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ABSTRACT This paper is concerned with the stability analysis of fixed-point state-space digital filters with
generalized overflow arithmetic and a time-varying delay. This paper aims to derive a delay and nonlinear
function bound dependent asymptotical stability criterion with less conservatism. Firstly, a new Lyapunov
functional with several augmented terms, including extra free matrices and overflow nonlinear function,
is constructed such that it has a relaxed positive condition. Then, for bounding the summation term arising
in the forward difference of Lyapunov functional, a new lemma is developed to introduce the terms for
linking the delayed states and the overflow nonlinear function, the Wirtinger-based summation inequality
and several zero-value terms are applied to add more cross terms. As a result, a stability criterion with less
conservatism is established and its conservatism. Finally, several numerical examples are given to illustrate
the advantages of the proposed method.

INDEX TERMS Asymptotic stability, digital filter, generalized overflow arithmetic, time-varying delay.

I. INTRODUCTION
As an effective device that produces the desired discrete-time
output signal from the original input signal, digital filter
becomes a necessary element of everyday electronics like
radios, cell phones, and stereo receivers. Due to its large-scale
applications in many areas such as radar, image processing,
telecommunications, signal processing, the analysis of prop-
erties and performances of the digital filters has attracted
considerable attention in the past few decades (see [1]–[3]
and references therein).

During the practical implementation of a digital filter via
hardware using the fixed-point arithmetic, the complex oper-
ations within the hardware require increasing wordlength
to deal with the signals. On the other side, because of the
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limitation of register length, the quantization and overflow
correction mechanisms are commonly required to reduce the
wordlength [2]. Therefore, nonlinearities, including magni-
tude truncation, roundoff, or value truncation due to quantiza-
tion and saturation, zeroing, two’s complement, or triangular
for overflow, are unavoidable [4], [5]. Those nonlinearities in
turn lead to undesirable behaviors, for example, performance
degradation, oscillations, and limit cycles [6]. The stabil-
ity problem of digital filters with different nonlinearity has
been considered. Under the consideration that the influence
of quantization and that of overflow can be studied sepa-
rately if the total number of quantization steps (or internal
wordlength) is large sufficiently [7], a stability criterion of
digital filters with saturation arithmetic was presented in [8]
and was improved in [9]. Linear matrix inequality (LMI)
based stability criteria for direct form digital filters utilizing
single saturation nonlinear were developed in [7] and [10].
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In [11], the stability analysis of fixed-point state-space digital
filters with generalized saturation nonlinear was discussed.
Due to the fact that the hardware implementation of saturation
arithmetic is more expensive than that of two’s complement
arithmetic, the digital filters using two’s complement arith-
metic were investigated, and the stability criteria for such
type of filters were also proposed [12]–[14]. Stability crite-
ria for direct-form digital filters utilizing two’s complement
nonlinearity were proposed in [15] and [16]. By taking into
account the possibility of influence of both overflow and
quantization, stability criteria for digital filters with differ-
ent combinations of overflow and quantization nonlinearities
were established [4], [17], [18]. Furthermore, in order to
analyze the possible effect of external disturbances, different
performances of digital filters were successively investigated,
for example, theH∞, l2−l∞, and l∞ performances [19]–[22],
the input-to-state stability (ISS) and the input/output-to-state
stability (IOSS) analysis [5], [6], [23]–[26], the dissipativity
analysis [27], [28], local stability analysis [29], [30], and so
on.

Besides the nonlinearities and external disturbances men-
tioned above, time delay is frequently encountered in many
systems [31]–[46] and also exists in digital filters. For exam-
ple, a causal digital filter with a fixed order and cutoff
frequency will delay different frequency signals [47]. For
the discrete-time systems with quantization/overflow nonlin-
earities and time delays, a delay-independent stability cri-
terion was proposed in [48]. For digital filters with delay
and overflow nonlinearity, the exponential stability analysis
methods [1] and the robust stability criterion [2] has been
proposed, respectively. However, the delays concerned in [1]
and [2] are all constant. In [49], a delay-dependent criterion
was developed by using free-weighting matrix approach for
the asymptotic stability of a class of uncertain discrete-time
state-delayed systems with the combination of quantization
and overflow nonlinearities. For the digital filters with gen-
eralized overflow nonlinearity, a stability condition depends
not only on the delay bounds but also on the bounds of
nonlinear function was reported in [47] with the help of
Jensen-based summation inequality. In [50], the extended
dissipativity analysis for digital filters with a time-varying
delay and Markovian jumping parameters was investigated,
and a criterion was given by putting forward a general form of
nonlinearity functions and employing the reciprocally convex
combination approach. While the criteria reported in [47],
[49], [50] are all based on a simple Lyapunov functional,
which is simple but conservative. In [3], the ISS problem
of digital filters in the presence of both external disturbance
and time-varying delay was discussed and stability criteria
were derived by using simple Lyapunov functionals and
Jensen-like summation inequality.

Based on the above discussions, there still remains room
for further investigation on the analysis of digital filters with
the overflow nonlinearity and the time-varying delay. From
the research on digital filters point of view, there are only
a few works on digital filters considering the time-varying

delay [3], [47], [49], [50], and the techniques used therein
are all conservative in comparison to the ones developed
for the time-delay systems. Recently, many more effective
methods have been developed for dealing with time-varying
delays, such as augmented Lyapunov functionals [51]–[53],
new inequalities [42], [54]–[56], extended reciprocally con-
vex matrix inequalities [57]–[59], etc. From the viewpoint
of techniques dealing with the discrete-time delay systems,
every term in the Lyapunov functionals is usually required
to positive in order to guarantee the positive-definiteness of
the functionals. Such strict requirement leads to the con-
servatism. The conservatism of the methods may lead to
inaccurate results. Therefore, how to reduce the conservatism
motivates the current research.

In this paper, the stability analysis problem of digital filters
with generalized overflow nonlinearity and a time-varying
delay is further investigated. The main contribution of the
paper is that a new delay and nonlinearity bounds dependent
stability criterion with less conservatism is developed, and
the proposed criterion can provide more accurate delay stable
region (namely, the allowably maximal delay region such that
the stability of the digital filter with any delay belonging to
such region is guaranteed). The advantage of the proposed
stability criterion is illustrated based on several numerical
examples. The main techniques, different from the previous
publications, are summarized as follows.

• The first aspect is on the construction of the Lyapunov
functional. Several augmented terms, especially the one
with the information of overflow nonlinearity, are intro-
duced into the Lyapunov functional and the condition of
positive-definiteness of functional is relaxed by requir-
ing the sum of all terms, instead of each term, be posi-
tive. Those treatments can provide extra freedom for the
feasibility of the obtained criterion.

• The second aspect relies on the estimation of the for-
ward difference of the functional. A new lemma is
developed to introduce new cross terms for construct-
ing the link between the delay states and the over-
flow nonlinear function. Moreover, several methods
(such as the Wirtinger-based summation inequality, the
extended reciprocally convex matrix inequality, and
zero-value equations), which are not used in the liter-
ature on delayed digital filters, are applied to estimate
the forward difference of the functional as accurate as
possible.

Notations: Throughout this paper, Rn and Rm×n respec-
tively denote the set of all the n-dimensional vectors and that
of all the m × n−dimensional real matrices; ‖ · ‖ denotes
the Euclidean norm; the superscripts T and −1 stand for the
transpose and the inverse of a matrix, respectively; diag{· · · }
denotes a block-diagonal matrix; P > 0 (≥ 0) means that P is
a positive-definite (semi-positive-definite) symmetric matrix;
I and 0 represent the identity matrix and the zero-matrix with
appropriate dimensions, respectively; the symmetric term in
a symmetric matrix is denoted by ∗; and Sym{X} = X + XT .

VOLUME 10, 2022 9407



F. Li et al.: Improved Delay-Dependent Stability Analysis of Fixed-Point State-Space Digital Filters

II. PROBLEM FORMULATION AND PRELIMINARY
Consider the following digital filter with a time-varying
delay: 

x(k + 1) = f (y(k)),
y(k) = Ax(k)+ Adx(k − τ (k)),
x(k) = φ(k), k ∈ {−τ2, . . . , 0},

(1)

where x(k) = [x1(k), x2(k), · · · , xn(k)]T ∈ Rn is the
state vector; φ(k) = [φ1(k), φ2(k), · · · , φn(k)]T ∈ Rn

is the initial condition with |φi(k)| ≤ 1, y(k) =

[y1(k), y2(k), · · · , yn(k)]T ∈ Rn is the filter output vector;
τ (k) is the time-varying delay satisfying

τ1 ≤ τ (k) ≤ τ2, (2)

with τ1 and τ2 being constant; A and Ad are the known
interconnection weight matrices; the nonlinearity function
f (·): Rn

→ Rn is defined as follows [47]
−1 ≤ li ≤ fi(yi(k)) ≤ l1i ≤ 1, yi(k) > 1,

fi(yi(k)) = yi(k), −1 ≤ yi(k) ≤ 1,

−1 ≤ −l2i ≤ fi(yi(k)) ≤ −li ≤ 1, yi(k) < −1,

(3)

with i = 1, 2, . . . , n, li, l1i and l2i being known real scalars.
Remark 1: As mentioned in [47], the nonlinear relation-

ships shown in (3) include various overflow arithmetics by
fixing the values of li, l1i, and l2i. For example, (3) gives
saturation nonlinearity for li = l1i = l2i = 1; (3) indicates
zeroing nonlinearity for li = l1i = l2i = 0; and (3) shows
two’s complement nonlinearity for li = −1, l1i = l2i = 1.
That is, the stability criterion developed in this paper can be
used to check the stability of digital filters with the above
three types of overflow nonlinearities.

In order to analyze the influence of the time-varying delay
on the stability of digital filter (1), this paper aims to develop
a less conservative delay-dependent stability criterion.

The following lemmas to be used for handling time delays
are given.

Lemma 1: (Wirtinger-based inequality [54]). For a given
positive definite matrix R, integers b ≥ a, any sequence
of discrete-time variable x : Z[a, b] → Rn, the following
inequality holds:

(b− a)
b−1∑
i=a

4xT (i)R4x(i) ≥
[
χ1
χ2

]T [R 0
0 3R

] [
χ1
χ2

]
, (4)

where

4x(k) = x(k + 1)− x(k),

χ1 = x(b)− x(a),

χ2 = x(b)+ x(a)−
2

b− a+ 1

b∑
i=a

x(i).

Lemma 2: (Jensen-based inequality [60]). For a given
positive definite matrix R, integers b ≥ a, any sequence

of discrete-time variable x : Z[a, b] → Rn, the following
inequality holds:

b−1∑
i=a

xT (i)Rx(i) ≥
1

b− a

(
b−1∑
i=a

x(i)

)T
R

(
b−1∑
i=a

x(i)

)
. (5)

Lemma 3: (Extended reciprocally convex matrix inequal-
ity [57], [58]). For a real scalar 0 < α < 1, positive-definite
symmetric matrices X ,Y ∈ Rn×n, and any matrix N ∈ Rn×n,
the following inequality holds:[ 1

α
X 0
0 1

1−αY

]
≥

[
X + (1− α)T1 N

∗ Y + αT2

]
, (6)

where T1 = X − NY−1NT and T2 = Y − NTX−1N .
The following lemmas related to the overflow nonlinearity

are given.
Lemma 4: [47] Let l̂i = min{li, 0}. Then the following

inequality holds for nonlinear functions fi(·) satisfying con-
dition (3):[

yi(k)− fi(yi(k))
][
fi(yi(k))− l̂iyi(k)

]
≥ 0. (7)

Lemma 5: [14] For given digital filter (1) satisfying con-
dition (3), if there exist matrix S = diag(s1, s2, . . . , sn) >
0 and any matrices M = [mij]n×n, N = [nij]n×n satisfying

si ≥
n∑
j=1

|mji| +
n∑
j=1

|nji|, i = 1, 2, . . . , n, (8)

then the following inequality holds:[
yT (k)S + xT (k)M + f T (y(k))N

][
y(k)− f (y(k))

]
≥ 0.

(9)

Lemma 6: For given digital filter (1) satisfying condi-
tion (3), if there exist matrices S1 = diag(s11, s12, . . . , s1n) >
0, and S2 = diag(s21, s22, . . . , s2n) > 0, and any matrices
M1 = [m1ij]n×n and M2 = [m2ij]n×n satisfying

s1i ≥
n∑
j=1

|m1ji|, i = 1, 2, . . . , n, (10)

s2i ≥
n∑
j=1

|m2ji|, i = 1, 2, . . . , n, (11)

then the following inequalities hold:[
yT(k)S1+xT (k−τ (k))M1

][
y(k)−f (y(k))

]
≥ 0, (12)[

yT (k)S2 + xT (k − 1)M2

][
y(k)− f (y(k))

]
≥ 0. (13)

Proof: It is easy to find that (12) holds if |yi(k)| ≤ 1
(i.e., yi(k) = fi(yi(k)) based on (3)). For the case of
|yi(k)| > 1, the left-hand side of (12) can be rewritten as

n∑
i=1

[
yi(k)s1i+

n∑
j=1

xj(k−τ (k))m1ji

][
yi(k)− fi(yi(k))

]
9408 VOLUME 10, 2022
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=

n∑
i=1

y2i (k)
[
s1i +

n∑
j=1

xj(k−τ (k))
yi(k)

m1ji

][
1−

fi(yi(k))
yi(k)

]
.

(14)

Then, it follows from |yi(k)| > 1, |fj(yj(k))| ≤ 1, |xj(k −
τ (k))| ≤ 1 (obtained from (1)), and (10) that

1−
fi(yi(k))
yi(k)

> 0, (15)

and

s1i +
n∑
j=1

xj(k−τ (k))
yi(k)

m1ji

≥ s1i −
n∑
j=1

∣∣∣∣xj(k−τ (k))yi(k)

∣∣∣∣ |m1ji|

≥ s1i −
n∑
j=1

|m1ji|

≥ 0. (16)

Combining (14), (15), and (16) leads that (12) holds for the
case of |yi(k)| > 1. Thus, (12) holds for all yi(k).
Similar, the holding of (13) can be proved if (11) holds. �
Remark 2: Compared with (9) used in [3], [47], [50],

in which only delay-free states, y(k) and x(k), are linked with
the nonlinear function f (y(k)), (12) and (13) in Lemma 6
introduce many additional cross terms related to the delayed
states, x(k−τ (k)) and x(k−1), and overflow nonlinear func-
tion, f (y(k)), which constructs the link between delayed states
and overflow nonlinear function. In fact, the holding of (7),
(9), (12), and (13) is based on the special feature of non-
linear function caused by overflow correction mechanism.
The usage of those information is an important difference in
comparison to the linear discrete-time delayed systems [42],
[54]–[56] or traditional Lur’e nonlinear discrete-time delayed
systems [61], [62], and it is also the one of important treat-
ments for reducing the conservatism.

III. MAIN RESULTS
In this section, a new delay-dependent stability criterion is
derived by constructing an augmented Lypunov functional
and using several new techniques to estimate the forward
difference of the functional.

Before giving the main results, the following notations are
defined to simplify the expression of the proof of stability
criterion.

υ1(k) =
k−1∑

i=k−τ1

x(i),

υ2(k) =
k−τ1−1∑
i=k−τ (k)

x(i),

υ3(k) =
k−τ (k)−1∑
i=k−τ2

x(i),

υ4(k) =
k−τ1∑

i=k−τ (k)

x(i)
τ (k)− τ1 + 1

,

υ5(k) =
k−τ (k)∑
i=k−τ2

x(i)
τ2 − τ (k)+ 1

,

ξ (k) =
[
f T (y(k)),

xT (k), xT (k − τ1), xT (k−τ (k)), xT (k−τ2),

υT1 (k), υ
T
2 (k), υ

T
3 (k), υ

T
4 (k), υ

T
5 (k), x

T (k−1)
]T
,

v6(k) =
k−1∑

i=k−τ1

x(i),

v7(k) =
k−τ1−1∑
i=k−τ2

x(i),

ξ̄ (k) =
[
xT(k), vT6(k), v

T
7(k),

xT(k−τ1), xT(k−τ2), xT(k−1)
]T
,

The stability criterion developed is shown as follows.
Theorem 1: For given scalars li, τ1 and τ2, digital filter (1)

with time-varying satisfying (2) is asymptotically stable if
there exist symmetric matrices P1, P2, Z , Q1,Q2,R1,R2,
T1,T2, positive definite diagonal matrices S, S1, S2,D, and
any matrices X , U1,U2, M ,M1,M2,N , such that condi-
tions (8), (10), and (11), and the following LMIs are feasible:

Ri > 0, i = 1, 2, (17)

8̂1 =

[
0 0
0 R2

]
+ Z > 0, (18)

8̂2 = τ
2
12Z +

[
Q1 0
0 τ 212R2 + τ1R1

]
> 0, (19)

8̂3 = τ12Z +
[
Q2 0
0 τ12R2

]
> 0, (20)

8̂4 =

[
ē2

ē1−ē4

]T
8̂2

τ1

[
ē2

ē1−ē4

]
+

[
ē3

ē4−ē5

]T
8̂3

τ12

[
ē3

ē4−ē5

]

+

ē1ē2
ē3

T P1
ē1ē2
ē3

+ [ē6
ē1

]T
P2

[
ē6
ē1

]
+τ1(τ1 − 1)[ē1 − ē11]TR1[ē1 − ē11]

> 0, (21)[
9|τ (k)=τ1 ET2 X
∗ −41

]
< 0, (22)[

9|τ (k)=τ2 ET3 X
T

∗ −42

]
< 0, (23)

Z +
[
0 T1
T1 T1

]
> 0, (24)

Z +
[
0 T2
T2 T2

]
> 0, (25)

where

9 = 81 +82 +83 +84 +85 +86 −87 −88,
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81 = 5
T
1 P151 −5

T
2 P152+5

T
3 P253 −5

T
4 P254,

51 =

 e1
e6 + e2 − e3

e7 + e8 + e3 − e5

 , 52 =

 e2
e6

e7 + e8

 ,
53 =

[
e2
e1

]
, 54 =

[
e11
e2

]
,

82 = eT2Q1e2 − eT3 (Q1 − Q2)e3 − eT5Q2e5,

83 = 5
T
5 (τ

2
1R1 + τ

2
12R2)55 + τ

2
12

[
e2
55

]T
Z
[
e2
55

]
,

55 = e1 − e2,

84 = τ12

[
eT3 T1e3 − e

T
4 (T1 − T2)e4 − e

T
5 T2e5

]
,

85 = Sym
{
[56 − e1]TD[e1−L56]

}
,

+Sym
{
[5T

6 S + e
T
2M + e

T
1N ][56 − e1]

}
,

+Sym
{
[5T

6 S1 + e
T
4M1][56 − e1]

}
,

+Sym
{
[5T

6 S2 + e
T
11M2][56 − e1]

}
,

[2pt]56 = Ae2 + Ade4,

86 = Sym
{
eTgU1[(τ (k)− τ1 + 1)e9 − e7 − e3]

}
+Sym

{
eTgU2[(τ2 − τ (k)+ 1)e10 − e8 − e4]

}
,

87 = ET1

[
R1 0
0 3R1

]
E1,

E1 =
[

e2 − e3
e2 + e3 − 2

τ1+1
(e2 + e6)

]
,

88 =

[
E2
E3

]T [ 2τ2−τ (k)−τ1
τ12

41 X

∗
τ2+τ (k)−2τ1

τ12
42

][
E2
E3

]
,

E2 =

 e7
e3 − e4

e3 + e4 − 2e9

 ,
E3 =

 e8
e4 − e5

e4 + e5 − 2e10

 ,
41 =

 Z +
[
0 T1
T1 R2 + T1

] [
0
0

]
[
0 0

]
3R2

 ,
42 =

 Z +
[
0 T2
T2 R2 + T2

] [
0
0

]
[
0 0

]
3R2

 ,
ei =

[
0n×(i−1)n, In, 0n×(11−i)n

]
(i = 1, 2, · · · , 11),

eg =
[
eT3 , e

T
4 , e

T
7 , e

T
8 , e

T
9 , e

T
10

]T
,

ēi = [0n×(i−1)n, In, 0n×(6−i)n], i = 1, 2, · · · , 6,

L = diag{l̂1, l̂2, · · · , l̂n},

l̂i = min{li, 0}.

Proof: Firstly, choose the following functional candidate:

V (k) =
4∑
i=1

Vi(k), (26)

where

V1(k) = ηT1 (k)P1η1(k)+ η
T
2 (k)P2η2(k),

V2(k) =
k−1∑

i=k−τ1

xT (i)Q1x(i)+
k−τ1−1∑
i=k−τ2

xT (i)Q2x(i),

V3(k) = τ1
−1∑

i=−τ1

k−1∑
j=k+i

4xT (j)R14x(j)

+τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

4xT (j)R24x(j),

V4(k) = τ12
−τ1−1∑
i=−τ2

k−1∑
j=k+i

ηT3 (j)Zη3(j),

with P1,P2, Z ,Q1,Q2,R1, andR2 being symmetric matrices,
Ri > 0, i = 1, 2, and

τ12 = τ2 − τ1

η1(k) =

xT (k), k−1∑
i=k−τ1

xT (i),
k−τ1−1∑
i=k−τ2

xT (i)

T ,
η2(k) =

[
xT (k − 1), f T (y(k − 1))

]T
,

η3(i) =
[
xT (i), 4xT (i)

]T
.

The second step is to find the conditions to ensure
the positive-definiteness of functional (26). Based on
R1 > 0 in (17), the following holds

τ1

−1∑
i=−τ1

k−1∑
j=k+i

4xT (j)R14x(j)

= τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1

−1∑
i=−τ1+1

k−1∑
j=k+i

4xT (j)R14x(j)

> τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1

−1∑
i=−τ1+1

k−1∑
j=k−1

4xT (j)R14x(j)

= τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1

−1∑
i=−τ1+1

4xT (k − 1)R14x(k − 1)
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= τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+τ1

k−1∑
j=k−τ1

4xT (j)R14x(j). (27)

Based on 8̂1 > 0 in (18), the following is correct

τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

4xT (j)R24x(j)+ V4(k)

= τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

= τ12

k−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

+τ12

−τ1−1∑
i=−τ2+1

k−1∑
j=k+i

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

> τ12

k−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

+τ12

−τ1−1∑
i=−τ2+1

k−1∑
j=k−τ1

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

= τ12

k−1∑
j=k−τ1

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

+τ12

k−τ1−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

+τ12(τ12 − 1)
k−1∑

j=k−τ1

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

= τ 212

k−1∑
j=k−τ1

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

+τ12

k−τ1−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]
. (28)

Combining (26), (27), and (28) yields

V2(k)+ V3(k)+ V4(k)

>

k−1∑
i=k−τ1

xT (i)Q1x(i)+
k−τ1−1∑
i=k−τ2

xT (i)Q2x(i)

+τ1

k−1∑
j=k−τ1

4xT (j)R14x(j)

+τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+τ 212

k−1∑
j=k−τ1

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

+τ12

k−τ1−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂1

[
x(j)
4x(j)

]

= τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+

k−1∑
j=k−τ1

[
x(j)
4x(j)

]T
8̂2

[
x(j)
4x(j)

]

+

k−τ1−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂3

[
x(j)
4x(j)

]
, (29)

where 8̂2 and 8̂3 are defined in (19) and (20), respectively.
Furthermore, using 8̂2 > 0, 8̂3 > 0 and applying (5) to
estimate the summation terms in (29) yield
k−1∑

j=k−τ1

[
x(j)
4x(j)

]T
8̂2

[
x(j)
4x(j)

]

+

k−τ1−1∑
j=k−τ2

[
x(j)
4x(j)

]T
8̂3

[
x(j)
4x(j)

]

>

 k−1∑
i=k−τ1

x(i)

x(k)− x(t − τ1)

T 8̂2

τ1

 k−1∑
i=k−τ1

x(i)

x(k)− x(t − τ1)



+

 k−τ1−1∑
i=k−τ2

x(i)

x(t − τ1)− x(t − τ2)

T8̂3

τ12

 k−τ1−1∑
i=k−τ2

x(i)

x(t − τ1)− x(t − τ2)

 .
Therefore

V1(k)+ V2(k)+ V3(k)+ V4(k)

>


x(k)

k−1∑
i=k−τ1

x(i)

k−τ1−1∑
i=k−τ2

x(i)


T

P1


x(k)

k−1∑
i=k−τ1

x(i)

k−τ1−1∑
i=k−τ2

x(i)


+

[
x(k − 1)
f (y(k − 1))

]T
P2

[
x(k − 1)
f (y(k − 1))

]
+τ1(τ1 − 1)[x(k)− x(k − 1)]TR1[x(k)− x(k − 1)]

+

 k−1∑
i=k−τ1

x(i)

x(k)− x(t − τ1)

T 8̂2

τ1

 k−1∑
i=k−τ1

x(i)

x(k)− x(t − τ1)


+

 k−τ1−1∑
i=k−τ2

x(i)

x(t − τ1)− x(t − τ2)

T8̂3

τ12

 k−τ1−1∑
i=k−τ2

x(i)

x(t − τ1)− x(t − τ2)


=

ē1ξ̄ (k)ē2ξ̄ (k)
ē3ξ̄ (k)

T P1
ē1ξ̄ (k)ē2ξ̄ (k)
ē3ξ̄ (k)

+ [ē6ξ̄ (k)
ē1ξ̄ (k)

]T
P2

[
ē6ξ̄ (k)
ē1ξ̄ (k)

]
+τ1(τ1 − 1)[ē1 − ē11]TR1[ē1 − ē11]

+

[
ē2ξ̄ (k)

ē1ξ̄ (k)− ē4ξ̄ (k)

]T
8̂2

τ1

[
ē2ξ̄ (k)

ē1ξ̄ (k)− ē4ξ̄ (k)

]

+

[
ē3ξ̄ (k)

ē4ξ̄ (k)− ē5ξ̄ (k)

]T
8̂3

τ12

[
ē3ξ̄ (k)

ē4ξ̄ (k)− ē5ξ̄ (k)

]
= ξ̄T (k)8̂4ξ̄ (k), (30)

where 8̂4 is defined in (21).
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It follows from (21) and (30) that

V (k) > ξ̄T (k)8̂4ξ̄ (k) ≥ ε||x(k)||2, (31)

where ε is a sufficient small positive scalar.
The third step is to find the conditions to ensure the

negative-definiteness of forward difference of functional
(26). Defining the forward difference of Lyapunov functional
as 1V (k) = V (k + 1) − V (k) and calculating it along the
trajectories of digital filter (1) yield

1V (k) =
4∑
i=1

1Vi(k), (32)

where 1V1(k) is given as

1V1(k)

= V1(k + 1)− V1(k)

= ηT1 (k + 1)P1η1(k + 1)− ηT1 (k)P1η1(k)

+ηT2 (k + 1)P2η2(k + 1)− ηT2 (k)P2η2(k)

=


x(k + 1)
k∑

i=k−h1+1
x(i)

k−h1∑
i=k−h2+1

x(i)


T

P1


x(k + 1)
k∑

i=k−h1+1
x(i)

k−h1∑
i=k−h2+1

x(i)



−


x(k)

k−1∑
i=k−h1

x(i)

k−h1−1∑
i=k−h2

x(i)


T

P1


x(k)

k−1∑
i=k−h1

x(i)

k−h1−1∑
i=k−h2

x(i)


+

[
x(k)
f (y(k))

]T
P2

[
x(k)
f (y(k))

]
−

[
x(k − 1)
f (y(k − 1))

]T
P2

[
x(k − 1)
f (y(k − 1))

]

=

 e1ξ (k)
(e6 + e2 − e3)ξ (k)

(e7+e8+e3−e5)ξ (k)

TP1
 e1ξ (k)

(e6 + e2 − e3)ξ (k)
(e7+e8+e3−e5)ξ (k)



−

 e2ξ (k)
e6ξ (k)

(e7 + e8)ξ (k)

T P1
 e2ξ (k)

e6ξ (k)
(e7 + e8)ξ (k)


+

[
e2ξ (k)
e1ξ (k)

]T
P2

[
e2ξ (k)
e1ξ (k)

]
−

[
e11ξ (k)
e2ξ (k)

]T
P2

[
e11ξ (k)
e2ξ (k)

]
= ξT (k)(5T

1 P151 −5
T
2 P152+5

T
3 P253 −5

T
4 P254)ξ (k)

= ξT (k)81ξ (k), (33)

with 51, 52, and 81 being defined in Theorem 1.
1V2(k) is given as

1V2(k)

= V2(k + 1)− V2(k)

=

k∑
i=k−τ1+1

xT (i)Q1x(i)−
k−1∑

i=k−τ1

xT (i)Q1x(i)

+

k−τ1∑
i=k−τ2+1

xT (i)Q2x(i)−
k−τ1−1∑
i=k−τ2

xT (i)Q2x(i)

= xT (k)Q1x(k)− xT (k − τ1)Q1x(k − τ1)

+xT (k − τ1)Q2x(k − τ1)− xT (k − τ2)Q2x(k − τ2)

= ξT (k)(eT2Q1e2 − eT3 (Q1 − Q2)e3 − eT5Q2e5)ξ (k)

= ξT (k)82ξ (k), (34)

with 82 being defined in Theorem 1.
1V3(k) is given as

1V3(k) = V3(k + 1)− V3(k)

= τ1

−1∑
i=−τ1

k∑
j=k+i+1

4xT (j)R14x(j)

−τ1

−1∑
i=−τ1

k−1∑
j=k+i

4xT (j)R14x(j)

+τ12

−τ1−1∑
i=−τ2

k∑
j=k+i+1

4xT (j)R24x(j)

−τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

4xT (j)R24x(j)

= τ 214x
T (k)R14x(k)+ τ 2124x

T (k)R24x(k)

−J1 − J2 − J3, (35)

with

J1 = τ1
k−1∑

j=k−τ1

4xT (j)R14x(j),

J2 = τ12

k−τ1−1∑
j=k−τ (t)

4xT (j)R24x(j),

J3 = τ12

k−τ (t)−1∑
j=k−τ2

4xT (j)R24x(j).

1V4(k) is given as

1V4(k) = V4(k + 1)− V4(k)

= τ12

−τ1−1∑
i=−τ2

k∑
j=k+i+1

ηT3 (j)Zη3(j)

−τ12

−τ1−1∑
i=−τ2

k−1∑
j=k+i

ηT3 (j)Zη3(j)

= τ 212η
T
3 (k)Zη3(k)− J4 − J5, (36)

with

J4 = τ12

k−τ1−1∑
j=k−τ (t)

ηT3 (j)Zη3(j),

J5 = τ12

k−τ (t)−1∑
j=k−τ2

ηT3 (j)Zη3(j).
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For symmetric matrix T1 and T2, the following two
zero-value equations are satisfied:

Z1 = τ12x(k − τ1)TT1x(k − τ1)

−τ12x(k − τ (k))TT1x(k − τ (k))

−τ12

k−τ1−1∑
j=k−τ (k)

ηT3 (i)
[
0 T1
T1 T1

]
η3(i)

= 0, (37)

Z2 = τ12x(k − τ (k))TT2x(k − τ (k))

−τ12x(k − τ2)TT2x(k − τ2)

−τ12

k−τ (k)−1∑
j=k−τ2

ηT3 (i)
[
0 T2
T2 T2

]
η3(i)

= 0, (38)

which implies

Z1 + Z2

= τ12ξ
T (k)

[
eT3 T1e3 − e

T
4 (T1 − T2)e4 − e

T
5 T2e5

]
ξ (k)

−J6 − J7, (39)

where

J6 = τ12

k−τ1−1∑
j=k−τ (k)

ηT3 (i)
[
0 T1
T1 T1

]
η3(i),

J7 = τ12

k−τ (k)−1∑
j=k−τ2

ηT3 (i)
[
0 T2
T2 T2

]
η3(i).

Based on Lemmas 4-6, the following inequalities hold,
if (8), (10), and (11) hold, for any positive diagonal matrices
S, S1, S2 and D and any matrices N , M , M1, and M2:

Z3 = 2
[
y(k)− f (y(k))

]T
D
[
f (y(k))−Ly(k)

]
≥ 0, (40)

Z4 = 2
[
yT (k)S + xT (k)M + f T (y(k))N

][
y(k)− f (y(k))

]
≥ 0, (41)

Z5 = 2
[
yT (k)S1 + xT (k − τ (k))M1

][
y(k)− f (y(k))

]
≥ 0, (42)

Z6 = 2
[
yT (k)S2 + xT (k − 1)M2

][
y(k)− f (y(k))

]
≥ 0.

(43)

Moreover, based on the definition of ξ (k), it can be found
that several vectors therein satisfy the following conditions:

υ2(k) = (τ (k)− τ1 + 1)υ4(k)− x(k − τ1),

υ3(k) = (τ2 − τ (k)+ 1)υ5(k)− x(k − τ (k)),

which can lead to the following zero-value terms

Z7 = 2ξT (k)eTgU1

[
(τ (k)− τ1 + 1)e9−e7−e3

]
ξ (k)=0,

(44)

Z8 = 2ξT (k)eTgU2

[
(τ2 − τ (k)+ 1)e10−e8−e4

]
ξ (k)=0,

(45)

with U1 and U2 being any matrices.

Combining (32)-(45) yields

1V (k) =
4∑
i=1

1Vi(k)

≤

4∑
i=1

1Vi(k)+
8∑
i=1

Zi

= ξT (k)

(
6∑
i=1

8i

)
ξ (k)−

7∑
i=1

Ji. (46)

Using R1 > 0 and applying (4) of Lemma 1 to estimate
J1 yield

J1 = τ1
k−1∑

j=k−τ1

4xT (j)R14x(j)

≥

[
κ1(k)
κ2(k)

]T [R1 0
0 3R1

] [
κ1(k)
κ2(k)

]
= ξT (k)

[
e2 − e3

e2 + e3 −
2(e2+e6)
τ1+1

]T [
R1 0
0 3R1

]
×

[
e2 − e3

e2 + e3 −
2(e2+e6)
τ1+1

]
ξ (k)

= ξT (k)87ξ (k), (47)

where

κ1(k) = x(k)− x(k − τ1),

κ2(k) = x(k)+ x(k − τ1)−
2

τ1 + 1
(υ1(k)+ x(k)).

Using R2 > 0 and applying (4) of Lemma 1 to estimate J2
yield

J2 = τ12

k−τ1−1∑
j=k−τ (k)

4xT (i)R24x(i)

≥
τ12

τ (k)− τ1

[
κ3(k)
κ4(k)

]T [R2 0
0 3R2

] [
κ3(k)
κ4(k)

]
=

τ12

τ (k)− τ1
ξT (k)

[
e3 − e4

e3 + e4 − 2e9

]T [R2 0
0 3R2

]
×

[
e3 − e4

e3 + e4 − 2e9

]
ξ (k)

= ξT (k)
τ12881

τ (k)− τ1
ξ (k), (48)

where

κ3(k) = x(k − τ1)− x(k − τ (k)),

κ4(k) = x(k − τ1)+ x(k − τ (k))− 2υ4(k),

881 =

[
e3 − e4

e3 + e4 − 2e9

]T [R2 0
0 3R2

] [
e3 − e4

e3 + e4 − 2e9

]
.

Using R2 > 0 and applying (4) of Lemma 1 to estimate J3
yield

J3 = τ12

k−τ (k)−1∑
j=k−τ2

4xT (i)R24x(i)
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≥
τ12

τ2 − τ (k)

[
κ5(k)
κ6(k)

]T [R2 0
0 3R2

] [
κ5(k)
κ6(k)

]
=

τ12

τ2 − τ (k)
ξT (k)

[
e4 − e5

e4 + e5 − 2e10

]T [R2 0
0 3R2

]
×

[
e4 − e5

e4 + e5 − 2e10

]
ξ (k)

= ξT (k)
τ12882

τ2 − τ (k)
ξ (k), (49)

where

κ5(k) = x(k − τ (k))− x(k − τ2),

κ6(k) = x(k − τ (k))+ x(k − τ2)− 2υ5(k),

882 =

[
e4 − e5

e4 + e5 − 2e10

]T [R2 0
0 3R2

] [
e4 − e5

e4 + e5 − 2e10

]
.

Using (24) and applying (5) Lemma 2 to estimate J4 + J6
yield

J4 + J6 = τ12

k−τ1−1∑
j=k−τ (k)

ηT3 (i)
(
Z +

[
0 T1
T1 T1

])
η3(i)

≥
τ12

τ (k)− τ1

[
υ2(k)
κ3(k)

]T (
Z +

[
0 T1
T1 T1

])[
υ2(k)
κ3(k)

]
=

τ12

τ (k)− τ1
ξT (k)

[
e7

e3 − e4

]T (
Z +

[
0 T1
T1 T1

])
×

[
e7

e3 − e4

]
ξ (k)

= ξT (k)
τ12883

τ (k)− τ1
ξ (k), (50)

where

883 =

[
e7

e3 − e4

]T (
Z +

[
0 T1
T1 T1

])[
e7

e3 − e4

]
.

Using (25) and applying (5) Lemma 2 to estimate J5 + J7
yield

J5 + J7

= τ12

k−τ (k)−1∑
j=k−τ2

ηT3 (i)
(
Z +

[
0 T2
T2 T2

])
η3(i)

≥
τ12

τ2 − τ (k)

[
υ3(k)
κ4(k)

]T (
Z +

[
0 T2
T2 T2

])[
υ3(k)
κ4(k)

]
=

τ12

τ2 − τ (k)
ξT (k)

[
e8

e4 − e5

]T (
Z +

[
0 T2
T2 T2

])
×

[
e8

e4 − e5

]
ξ (k)

= ξT (k)
τ12884

τ2 − τ (k)
ξ (k), (51)

where

884 =

[
e8

e4 − e5

]T (
Z +

[
0 T2
T2 T2

])[
e8

e4 − e5

]
.

It follows from (48)-(51) that

7∑
i=2

Ji ≥ ξT (k)
[
τ12(881 +883)
τ (k)− τ1

+
τ12(882 +884)
τ2 − τ (k)

]
ξ (k)

= ξT (k)
[
τ128813

τ (k)− τ1
+

τ128824

τ2 − τ (k)

]
ξ (k)

= ξT (k)

[
τ12ET2 41E2
τ (k)− τ1

+
τ12ET3 42E3
τ2 − τ (k)

]
ξ (k), (52)

where

8813 =

 e7
e3 − e4

e3 + e4 − 2e9

T
 Z +

[
0 T1
T1 R2 + T1

] [
0
0

]
[
0 0

]
3R2


×

 e7
e3 − e4

e3 + e4 − 2e9


= ET2 41E2,

8824 =

 e8
e4 − e5

e4 + e5 − 2e10

T
 Z +

[
0 T2
T2 R2 + T2

] [
0
0

]
[
0 0

]
3R2


×

 e8
e4 − e5

e4 + e5 − 2e10


= ET3 42E3.

For any matrix X , it follows from (6) of Lemma 3 that

τ12ET2 41E2
τ (k)− τ1

+
τ12ET3 42E3
τ2 − τ (k)

≥

[
E2
E3

]T [ 2τ2−τ (k)−τ1
τ12

41 X

∗
τ2+τ (k)−2τ1

τ12
42

][
E2
E3

]
−
τ2 − τ (k)
τ12

ET2 X4
−1
1 XTE2

−
τ (k)− τ1
τ12

ET3 X
T4−12 XE3

= 88 − 8̄8, (53)

where

8̄8 =
τ2 − τ (k)
τ12

ET2 X4
−1
1 XTE2 +

τ (k)− τ1
τ12

ET3 X
T4−12 XE3.

Based on (46), (47), (52), and (53), it can be obtained that

1V (k) ≤ ξT (k)

(
6∑
i=1

8i −87 −88 + 8̄8

)
ξ (k)

= ξT (k)
(
9 + 8̄8

)
ξ (k). (54)

It can be checked that 9 + 8̄8 is convex with respect to
τ (t), which from the convex combination technique shows
the following holds

9 + 8̄8 < 0, ∀τ (t) ∈ {τ1, τ2} (55)

⇒ 9 + 8̄8 < 0, ∀τ (t) ∈ [τ1, τ2]. (56)
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Based on the Schur complement, (55) is equivalent to
LMIs (22) and (23). Thus, if LMIs (22) and (23) holds,
then (56) holds, which combined with (54) leads to

1V (k) ≤ −ε||x(k)||2, (57)

for a sufficient small ε > 0.
Therefore, under conditions (8), (10), and (11), and

(17)-(25), digital filter (1) is stable. This completes the
proof. �

Remark 3: compared with the simple functionals used for
discussing the digital filters in the previous literature [3],
[47], [49], [50], extra free matrices are introduced by the
augmented terms, V1(k) and V4(k), of the proposed aug-
mented functional (26), especially, f (y(k − 1)) included in
V1(k) is used to construct functional at the first time, which
can provide extra freedom during checking the feasibility of
criterion. Thus, Theorem 1 in this paper has less conservatism
than the ones in the previous literature.

Remark 4: compared with the criteria of digital filters
developed in [3], [47], [49], [50], Theorem 1 in this paper
has less conservatism due to the improvements during the
estimation of 1V (k). In order to accurately estimate the
summation term arising in 1V (k), i.e., Ji, i = 1, 2, · · · , 7,
Lemma 6 and several other techniques, which are proved to
be helpful to reduce the conservatism during the investigation
of discrete-time delay systems, are applied to reduce the
estimation error, summarized as follows:

(1) Due to the adding of Z5 and Z6 respectively defined in
(42) and (43) into the 1V (k), several cross terms are
introduced to give the relationship between the delayed
states, x(k − τ (k)) and x(k − 1), and the nonlinear
function, f (y(k)), which are not used in the literature [3],
[47], [49], [50] and provide extra freedom for finding the
solutions of conditions in Theorem 1 so as to reduce the
conservatism.

(2) The summation term defined by J1, J2, and J3 are
bounded by using the Wirtinger-based summation
inequality, while the similar terms are estimated based
on a more conservative inequality, i.e., the Jensen-based
summation inequality, in the previous literature [3], [47],
[49], [50].

(3) Two zero-value equations Z7 and Z8, respectively
defined in (44) and (45), are developed and introduced
into the1V (k), which adds many cross-terms into The-
orem 1. The presence of free matrices U1 and U2 in
Theorem 1 can increase the feasibility of the conditions
of Theorem 1 so as to reduce the conservatism.

Remark 5: Remarks 3 and 4 show the improvements of
Theorem 1 compared with the ones for digital filters reported
in literature. In fact, compared with the techniques developed
for the analysis of linear discrete-time system with a time-
varying delay, novel treatments are also used to develop
Theorem 1. More specifically, compared with the functionals
used in the related works, in which each term of functionals is
usually required to be positive, the functional (26) constructed

in this paper is relaxed by considering all terms together and
requiring the sum of all terms be positive. That is to say,
the positive-definite condition of functional (26) is relaxed,
(i.e., P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, and Z > 0 are
removed), which helps to reduce the conservatism.Moreover,
x(k − 1) included in V1(k) has not been used for the inves-
tigation of linear discrete-time system with a time-varying
delay.

In order to easily show the advantage of the proposed
Theorem 1, the following corollary is developed by requiring
each term of LKF is positive and setting P2 = 0, S1 =
0, S2 = 0,M1 = 0,M2 = 0.

Corollary 1: For given scalars li, τ1 and τ2, digital fil-
ter (1) with time-varying satisfying (2) is asymptotically sta-
ble if there exist positive definite symmetric matrices P1, Z ,
Q1,Q2,R1,R2, symmetric matrices T1,T2, positive diagonal
matrices S,D, and any matrices X , U1,U2, M ,N , such that
condition (8) and LMIs (22)-(25) are feasible.

In order to further verify the advantage of the zero-value
equations (37) and (38) for Theorem 1, the following corol-
lary is developed by setting T1 = 0,T2 = 0.

Corollary 2: For given scalars li, τ1 and τ2, digi-
tal filter (1) with time-varying satisfying (2) is asymp-
totically stable if there exist symmetric matrices P1,
P2, Z , Q1,Q2,R1,R2, positive definite diagonal matrices
S, S1, S2,D, and any matrices X , U1,U2, M ,M1,M2,N ,
such that conditions (8), (10), (11), and LMIs (17)-(24) are
feasible.

Remark 6: Although Theorem 1 has less conservatism,
compared with the ones in [3], [47], [50], with the help of the
techniques summarized in Remarks 3-5, it is still a sufficient
criterion and provides conservative results. Many new tech-
niques developed for linear time-delay systems, such as novel
Lyapunov functionals [39], [45], [46], improved bounding
inequalities [52], and relaxed quadratic function transforma-
tion technologies [71], can be used to further reduce the
conservatism. In addition, the method proposed in this paper
can be extended to deal with other types of systems with time
delays and/or noise [50], [63], the practical systems affected
by communication delays and/or saturation constraint such
as power systems [64]–[67], teleoperation systems [68],
microgrids [69], vehicle swarm systems [70], and the sys-
tems with relaxed nonlinear conditions than the one given
in (3).

Remark 7: The introduction of slack matrices reduces the
conservatism of Theorem 1, compared with the ones in [3],
[47], [50], at the cost of the computation complexity. The
number of decision variables of Theorem 1 is 44.5n2+10.5n,
those of criteria in [47], [50], and [3] are 5n2+ 5n, 6n2+ 6n,
and 9n2 + 5n, respectively.

IV. NUMERICAL EXAMPLES
In this section, two numerical examples are given to demon-
strate the effectiveness and advantages of the proposed
method.
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Example 1: Consider digital filter (1) with the following
parameters

l1 = −1, l2 = 0, (58)

l11 = l12 = l21 = l22 = 1, (59)

A =
[
0.3 −0.4
0.5 0.7

]
, (60)

Ad =
[
0.1 0
0 0.1

]
. (61)

For different given lower bounds of τ (k), τ1, the allowably
maximal values of τ2 calculated by Theorem 1, Corollary 1,
Corollary 2 and the ones provided by the criteria of [3], [47],
[50] are listed in Table 1. It is clearly seen that Theorem
1 provides less conservative results (i.e., bigger allowably
maximal values) than the ones reported in [3], [47], [50],
which shows that the improvements, summarized in Remarks
3 and 4, indeed reduce the conservatism. By comparing the
results of Theorem 1 and Corollary 2, it is shown that the
zero-value equations (37) and (38) used in Theorem 1 can
greatly reduce the conservatism. Moreover, the results pro-
vided by Theorem 1 are less conservative than those provided
by Corollary 1, whichmeans that the relaxed positive-definite
condition in Theorem 1 and the cross terms introduced by
Lemma 6 indeed reduce the conservatism as analyzed in
Remarks 4 and 5. Therefore, the advantages of the proposed
method on the conservatism-reduction is verified. Note that

TABLE 1. Allowably maximal value of τ2, τmax, for various τ1 (Example 1).

When the lower bound of time-varying delay is 1, i.e.,
τ (k) ≥ τ1 = 1, it is calculated from Theorem 1 that the
allowably maximal value of τ2, τmax, is 43 and the related
feasible solutions of the conditions of Theorem 1 are given
as P1,P2,Q1,Q2,R1,R2, and Z , at the top of the next page.
That is, digital filter (1) with parameters given in (58)-(61)
and time-varying delay satisfying 1 ≤ τ (k) ≤ 43 is asymptot-
ically stable since one can find the Lyapunov functional (26)
with matrices P1,P2,Q1,Q2,R1,R2,Z being given above.
Simulation test is carried out to verify this conclusion. Let
the initial condition x(k) = [−0.4, 0.1]T , k ∈ [−43, 0], and
the delay is random value within [1, 43]. The responses of
two state variables of digital filter and the corresponding time
delay are shown in Fig. 1. It is clearly observed that digital
filter is stable. That is, the simulation result is consistent with
the calculated result from the proposed method. Therefore,
the effectiveness of the proposed criterion is verified.

FIGURE 1. The time delay and state trajectories (Example 1).

TABLE 2. Allowably maximal value of τ2, τmax, for various τ1 (Example 2).

FIGURE 2. The time delay and state trajectories (Example 2).

Example 2: Consider digital filter (1) with the following
parameters

l1 = −1, l2 = 0, l3 = 1, (62)

l11 = l21 = 0, l12 = l22 = l13 = l23 = 1, (63)

A =

 0.8 −1.75 −2.5
−0.1 −0.5 −0.6
0.1 0.1 0.5

 , (64)

9416 VOLUME 10, 2022



F. Li et al.: Improved Delay-Dependent Stability Analysis of Fixed-Point State-Space Digital Filters

P1 =


1.8501 0.7162 0.0050 0.0085 −0.0020 0.0017
0.7162 1.1126 −0.0043 0.0031 −0.0011 −0.0013
0.0050 −0.0043 0.0006 0.0003 −0.0007 0.0006
0.0085 0.0031 0.0003 0.0050 −0.0007 −0.0003
−0.0020 −0.0011 −0.0007 −0.0007 −0.0002 0.0001
0.0017 −0.0013 0.0006 −0.0003 0.0001 0.0003

 ,

P2 =


0.0082 −0.0036 −0.0104 −0.0022
−0.0036 0.0089 0.0109 −0.0024
−0.0104 0.0109 0.9051 0.1608
−0.0022 −0.0024 0.1608 0.6397

 ,
Q1 =

[
0.0702 0.0129
0.0129 0.0411

]
,

Q2 =

[
0.0333 0.0053
0.0053 0.0177

]
,

R1 =
[
0.0116 −0.0006
−0.0006 0.0074

]
,

R2 =
[
0.3433 −0.0088
−0.0088 0.1474

]
,

Z =


0.0013 0.0007 0.0010 −0.0004
0.0007 0.0010 0.0013 0.0001
0.0010 0.0013 0.0023 0.0001
−0.0004 0.0001 0.0001 0.0006



Ad =

 0.01 0.01 −0.01
0 0.01 0
−0.01 0.01 0.01

 . (65)

For different given lower bounds of τ (k), τ1, the allowably
maximal values of τ2 calculated by Theorem 1, Corollary 1,
Corollary 2, and the ones provided by the criteria of [3], [47],
[50] are listed in Table 2. It is clearly seen that Theorem 1 pro-
vides less conservative results (i.e., bigger allowablymaximal
values) than the others, which again shows the advantages
of the proposed Theorem 1. And the results of Corollary 2
are all lower than the others, it shows that the zero-value
equations (37) and (38) has a big improvement on reducing
the conservatism for some numerical examples.

From Table 2, digital filter (1) with parameters given in
(62)-(65) and time-varying delay satisfying 5 ≤ τ (k) ≤
49 is asymptotically stable. Simulation test is carried out
to verify this observation. Let the initial condition x(k) =
[−0.4, 0.02, 0.3]T , k ∈ [−49, 0], and the delay is random
value within [5, 49]. The responses of two state variables
of digital filter, together with the time delay, are shown in
Fig. 2. It is clearly observed that digital filter is stable. That
is, the simulation result is consistent with the calculated result
from the proposed method. Therefore, the effectiveness of the
proposed criterion is verified.

V. CONCLUSION
This paper has investigated the stability analysis of fixed-
point state-space digital filters with generalized overflow
arithmetic and a time-varying delay. A new stability criterion

has been developed to assess the influence of the time delay
on the stability of digital filter. The criterion has less con-
servatism in comparison to the ones reported in the previ-
ous literature due to two aspects of improvements. A new
Lyapunov functional with several augmented terms and
relaxed positive-definite condition has been constructed, and
free matrices therein provides extra freedom of checking the
conditions of stability criterion. And, Lemma 6, together with
several new techniques (such as Wirtinger-based inequal-
ity, zero-value equations, the extended reciprocally convex
matrix inequality), has been used to estimate the summation
terms arising in the forward difference of functional, which
leads to a smaller estimate gap than the methods used in the
literature. Finally, two numerical examples have been given
to show the effectiveness and advantages of the proposed
stability criterion. How to extend the proposed method to
other problems of digital filters and other practical systems
is our future work.
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