To obtain the graph, we converted

EST’s internal representation of this witness automaton to
the dot format. Fig. 8 shows a small part of the automaton,
including its final states and the transitions that lead to them.
The internal behavior can be seen as a result of the alternative
variant of parallel composition. Fig. 9 shows a part of the
witness automaton containing sequences of actions indicating
the control bit error in the model. It lies just above the part
given in Fig. 8 and is backward reachable from some of the
final states. In Fig. 9 one can see faulty paths starting with the
pair of actions F0! andG0!, which represent the transmission
of a chunk with the control bit 0 from the sender into the
lossy channel and, respectively, its delivery to the receiver.
Actions ACK ! and B! represent the transmission of a positive
acknowledgment back. They are followed by external action
SOK !, which represents notification IOK of unit P, indicat-
ing that the transmitted chunk is the last one of the packet
being sent. In state 198, the transmission of another packet
is started by external action REQ? and its first chunk sent
with the control bit equal to 0 again. Assuming the informal
description of the protocol is correct, one can see immediately
that this is an error, because it is not in accordance with the
description. By observing a longer segment of the witness,
it can be confirmed that the action sequence is, indeed, the
cause of the validity of formula F1, be it due to the invalid
model, i.e., not following the informal description, or due to
the incorrect protocol design, assuming the model is valid.
Otherwise, the witness should be explored further backwards.
Basically, the reason for the validity of the formula is that
the receiver takes the new chunk with the control bit 0 as
a duplicate of the last one of the previous packet. As faulty
paths exhibiting the same reason can be followed backwards
from all the seven final states, one can be sure that the control
bit error is the one and only one revealed by this witness
automaton.

TABLE 2. Formula and witness automata size for BRP and lactose operon
example.

To observe the other witness automata considered in this
section, the previous representation is inadequate, since they
are much bigger in size. We have found that some tools
from the mCRL2 toolset [40], [41], which were originally
meant for LTSs, could be employed for this purpose, pro-
vided the internal representation of witness automata is con-
verted to the ALDEBARAN format [42]. One such tool is lts-
graph. Instead of drawing an LTS, we used it to draw and
explore WA_BRP . We have found ltsgraph to be appropri-
ate to handle it through its exploration mode, which allows
the exploration of small parts of an LTS stepwise. To visualize
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FIGURE 8. A part of witness automaton BRP_W including its final
states and transitions that lead to them.

and explore the larger witness automata, the ltsview tool of the
mCRL2 toolset had to be used. In contrast to ltsgraph, it is able
to visualize LTSs and, thereby, witness automata using a 3D
view while handling very large state spaces [40]. According
to [43], ltsview clusters states based on structural properties.
These clusters are then visualized to form a backbone, on
which the states and transitions are drawn.

WA_BRP and WA_BRP_W are visualized in Fig. 10.
The graphs start with an initial state at the bottom and are
followed by clusters of states denoted by the circle shapes.
From the initial state, transitions lead to the final states at the
graph’s tips. Zooming in and out, as well as rotation, of the
graphs is possible. A simple way to perform simulation of
a witness automaton with ltsview is by starting in the initial
state and executing actions that lead to the next states, up to
the point of interest or until reaching a final state. Another
feature of ltsview which proved especially useful to explore
the automata is the possibility of finding a trace to a state by
so-called backtracing. One can select any state and generate
the path from the initial state towards it automatically, thus
identifying a witness. The path is shown in the graph. It is
also given in a table in such a way that it can be examined in
a backward stepwise manner by undoing transitions.

FIGURE 9. A part of witness automaton WA_BRP_W with faulty
paths.

To trace a complete witness, we exploited the tool’s addi-
tional functionality for marking deadlocks in LTSs and,
thus, final states in the witness automaton. In the case of
WA_BRP_W , there were seven deadlocks, denoted by the
red color (please see Fig. 11). By selecting a deadlock and
performing backtracing, we obtained and examined the path
or the witness shown in purple in Fig. 11. It was the witness
from Fig. 8 ending in state 829 and eventually reaching
backwards a path indicated in Fig. 9.

In order to try to employ a witness automaton to detect
more than one error in a model, we changed the components
of BRP so that the retransmission timer could expire pre-
maturely. As the modeling language in EST, like CCS, does

FIGURE 10. Witness automata visualization for the BRP example.
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FIGURE 11. A witness in WA_BRP_W identified by backtracing in
ltsview.

not support explicit modeling of time, the functioning of this
timer in LTS BRP is modeled with one action (TX !), which
represents expiration of the timer and happens only if either
the data chunk or the acknowledgement is lost (cf. [11]).
In the new LTS, named BRP_T, the sender starts the timer
explicitly with action StartTX ! upon sending a chunk. After
the timer is started, it can execute action TX ! independently
of the losses, i.e., either prematurely or not. After starting
the timer, the sender waits for the acknowledgement or the
timeout. If it receives the acknowledgement, it stops the timer
with action StopTX !.
We again called model checking with the witness automata

generation for formula F1, this time with LTS BRP_T (the
sizes of the NFA and the LTS are given in Table 2 and,
respectively, 1). Also in this LTS, containing two errors, the
result ofmodel checkingwas positive. Thewitness automaton
WA_BRP_T generated for it consists of approximately 10k
states and 25k transitions, and has 959 final states (Table 2).
Due to the size of the automaton and the large number of
final states, it is, of course, infeasible to check all the wit-
nesses. By backtracing from a few final states using ltsview,
we found witnesses showing premature timeouts to be a
reason of the validity of F1, as well as ones revealing the
control bit error. Fig. 12 shows a witness which, at least
if assuming the informal protocol description to be correct,
seems to reveal two errors, but reveals only one. After the
first action REQ!, the first chunk is transmitted three times
(actions F0!), because, for the first two times, there was a
premature timeout (TX !). Each time, the transmitted chunk
is received successfully (action G0!). For the first chunk, the
receiver issues RFST !. However, since acknowledgements in
the BRP protocol, in contrast to ABP [36], do not carry an
alternating bit analogous to the one in the data chunks, the

acknowledgement of the first chunk received for the second
time is recognized by the sender as the acknowledgement of
the second chunk of the packet (action F1!), which has been
lost (please notice action TAU ). Consequently, that chunk is
not retransmitted. The third chunk of the packet is transmitted
instead and taken as acknowledged by the acknowledgement
of the first chunk received for the third time. Generally,
we found witnesses which, like the presented one, show that
unit P is informed wrongly by the sender about the success
of the transmission of the first packet (by action SOK !) and
starts the transmission of a new packet by REQ!. The receiver
does not recognize that the chunks of the new packet are
received and issues to unit C indications other than RFST !.
By backtracing the witness in Fig. 12 from action RINC !,
we notice the control bit error, as the last chunk of the first
packet holds the same bit value (F0!) as the first chunk of the
second packet. However, even if the control bit of the first
chunk of the second packet was set correctly, i.e., if there
was action F1! instead of F0! after the second REQ!, the
receiver would think that was the second chunk of the first
packet and perform RINC !, not RFST !. It follows that this
witness reveals only the timeout interval error. Please notice
that, assuming the model is valid, one could conclude that the
error in the current design is not the possibility of premature
timeouts, but rather the absence of the alternating bit in the
acknowledgements.

As BRP can be scaled to any number of chunks and retrans-
missions, we used it to evaluate the new witness automata
generation procedure (WA) against the existing one (WCA).
To show the efficiency of the new procedure, we generated
witness automata for formula F1 applied to BRPwith the pre-
mature timeout error but without the control bit one, because
it gives much larger LTSs and witness automata than BRP
with both kinds of errors. The results, showing the witness
automaton generation time versus the number of transitions
of the generated automaton, are given in Fig. 13 (please
note that all the experiments presented in this paper were
performed on a computer with 16 GB of RAM and Intel Core
i7-8700 at the frequency of 3.2 GHz). They include, from
left to right, the generation time for the witness automaton
(excluding the preliminary model checking) for the LTS rep-
resenting the protocol with packets consisting of 3 chunks
and with 2 retransmissions, and for the witness automata
generated for the LTS extended to model the transmission
of packets of 4, 6, 8, and, respectively, 10 chunks, the latter
also with 3 and, respectively, 5 retransmissions. The results
show significant improvement in terms of witness automata
generation time, even for very large system models and wit-
ness automata. For example, the LTS for the variant of BRP
with 5 retransmissions, giving the witness automaton with
almost 300k transitions, contains 69,171 states and 186,141
transitions. It should be noticed that the implementation of
the existing procedure in EST allows only the generation
of a witness automaton for a process. The conversion of a
composition LTS into a process is supported. It makes the
states of the former monolithic. The graph contains the times
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FIGURE 12. A witness from WA_BRP_T revealing the timeout interval error in the model.

FIGURE 13. Evaluation of the witness automata generation procedures
on the BRP benchmark.

for the new procedure applied to the processes (WAp) and
compositions (WAc) and for the old one to the processes.
It should be noticed that the existing procedure generates the
states and transitions of the witness automaton one by one and
uncoded, whereas the new one generates a witness automa-
ton represented symbolically. The time needed to decode
it is not included in the results. The decoding took 9.3 s
for the largest witness automaton. The time needed for the
initial model checking is equal to 90 ms for the composition
LTS with 2 retransmissions and 292 ms for the one with
5 retransmissions. The time needed for the generation of the
formula automaton is included in the times for WA shown in
the graph. For typical formulae, such as used in this section,
the automaton is generated in less than a millisecond.

B. DETECTION OF UNKNOWN PROPERTIES
Suppose that the behavior of single components of a sys-
tem is known and that the latter is modeled as a par-
allel composition of them. Typically, the purpose of this
would be to model-check the system for some (un)desired
(or, in the case of a non-human-made one, better to say,
(un)expected or hypothetical) properties, i.e., sequences of

actions, by describing them explicitly with temporal formu-
lae. However, another purpose could be to use model check-
ing to see what sequences of actions lead to some allowed or
expected actions, i.e., to detect unknown properties. A typical
example would be a complex biological system in which a
certain substance can occur, and one would like to know
what sequences of reactions lead to that event. The detection
of unknown properties could also be useful as an additional
means for model validation and system verification. Next,
a lactose operon regulatory system model is used to exem-
plify the idea of detecting unknown properties. Of course,
as this system is one of the most studied biological systems,
we did not detect any previously unknown system properties,
but rather some which were a consequence of the modeling
approach.

Operon is the basic unit for gene transcription. The lactose
operon in the bacteria Escherichia coli grows very well when
glucose is present. In addition to glucose there is a substance
called Cyclic AdenosineMonophosphate (cAMP), which acts
as a co-activator of the activator protein in the lactose operon
regulation process. The content of cAMP depends on the
amount of glucose in the cell. The connection between the
two is as follows: the higher the glucose content in the cell,
the lower the cAMP content, and vice versa. This is just an
outline of the basic operation of lactose operon regulation.
The whole regulation process is described in more detail
in [16], [17].

In [17], we presented a formal specification of the lac-
tose operon regulatory system written in the CCS-like lan-
guage of EST, which is based on the specification from [16]
and includes many probes. For the purpose of this paper,
we employed the alternative kind of composition, enabling
us to largely reduce the number of probes. The generated
LTS and its minimized form are denoted as SF and SF_W,
respectively (please see Table 1). One would expect that in
these LTSs, whenever the content of cAMP is high, it does
not decrease without the glucose content increasing first.
However, in [17], we found, surprisingly, that negation of this
property was valid: a path exists on which the content of
cAMP is high, and it decreases without the increase of glucose
content. Its formal specification is as follows (please note that
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in [17], the expected property is called A21, not its negation):

property A21

== EEF{L_to_H !} EE[{NOT GLU_L_to_H !}

U {H_to_L!}];

Here, actions L_to_H !, H_to_L! and GLU_L_to_H ! rep-
resent the increase in cAMP content, the decrease in cAMP,
and the increase in glucose content, respectively. Based on
a counterexample generated by EST, we guessed the rea-
son was that the inquiry into the level of glucose, made
by the process representing cAMP, and its reaction to the
information do not form an indivisible action. Thus, the
GLU_L_to_H ! action does not necessarily express the glu-
cose level taken into account when the cAMP level is changed.
We confirmed that by using the witness automata generation
procedure for formula A21 and both LTSs. The sizes of the
generated witness automata are given in Table 2. Unfortu-
nately, transition labels cannot be displayed in a 3D view
in ltsview. To explore witness automaton WA_SF with it,
we, therefore, exploited its capability to indicate transitions
labeled with certain actions with different colors (please
see Fig. 14). Thereby, we could explore only the paths where
all the actions GLU_L_to_H !, H_to_L! and, respectively,
L_to_H ! took place. It could be seen from WA_SF that
action GLU_L_to_H ! is followed immediately by action
L_to_H !, whereas action H_to_L! is performed some time
after the latter, suggesting that, after the increase of glucose,
the amount of cAMP is increased first before the decrease.
This motivated us to ask, by using a proper formula, about all
the possible paths leading to a decrease of cAMP, in order to
illustrate the detection of unknown properties.

The general form of the formula is EEF EEF{action},
where action is an action formula denoting the action
(or possibly a combination of actions) for which the paths are
being sought. Please note that, if the formula EEF{action}
was employed, due to the viability of the witnesses, the
obtained witness automaton would contain only witnesses
which ended with actions satisfying formula action and in
which this was the first occurrence of such actions. However,
it could be the case that unknown (sub)sequences of actions
occur in the model after the first or even several occurrences
of those actions. Only the first kind of formula allows wit-
nesses with the repeating actions and, thus, detecting such
properties.

We generated witness automaton WA_SF_T for LTS
SF and formula A22 defined in EST as property A22 =

EEF EEF{H_to_L!}. The formula and witness automaton’s
size are given in Table 2. The generation (without model
checking) for the original LTS took 0.07 s, for the process
obtained from it 0.747 s, and the decoding 0.043 s. With the
old procedure, the generation took 17 s. The time needed
for the model checking of the original LTS was 31 ms.
By using simulation and backtracing in ltsview, we found
witnesses exhibiting only the expected functioning of lactose
operon regulation, witnesses showing the behavior detected

FIGURE 14. Witness automaton WA_SF in ltsview with indicated
transitions labeled with appropriate actions.

with formula A21, as well as witnesses showing two kinds
of unknown properties. One kind was that, after an increase
of the glucose content (GLU_L_to_H !), followed by an
inquiry into and an answer about the glucose content (lev! and
respectively high!), a decrease of the glucose content (action
DGLU ! preceeded by τ ) followed before a decrease of cAMP
(H_to_L!). In contrast to the latter, the other kind of property
was, indeed, surprising. The witness automaton showed that,
after an occurrence of actions GLU_L_to_H !, lev! and high!
and a decrease of the glucose content, another increase and
decrease of it could follow, and only after them, but with-
out inquiry into the level of glucose, could the decrease of
cAMP occur. We found that the reason for both was again the
nonatomicity of the inquiry into the level of glucose and the
reaction to it.

VIII. DISCUSSION
The presented experimental results show that the proposed
BDD-based breadth-first generation of witness automata
takes much less time for large LTSs and witness automata
than the old algorithm [5], [6]. Unlike the latter, it could also
do without model checking. One reason for the preliminary
model checking is that, in EST, the formula parsing is imple-
mented as part of model checking, and we wanted to exploit
this feature. Another possibility would be to implement the
parsing without model checking and generate the formula
automaton during the parsing. If the result of the synchronous
product of the automaton and the LTS was a witness automa-
ton, this would mean that the formula was valid in the LTS.

Similar to the old algorithm, it can happen that the gen-
erated witness automata contain some non-viable witnesses,
as well as several paths containing the same witness. In [5],
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it is proposed to minimize the automata to eliminate both.
However, this, as well as preliminary minimization of the
LTSs being verified, could only help to some extent. The
resulting automata could still be very large, because they can
contain many similar witnesses as a consequence of different
interleavings of concurrent system events. In order for ltsview
to ease the employment of witness automata for the detection
of errors and unknown properties, we would wish it to also
be able to display action labels on the transitions in the 3D
graph, when zoomed in sufficiently, allow to explore it by
clicking the transitions, and indicate, as well as remember, the
transitions already explored in this way or by backtracing.

It would be useful to introduce witness automata into
practice as another means for error detection besides the
usual model checking, giving single witnesses (or, in fact,
counterexamples). According to [10], to speed up the debug-
ging using model checking, upon checking the validity of a
formula, the designer should be given as much feedback as
possible before he or she modifies the model. The availability
of multiple counterexamples in the automaton would not only
allow the designer to detect multiple errors before having to
modify the model, but could also facilitate the detection of
a single error. Note that multiple counterexamples can show
different patterns of violation of the required property even if
the reason for it is a single error. If the designer is debugging
a valid model to achieve the system correctness, the multiple
patterns can better help him or her to get an idea about the
error than a single one. As can be seen from the evaluation
results, even for larger LTSs, the times needed to generate
witness automata with the proposed procedure are such that
it can be rather acceptable for the designer to perform debug-
ging by using witness automata instead of, or in combination
with, the usual model checking. Even if the designer explored
only a few witnesses in an automaton, it would, generally,
be more helpful in terms of diagnostics than having only the
one obtained with the usual model checking.

With a proper tool for visual exploration, witness automata
could be very useful in discovering previously unknown prop-
erties of complex biological systems. It should be noticed that
the usual model checking is not appropriate for this purpose.
Given a valid system model, in order to obtain all the wit-
nesses leading to a chosen action, the model checking should
be repeated for the same formula, with the model changed
every time to prevent the last returned witness, until all the
witnesses from the original model were obtained. Making
such changes in the model would be very difficult, if not
impossible, and, in fact, unreasonable, because, in contrast
to the debugging, the goal is not to eliminate the discovered
action sequences from the system’s behavior.

Currently, definition (4) does not include formulae of the
formEE[{χ}falseW {χ}ϕ] andEE[{false}ϕW {χ}ϕ], which
are included in [6]. For LTSs without deadlock states, they
are equivalent to the analogous formulae with operator EEU
in (4). In contrast to the latter, they are true in a deadlock
state, and a witness for that would be an empty sequence [6].
To define NFAs for them, a special action leading to a final

state could be introduced to ‘‘catch’’ the deadlock states of an
LTS in a synchronous product. We leave this for future work.
A subset of ACTLW formulae having finite linear counterex-
amples is also defined in [6]. The existing algorithm for the
generation of witness automata can also generate counterex-
ample automata for these, in a similar way to the algorithm
for ACTL [5], [6]. Removing from them the formulae with
operator AAU similar to the above mentioned formulae with
operator EEW, which have an empty counterexample in a
deadlock state, only the formulae containing operator AAW
(and possibly abbreviationsAAX andAAG) remain, whereas
the formulae defined by (4) contain the ACTLW operator
EEU (or are abbreviations based on it). Negations of all the
formulae with operator AAW can be converted into formulae
allowed by (4). It follows that an extension of the parser to
support the conversion could be one way to allow the user to
apply the presented witness automata generation procedure
for the generation of counterexample automata directly for
the AAW formulae. Instead of the conversion, the generation
of NFAs could additionally be defined and implemented for
the latter, such that the NFAs would contain possible viable
counterexamples for them, i.e., viable witnesses of their
negations.

Subsets of ACTL formulae having finite linear witnesses
and, respectively, finite linear counterexamples are identified
in [5]. All the formulae or, respectively, negations thereof
can be expressed with the ACTLW formulae allowed by (4).
Please note that the semantics of ACTL is defined only for
LTSs with a total transition relation. Thus, the presented
witness automata generation procedure could also be applied
for the generation of witness and counterexample automata
for ACTL for such LTSs by implementing the conversion,
or NFAs similar to those for ACTLW could be generated
and used in the synchronous product with LTSs. Notice,
however, that not all the ACTLW formulae having finite lin-
ear witnesses or counterexamples can be expressed with the
ACTL formulae from the subsets. Assuming LTSswith a total
transition relation, the reason is that, in ACTLW, in contrast
to ACTL, action τ is not treated differently than the external
actions [6].

A subset of formulae of the universal fragment of CTL
(shortly ACTL with A for ‘‘universal’’) having linear coun-
terexamples has also been identified, as well as their duals
from the Existential fragment of CTL (ECTL), which have
linear witnesses [44], [45]. Those formulae having finite
linear witnesses could be identified and witness automata
defined. The latter could be generated in a similar way to
the presented procedure, but with NFAs with the alphabets
containing subsets of atomic propositions and a synchronous
product defined differently due to the state-based setting
(cf. [1]). Counterexample automata could also be obtained
analogously to the two ways presented for ACTLW.

IX. CONCLUSION
We developed a symbolic procedure for the generation of
witness automata for ACTLW formulae. The procedure’s
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employment on the bounded retransmission protocol and
lactose operon regulatory system shows the new procedure to
be at least several times faster than the current method. Some
existing tools were shown to be rather appropriate for the
exploration of witness automata, although not dedicated for
this purpose. Two novel uses for witness automata were intro-
duced, namely, for multiple error detection and discovery of
unknown properties in models of concurrent systems. This
makes witness automata a promising means to be employed
in debugging performed with model checking and in investi-
gating the behavior of complex biological systems.

REFERENCES
[1] C. Baier and J. P. Katoen, Principles of Model Checking. Cambridge, MA,

USA: MIT Press, 2008.
[2] R. Meolic, T. Kapus, and Z. Brezočnik, ‘‘ACTLW–An action-based com-

putation tree logic with unless operator,’’ Inf. Sci., vol. 178, pp. 1542–1557,
Mar. 2008.

[3] R. De Nicola and F. Vaandrager, ‘‘Action versus state based logics for tran-
sition systems,’’ in LITP Spring School on Theoretical Computer Science
(Lecture Notes in Computer Science), vol. 469. Berlin, Germany: Springer,
1990, pp. 407–419.

[4] A. Fantechi, S. Gnesi, andA.Maggiore, ‘‘Enhancing test coverage by back-
tracing model-checker counterexamples,’’ Electron. Notes Theor. Comput.
Sci., vol. 116, pp. 199–211, Jan. 2005.

[5] R. Meolic, A. Fantechi, and S. Gnesi, ‘‘Witness and counterexample
automata for ACTL,’’ in Formal Techniques for Networked and Distributed
Systems (FORTE) (Lecture Notes in Computer Science), vol. 3235. Berlin,
Germany: Springer, 2004, pp. 259–275.

[6] R. Meolic, ‘‘Action computation tree logic with unless operator,’’ Ph.D.
dissertation, Fac. Elect. Eng. Comput. Sci., Univ. Maribor, Maribor,
Slovenia, 2005.

[7] S. B. Akers, ‘‘Binary decision diagrams,’’ IEEE Trans. Comput., vol. 27,
no. 6, pp. 509–516, Jun. 1978.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
‘‘Symbolic model checking: 1020 States and beyond,’’ Inf. Comput.,
vol. 98, pp. 142–170, Jun. 1992.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, ‘‘Progress on
the state explosion problem in model checking,’’ in Informatics (Lecture
Notes in Computer Science), vol. 2000, R. Wilhelm, Ed. Berlin, Germany:
Springer, 2001, pp. 176–194.

[10] K. Cabrera Castillos, H. Waeselynck, and V. Wiels, ‘‘Show me new coun-
terexamples: A path-based approach,’’ in Proc. IEEE 8th Int. Conf. Softw.
Test., Verification Validation (ICST), Apr. 2015, pp. 1–10.

[11] J. F. Groote and J. van de Pol, ‘‘A bounded retransmission protocol for large
data packets: A case study in computer checked algebraic verification,’’ in
Proc. 5th Int. Conf. Algebr. Methodol. Softw. Technol. (AMAST) (Lecture
Notes in Computer Science), vol. 1101. Berlin, Germany: Springer, 1996,
pp. 536–550.

[12] P. D’Argenio, J.-P. Katoen, T. Ruys, and J. Tretmans, ‘‘Modeling and
verifying a bounded retransmission protocol,’’ in Proc. Int. Workshop
Appl. Formal Methods Syst. Design (COST), Maribor, Slovenia, 1997,
pp. 114–128.

[13] R.Meolic, T. Kapus, and Z. Brezočnik, ‘‘Exploring properties of a bounded
retransmission protocol with VIS,’’ J. Comput. Inf. Technol., vol. 7, no. 4,
pp. 311–321, Jan. 1999.

[14] P. F. Castro, P. D’Argenio, R. Demasi, and L. Putruele, ‘‘Measuring
masking fault-tolerance,’’ in Tools and Algorithms for the Construction
and Analysis of Systems (TACAS) (Lecture Notes in Computer Science),
vol. 11428. Cham, Switzerland: Springer, 2019, pp. 375–392.

[15] P. van den Bos and J. Tretmans, ‘‘Coverage-based testing with sym-
bolic transition systems,’’ in Tests Proofs (TAP) (Lecture Notes in
Computer Science), vol. 11823. Cham, Switzerland: Springer, 2019,
pp. 64–82.

[16] M. C. Pinto, L. Foss, J. C. M. Mombach, and L. Ribeiro, ‘‘Mod-
elling, property verification and behavioural equivalence of lactose
operon regulation,’’ Comput. Biol. Med., vol. 37, no. 2, pp. 134–148,
Feb. 2007.

[17] R. Vogrin, R.Meolic, and T. Kapus, ‘‘Formalna specifikacija in verifikacija
lastnosti uravnavanja laktoznega operona z orodjem EST,’’ Elektrotehniski
Vestnik, vol. 84, no. 5, pp. 268–276, Sep. 2007.

[18] M. Falaschi and G. Palma, ‘‘A logic programming approach to reaction
systems,’’ in Recent Developments in the Design and Implementation
of Programming Languages (OpenAccess Series in Informatics, Schloss
Dagstuhl–Leibniz Zentrum für Informatik). Wadern, Germany: Dagstuhl
Publishing, 2020, p. 6.

[19] K. L. McMillan, Symbolic Model Checking. Michigan, MI, USA: Kluwer,
1992.

[20] T. A. Henzinger, O. Kupferman, and S. Qadeer, ‘‘From pre-historic to post-
modern symbolic model checking,’’ in Proc. 10th Int. Conf. Comput. Aided
Verification (CAV) (Lecture Notes in Computer Science), vol. 1427. Berlin,
Germany: Springer, 1998, pp. 195–206.

[21] E. M. Clarke, K. L. McMillan, S. Campos, and V. Hartonas-Garmhausen,
‘‘Symbolic model checking,’’ in Proc. 8th Int. Conf. Comput. Aided Ver-
ification (CAV) (Lecture Notes in Computer Science), vol. 1102. Berlin,
Germany: Springer, 1996, pp. 419–422.

[22] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill,
‘‘Symbolic model checking for sequential circuit verification,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 4,
pp. 401–424, Apr. 1994.

[23] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen, and P. Mckenzie, ‘‘SMV–symbolic model checking,’’
in Systems and Software Verification. Berlin, Germany: Springer, 2001,
pp. 131–138.

[24] R. E. Bryant, ‘‘A view from the engine room: Computational support
for symbolic model checking,’’ in 25 Years of Model Checking (Lecture
Notes in Computer Science), vol. 5000. Berlin, Germany: Springer, 2008,
pp. 145–149.

[25] E. M. Clarke, ‘‘Efficient generation of counterexamples and witnesses in
symbolic model checking,’’ in Proc. 32nd Design Autom. Conf., NewYork,
NY, USA, Dec. 1995, pp. 427–432.

[26] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, ‘‘Counterexample-
guided abstraction refinement for symbolic model checking,’’ J. ACM,
vol. 50, no. 5, pp. 752–794, Sep. 2003.

[27] E. Clarke and S. Jha, ‘‘Tree-like counterexamples in model check-
ing,’’ in Proc. 17th Annu. IEEE Symp. Log. Comput. Sci., Jul. 2002,
pp. 19–29.

[28] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer, ‘‘Wit-
ness validation and stepwise testification across software verifiers,’’ in
Proc. 10th Joint Meeting Found. Softw. Eng., New York, NY, USA,
Aug. 2015, pp. 721–733.

[29] D. Beyer and M. Dangl, ‘‘Verification-aided debugging: An interactive
web-service for exploring error witnesses,’’ in Proc. 28th Int. Conf.
Comput. Aided Verification (CAV) (Lecture Notes in Computer Science),
vol. 9780. Berlin, Germany: Springer, 2016, pp. 502–509.

[30] M. Sipser, Introduction to the Theory of Computation. Boston, MA, USA:
Thomson Course Technology, 2006.

[31] A. Silva. (2013). Languages and Automata. Lecture Notes, Draft Ver-
sion. Accessed: Oct. 22, 2020. [Online.] Available:. [Online]. Available:
http://www.cs.ru.nl/~herman/onderwijs/2016TnA/Silva_TnA.pdf

[32] Efficient Symbolic Tools Tool. Accessed: Oct. 22, 2020. [Online]. Avail-
able: http://est.meolic.com/home/

[33] R. Milner, Communication and Concurrency. New York, NY, USA:
Prentice-Hall, 1989.

[34] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algo-
rithms. New York, NY, USA: Kluwer, 1996.

[35] N. A. Lynch andM. R. Tuttle, ‘‘An introduction to input/output automata,’’
CWI Quart., vol. 2, pp. 219–246, Nov. 1989.

[36] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down
Approach. Boston, MA, USA: Pearson, 2017.

[37] R. Meolic, ‘‘Checking correctness of concurrent systems behaviour,’’
M.S. thesis, Fac. Elect. Eng. Comput. Sci., Univ. Maribor, Maribor, Slove-
nia, 1999.

[38] R. Vogrin, ‘‘Generating linear finite witness automata for ACTLW formu-
lae with EST,’’ M.S. thesis, Fac. Elect. Eng. Comput. Sci., Univ. Maribor,
Maribor, Slovenia, 2018.

[39] (Oct. 22, 2020).Graphviz Tool. Accessed: Jul. 6, 2020. [Online]. Available:
https://graphviz.org/about/

[40] mCRL2. Accessed: Oct. 22, 2020. [Online.] Available:. [Online]. Avail-
able: https://www.mcrl2.org/web/user_manual/index.html

[41] J. F. Groote andM. R. Mousavi,Modeling and Analysis of Communicating
Systems. Boston, MA, USA: MIT Press, 2014.

9904 VOLUME 10, 2022



R. Vogrin et al.: Generating and Employing Witness Automata for ACTLW Formulae

[42] Inria. Aldebaran Webpage. Accessed: Oct. 22, 2020. [Online]. Available:
https://cadp.inria.fr/man/aldebaran.html

[43] F. van Ham, H. van de Wetering, and J. J. van Wijk, ‘‘Visualization of state
transition graphs,’’ in Proc. IEEE Symp. Inf. Vis. (INFOVIS), Oct. 2001,
pp. 59–66.

[44] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone, ‘‘On ACTL formulas
having linear counterexamples,’’ J. Comput. Syst. Sci., vol. 62, no. 3,
pp. 463–515, May 2001.

[45] Z. Xu and W. Zhang, ‘‘Linear templates of ACTL formulas with an appli-
cation to SAT-based verification,’’ Inf. Process. Lett., vol. 127, pp. 6–16,
Nov. 2017.

ROK VOGRIN (Member, IEEE) received the
M.Sc. degree in telecommunications from the
Faculty of Electrical Engineering and Computer
Science, University of Maribor, Slovenia, in 2018,
where he is currently pursuing the Ph.D. degree in
electrical engineering.

Since 2019, he has been a Teaching Assis-
tant at the Institute of Electronics and Telecom-
munications, University of Maribor. His research
interests include formal verification of communi-

cations protocols and biological systems, as well as network verification.

ROBERT MEOLIC (Member, IEEE) received the
M.Sc. degree in computer science and the Ph.D.
degree in electrical engineering from the Uni-
versity of Maribor, Slovenia, in 1999 and 2005,
respectively.

He has been actively researching various topics
within formal methods since he was the coauthor
of a paper on binary decision diagrams, which won
Second Prize in the 1993 IEEE Region 8 Student
Paper Contest. Most of his work is devoted to the

development of software tools, mathematical logic, algorithms with binary
decision diagrams, formal specification of concurrent systems, and model
checking. He is the main author of the tool EST.

TATJANA KAPUS (Member, IEEE) received the
M.Sc. and Ph.D. degrees in electrical engineer-
ing from the Faculty of Electrical Engineering
and Computer Science, University of Maribor,
Slovenia, in 1991 and 1994, respectively.

She is currently a Full Professor at the Faculty
of Electrical Engineering and Computer Science,
Institute of Electronics and Telecommunications,
University of Maribor. She mainly teaches courses
on communications networks and protocols. Her

research interests include formal methods for specification and verification
of reactive systems.

VOLUME 10, 2022 9905


