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ABSTRACT The analysis of data variability from in-situ observations is essential for scientists and space
mission controllers. Given the limited resources available on-board a spacecraft as well as the presence of
the Field-Programmable Gate Arrays (FPGA) devices in modern spacecraft architectures, an efficient real-
time monitoring solution should be deployed on these devices to use minimal computational and energy
resources, and to reduce the main on-board computer utilization, thus making it available for other tasks.
This paper describes the implementation of an algorithm for computing a local stationarity measure (LSM)
on FPGA devices. The algorithm tests weak stationarity from the convergence of the partial means of
the signal computed on subsets of increasing length, compared to the overall mean of the signal over a
fixed-length running window; the window spans the entire signal. The algorithm is designed for an on-board
implementation which monitors and detects changes of variables measured in-situ by scientific instruments
(e.g., magnetometers). The design was tested with synthetic and real-time signals and provides results in
very good agreement with a dedicated data analysis library specifically designed for the analysis of satellite
data.

INDEX TERMS FPGA-based design, high-level synthesis (HLS), local stationarity measure (LSM),
magnetic field monitoring, satellites on-board processing, weak stationarity test.

I. INTRODUCTION
Understanding data variability recorded in space is of utmost
importance for scientists and also for space mission con-
trollers. An estimation of key environmental changes (related
to natural or other type of origins) is most needed and can
be achieved from the analysis of relevant environmental vari-
ables. Consequently, automatic tools designed to extract key-
descriptors of variability are extremely useful. Nevertheless,
solutions to adapt such algorithms for on-board computers
are still rare. In this paper we describe an algorithm used
to evaluate stationarity from a time series analysis and its
implementation on Field Programmable Gate Arrays (FPGA)
devices. The problem of data stationarity is generally rele-
vant for many fields of science and technology – physics,
economy, and biology, to mention just a few examples. In our
research we focus on the variability of time series collected
in-situ by Earth observation satellites.

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

Stationarity can be broadly defined as the property of
a stochastic process to be time invariant, in a statistical
sense, i.e. its statistical properties do not change although the
observables that characterize the process are highly variable
in time/space. Thus, stationarity is a property of the process
itself that is revealed by the analysis of a process realization,
resulting in time series of one or more observables. In the
study of space plasma turbulence, stationarity is a funda-
mental assumption for meaningful data analysis, e.g. [1], [2].
Data stationarity is a necessary condition for the application
of most of the digital analysis techniques, e.g. the Power
Spectral Density (PSD) or the Probability Density Functions
(PDFs) analyses. If the signal is not stationary the results
of PSD and PDF analyses can be spurious and may suggest
relationships and structures that are not real.

Perri and Balogh [3] argue that stationarity only holds for
the inertial range of scales in turbulent interplanetary plasma.
Jagarlamudi et al. [4] show that the autocorrelation function
has a high variance and fails to converge toward a constant
function, even for the longest available intervals of either fast
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or slow solar wind. Such findings suggest a scale-dependent
non-stationarity of turbulent plasmas in space. Studies based
on data provided by state-of-the-art interplanetary missions,
e.g. [5], make extensive use of the stationarity hypothesis.
Nevertheless, more quantitative investigations are required
and the solution discussed in this study is such a contribution,
being novel both at conceptual and technical levels. It is also
important to note that the examples given above are based on
satellite data processed on the ground.

The novelty of the proposed solution is twofold:

• The algorithm can be executed on-board thus allowing
for a computational and energy efficient in-flight esti-
mation of stationarity.

• It allows real-time testing of stationarity on various
scales and frequencies, customizable based on the
requirements of the specific application.

Strictly speaking, (strong) stationarity requires that the prob-
ability distribution function of the realization of the stochas-
tic process remains invariant. In this study we adopt a less
constraining approach and test whether a signal is weakly
stationary, i.e. if the moments of the distribution function are
invariant.More specifically, we restrict the analysis to the first
order moments, the mean and the variance.

A closely related problem is the detection of transitions
between two states of a system, referred to as change points.
Change point detection, also known as edge detection, event
detection, and anomaly detection, is the problem of finding
abrupt changes in a time series. Such singular events render
the signal inherently non-stationary. In [6], a survey of meth-
ods for change point detection is presented. Recent develop-
ments in the field are published by [7], [8]. Our technology
to probe stationarity is tested with a non-stationary signal
characterized by a series of abrupt changes, or discontinuities,
as detailed below. As will be seen, in addition to charac-
terizing global weak stationarity, the method is also able to
localize accurately the abrupt changes of the signal.

This study is part of a broader effort devoted to building a
complex semi-autonomous digital signal processing library,
able to apply on-board various digital signal processing tech-
niques. Our library already includes modules dedicated to
statistical [9] and Fourier [10] analyses. In [9] we described
an FPGA-based solution to compute probability distribution
functions of fluctuations. In [10] we described the design
and implementation of two digital signal processing algo-
rithms on a single FPGA device: (1) the power spectral
density and (2) the multiscale probability distribution func-
tions. The new module discussed in the following will serve
as a tool to validate the data which satisfy the stationarity
condition.

To the best of our knowledge, reports of such FPGA
implementations are rare in the scientific literature. The work
described in [11], which presents an FPGA implementation
of a digital stochastic measurement method, is related to
the stationarity problem, but it is applied to the theory of
measurement in general and to brain signals in particular.

II. THEORETICAL BACKGROUND
A. WEAK STATIONARITY TEST
There is an extensive literature on hypothesis tests aimed at
distinguishing a stationary time series from a non-stationary
one [12]–[15], and [16]. Most of these papers test the null
hypothesis that a time series is weakly stationary against
the alternative hypothesis that it is not. In practice, however,
this simple binary distinction is not useful in determining
a degree of non-stationarity. Recently, Das and Nason [16]
created one of the few indices that estimate the degree of
non-stationarity of a time series. Their index is based on
measuring the roughness of a statistic estimated from the
time series, which is calculated from the roughness penalty
associatedwith a spline smoothing least-squaresmethod. One
of the key advantages of a non-stationarity index is that, with
two time series, one can state whether one series is more or
less non-stationary than the other.

Starting from an idea discussed in [17] to evaluate globally
the stationarity of a finite length in-situ data stream, [18]
proposes a more general test of stationarity which provides
a local quantitative measure of stationarity for a variable A.
The qualitative algorithm based on a graphical estimation of
the nonlinearity proposed in [17] is further developed in [18],
where the author computes a time series of local stationarity
scores that characterizes non-stationarity ‘‘events’’ and also
identifies their ‘‘sources’’.

The local stationarity measure (LSM) we propose is com-
puted and assigned to a time stamp, τk , corresponding to the
center of a time window1W of fixed length, L. The window
sweeps the entire signal and an LSM value is computed for
each instance.

The mathematical kernel for the computation of the
local stationarity measure is available from a scientific data
analysis toolbox, the Integrated Nonlinear Analysis (INA)
library [19]. INA cumulates some of the most used time
series analysis methods: the power spectral density (PSD),
the multiscale probability distribution functions (PDFs), and
the structure functions and wavelets.

In order to compute the local stationaritymeasure LSM(τk ),
one first computes the mean value of the variable A, < A >
(τk ), from all the samples within the window 1W centered
on τk . Then, a series of partial means < Aleft >i is computed
for subsets of the data samples within the window, with
increasing lengths li = l1, l2, l3 . . . lL. Next, we calculate the
series δi, defined as:

δi =< A > −< Aleft >i (1)

A signal is considered stationary if δi converges towards
zero. To illustrate the procedure, we applied it on a time
series of 900 synthetic samples as shown in Fig. 1. The
test described above is based on partial means calculated
by starting from the left-side of the window 1W and pro-
gressing toward the right-side. This implementation has a
major limitation: on the one hand, a non-stationary feature
(e.g. the discontinuity in Fig. 1) produces large differences
between < A > and < Aleft >i only if it is localized
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FIGURE 1. Weak stationarity tests using the Integrated Nonlinear Analysis
(INA) [19]. Top panel: a synthetic time series obtained by introducing a
sharp discontinuity on a white noise background. Bottom panel: δi as a
function of i (in cyan) and δj as a function of j (in magenta).

closer to the beginning (left side) of the window 1W ; on the
other hand, if the non-stationary feature is localized closer
to the end (right side) of the window, the differences will
be much smaller, and the test might fail to identify the data
non-stationarity.

This limitation can be removed by applying the stationarity
test two times: the first time as described above, i.e. by
computing the partial means from left to right, and the second
time by computing the partial means from right to left. This
second series of partial means (denoted as < Aright >j) is
then used to compute δj, defined as:

δj =< A > −< Aright >j (2)

The results of the second stationarity test are also depicted
in Fig. 1. Instead of a qualitative visual examination of the
convergence towards zero of δi and δj, we introduce a quan-
titative local stationarity measure LSM(τk ), defined as:

LSM (τk) =
sum (abs (δi))+ sum

(
abs

(
δj

))
2

(3)

The method proceeds by moving the window 1W by one
point and the entire procedure is executed again to provide
the value at the next time step, LSM(τk+1). Note that the
procedure bears some similarities with the computation of the
local intermittency measure (LIM) based on wavelet analysis
described in [20].

The results of a test based on this approach for a window
1W of length L = 100 samples are described in Fig. 2. One
notices that LSM exhibits large peaks precisely for those parts
of the signal with discontinuous changes. Thus, a continuous
monitoring of LSM values provides a good estimation of
drastic changes in the signal.

Consequently, the output of the algorithm can be used as
input for other algorithms running on-board or from ground.
It can be used, for instance, to trigger the execution of other
complex analyses on the satellite’s main on-board computer
by comparing the stationarity parameters with a selected
threshold value.

FIGURE 2. The local stationarity measure (LSM) using INA. Top panel: the
synthetic time series depicted in Fig. 1. Bottom panel: the local
stationarity measure (LSM) computed for the signal in the top panel, and
depicted as a function of sample number.

B. FPGA TECHNOLOGIES FOR SATELLITES
The large amount of data generated by the complex active and
passive satellite’s on-board instruments requires increasing
on-board processing capabilities.

The limited computation capabilities and the high power
consumption of the spacecraft and satellites processors led to
the integration of the FPGA technology in modern architec-
tures [21]–[25], and [26].

In space applications, the electronic systems are suscep-
tible to failures caused by the radiations emitted by a large
variety of high-energy particles. The FPGA devices are even
more vulnerable since radiations can cause bit-flipping in
memory elements, which can affect the applications data and
also the configuration logic itself in both SRAM and Flash
technology configuration cell FPGA devices.

Specific hardware (e.g. hardware shielding) and software
(e.g. triple module redundancy, safe state-machines, etc.)
mitigation techniques are required for space-flight qualified
FPGA designs to mitigate the effects of radiation on registers
and memories. Although laboratory test results [27] per-
formed on the latest-generation of commercial FPGA devices
show an improved resistance to radiations, the radiation toler-
ant FPGA devices from Xilinx [28]–[30] or Microsemi [31]
mitigate the effect of the radiations and eliminate the require-
ment of using dedicated mitigation techniques.

The low availability and the high price of the radiation
hardened FPGAdevices drove us to the implementation of the
system on a commercial off-the-shelf device, whose internal
structure is similar to the one of the radiation-tolerant devices.

The traditional development flow for FPGA devices is
based on a Register Transfer Level (RTL) description of the
circuits using a hardware description language, e.g. VHDL,
Verilog. The High-Level Synthesis (HLS) technology sim-
plifies the implementation of the digital signal processing
algorithms in FPGA devices by allowing the description of
the functionality using classical programming languages, e.g.
C++. The high level synthesis generates the RTL implemen-
tation of the design, which is integrated into the traditional
development flow.
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Our proposed solution uses high-level synthesis to generate
the RTL description for the weak stationarity test and an RTL
description for the rest of the system components.

III. SYSTEM OVERVIEW AND IMPLEMENTATION
The satellites main on-board computers execute many crit-
ical tasks. Considering that the satellites platforms already
include FPGA devices, our prototype demonstrates that some
of these tasks can be retargeted to be executed on those FPGA
devices, thus saving time and energy.

The system demonstrates that the weak stationarity test can
detect significant changes of the measured physical variable.
The laboratory tests were performed by continuously moni-
toring the measurements of a magnetometer and calculating
the local stationarity measure. The information provided by
the system can be used by the on-board computer as triggers
for performing more complex analyses.

A. SYSTEM IMPLEMENTATION
A design conceived for space applications usually is first
developed on a regular FPGA device. The same design will
then work as well on a space-grade FPGA device by rerun-
ning the implementation flow for the new target device. This
is precisely the strategy we used for designing our prototype.

Our system is implemented on Digilent Nexys 4 DDR
development board featuring a Xilinx Artix-7 FPGA device.
This set of devices is the low-end of the 7-series FPGA
family of devices from Xilinx and consequently has fewer
programmable logic resources compared to FPGA devices
generally targeting space applications. The block diagram of
the system is shown in Fig. 3.

FIGURE 3. System block diagram.

To measure the intensity of the magnetic field, a Digi-
lent CMPS2 module was attached to the development board.
The module includes a Memsic MMC34160PJ magnetome-
ter [32] able to perform magnetic field measurements on
3 axes. The sensor has a measurement range of −16/+16
Gauss with a resolution of 0.5 mG and can take a measure-
ment for the 3 axes every 10 ms when the resolution of the
ADC is set to 16 bits. The system communicates with the
magnetometer over an I2C channel to configure and control
the magnetometer.

The Triggers outputs notify the on-board computer when
significant changes of the magnetic field are detected.
To visualize the measurements of the magnetic sensor for
the 3 axes and the calculated local stationarity measures, the
system uses a serial connection with the host computer.

In a real-life scenario, when the system is deployed on
the satellite’s on-board FPGA device, the Triggers are the
only outputs of the system, and the serial connection can be
replaced with dedicated interfaces for communication with
other experimental instruments or the main computer.

B. FPGA SYSTEM DESIGN
The hardware system implemented in the FPGA device
includes the following functionalities: an I2C communication
interface with the magnetometer, the weak stationarity test
computing module for each magnetic field axis, a trigger
module which notifies the on-board computer and a serial
unit for communicating with the host computer in order to
validate the system. The architecture of the system is shown
in Fig. 4.

FIGURE 4. FPGA system architecture.

1) COMPASS INTERFACE
The Compass component implements the communication
interface with the magnetic sensor. The implementation is
based on an I2C controller which provides a generic imple-
mentation of the I2C communication protocol.

The Commands and Compass state machines implement
the operations specific to the Memsic magnetic sensor, e.g.
take one measurement, activate the continuous measurement
mode, and send calibration commands. The read measure-
ments for each axis are returned on the X, Y, and Z outputs.
The full architecture of the Compass component is shown in
Fig. 5.

Once the Compass component is activated by the assertion
of the Compass Start input, the operations performed by the
magnetic sensor, according to the procedure described in the
sensor’s datasheet [32], are:

1) Executes the magnetometer self-check test.
2) Measures and saves the calibration offsets.
3) Activates the continuous measure mode:

• Takes a measure on each axis every 12 ms.
• Adjusts the measurements with the saved offsets.

2) WEAK STATIONARITY TEST COMPONENT
The weak stationarity test described in section II.A is imple-
mented in C++ and the RTL implementation is generated
using high-level synthesis. Since the sampling rate of the
magnetometer is only 100 Hz, which is very slow compared
to the 100 MHz clock signal driving the FPGA device, the

VOLUME 10, 2022 9671



D. C. Turicu et al.: FPGA-Based Solution for Computing Local Stationarity Measure From Satellite Data

FIGURE 5. Compass component architecture.

goal set for the high-level synthesis optimizations is to reduce
the area of the design. The design can be adapted to support
sensors with higher sampling rates by applying different high-
level synthesis optimization techniques, e.g. unroll the loops
or pipeline the design.

The raw measurements received from the magnetometer
are converted to Gauss before they are passed to the function
which computes the weak stationarity test. The pseudocode
for this function is described in Fig. 6. The W parameter of
the function holds the last L measurements received from the
magnetometer. It is implemented as a buffer in which themost
recent measurement is saved, and the oldest one is discarded.

FIGURE 6. Weak stationarity test function pseudocode.

The first loop, lines 3 – 7, computes the partial means
vectors of the measurements received within the window
1W . Each position < Aleft >i and < Aright >j holds the
mean of the measurements received up to the sample stored
in that position, ti and tj. The mean for the measurements
< A > (τk ) is calculated by line 9.

The second loop, lines 13 – 15, calculates δi and δj, the
differences between the mean value < A > (τk ) and the

partial means vectors < Aleft >i and < Aright >j calculated
by the first loop.

Finally, line 17 calculates the stationarity parameter
LSM(τk ) for the samples within the window 1W as the
average between δi and δj. When a new measurement is
received, it is saved in the buffer W , the oldest measurement
is discarded, and the entire procedure is executed again to
provide the local stationarity measure at the next time step,
LSM(τk+1).

3) TRIGGER COMPONENT & SERIAL UNIT
The Trigger and Serial Unit components generate the outputs
of the system. The Trigger component compares the local
stationarity measure for each axis with a predefined thresh-
old value. Once the calculated local stationarity parameter
LSM(τk ) for an axis exceeds the threshold value, the corre-
sponding Trigger output will be asserted to notify the main
on-board computer. Based on the requirements of the on-
board computer, the component can be further customized
by implementing a handshake mechanism or maintaining the
output asserted for a predefined period of time. While only
the Trigger component is present in the system deployed in
a real- life scenario, for the validation of the implementation
the Serial Unit sends the magnetic sensor’s measured values
and the calculated local stationarity measures to the host
computer for results visualization.

IV. EXPERIMENTAL RESULTS
The implementation of the system in the FPGA device started
with the generation of the RTL description for the weak sta-
tionarity test using high-level synthesis and the corresponding
techniques. The following sections describe several analyses
we performed for the implementation of the weak stationarity
test, specifically the datatype analysis, and the device utiliza-
tion and timing analyses for different sizes of the window
timeframe.

Based on these analyses, two configurations for the weak
stationarity test were selected for the validation of the system.
The generated RTL descriptions for the weak stationarity test
components were integrated with the rest of the system. The
validation results for the complete system implemented in the
FPGA device are also described in the following sections.

A. WEAK STATIONARITY TEST IMPLEMENTATION
The initial proof-of-concept for the weak stationarity test
algorithm was implemented in MATLAB running on a regu-
lar desktop computer [18]. The algorithm was validated with
series of signals which simulate different scenarios.

For the implementation of the algorithm in FPGA devices
with Xilinx Vivado HLS 2019.1 [33], the weak stationarity
test algorithm had to be rewritten in C++. To test and to
validate the implementation, the MATLAB results for the
local stationaritymeasures calculated for the synthetic signals
and for the measurements received from the magnetometer
were compared to the results calculated by the C++ imple-
mentation for the same input signals.
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FIGURE 7. Weak stationarity test with synthetic signals. Row 1 shows three synthetic signals of length 10000 samples containing various sharp
discontinuities. Rows 2 and 3 show the corresponding LSM values computed using windows of 100 and 200 samples, respectively.

Several different datatypes were analyzed for the imple-
mentation of the weak stationarity test algorithm. The Vivado
HLS supports the standard C++ datatypes and it also pro-
vides alternative datatypes that can provide a more efficient
hardware implementation of the algorithms, specifically the
arbitrary precision integer and fixed-point datatypes. For
the representation of non-integer numbers, the fixed-point
datatype supports an arbitrary number of bits for the repre-
sentation of the integer and the fractional part (compared to
the standard float and double datatypes compliant with the
IEEE-754 standard). Also, for the non-integer numbers, the
half precision datatype provides another alternative.

Table 1 shows the analysis of different datatype configu-
rations. For the synthetic signals shown in Fig. 7 and for the
measurements captured from the magnetic sensor shown in
Fig. 8, the table describes the maximum differences between
the results of the MATLAB algorithm and the C++ imple-
mentation in Xilinx Vivado HLS.

The Max Error columns describe the maximum absolute
difference for each axis between the local stationarity mea-
sures computed by the MATLAB implementation and the
C++ implementation. It provides an idea of the order of
magnitude of the error for each datatype.

Based on these results, we selected the float datatype for
the implementation of the weak stationarity test algorithm.
Even though the differences between the two programming
languages have the potential to introduce errors, by tuning
the C++ implementation we obtained a maximum absolute
error smaller than 0.001 between the two implementations.

TABLE 1. Tested datatypes and resulting errors.

B. WEAK STATIONARITY TEST ANALYSES
Vivado HLS provides performance and utilization estimates
for the generated circuits. Table 2 presents the performance
estimates for the implementation of the weak stationarity test
with different sizes of the window timeframe. The FPGA
device uses a 100 MHz external oscillator, therefore the
targeted clock period of the circuit is 10 ns. For all sizes of
the window timeframe L this requirement is met.
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FIGURE 8. Weak stationarity test results obtained by the FPGA device connected to real-time magnetic field data measured by a Memsic MMC34160J. The
figure setup is the same as in Figure 7, the first row shows 3000 measurements received from the magnetic sensor.

TABLE 2. Timing estimates for the weak stationarity test.

The Initiation Interval defines the number of clock cycles
before the circuit which implements the function can accept
new input data, while the Latency specifies the number of
clock cycles required to compute all output values. Consider-
ing that we set themagnetic sensor to take a newmeasurement
every 12 ms, these requirements are satisfied.

Table 3 presents the reconfigurable logic resources esti-
mated to be required for the implementation of the weak sta-
tionarity test in FPGA device for different window timeframe
sizes.

The results show that the size of the window time-
frame only influences the required number of Block-RAM
resources of the FPGA device, while the amount of reconfig-
urable logic resources remains constant. The implementation
of the weak stationarity test with window timeframes L of

TABLE 3. Utilization estimates for the weak stationarity test.

100 and 200 measurements were exported from Vivado HLS
and they were integrated with the rest of the system for testing
and validation.

C. SYSTEM VALIDATION
The system implemented in the Artix-7 FPGA device using
the Xilinx Vivado 2019.1 [34] suite was tested with synthetic
signals and with magnetic field measurements received from
the attached magnetometer. The calculated local stationarity
parameters were compared with the results calculated by the
MATLAB implementation for the same measurements. The
maximum absolute error was smaller than 0.001.

Fig. 7 shows the weak stationarity test results for a syn-
thetic signal with 10,000 measurements and two window
timeframes with L of 100 and 200 measurements.

Fig. 8 shows a series of 3000 measurements captured with
the magnetic sensor and the weak stationarity test results for
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TABLE 4. FPGA device resource utilization.

window timeframes L of 100 and 200measurements.We used
a magnet to artificially introduce changes to the magnetic
field measured by the sensor. The magnet was moved closer
and further away from the sensor to produce changes to the
magnetic field. By comparing panels B2 and B3, one can eas-
ily observe the effect of using analysis windows of different
lengths. There are two sharp discontinuities in the interval
from 1000 to 1500measurements depicted in panel B1. Using
a window of 100 measurements (B2), the two discontinuities
are clearly detected as distinct non-stationary features, sep-
arated by a stationary interval of measurements. However,
using a larger analysis window containing 200 measurements
(B3), one can observe that the two non-stationary features
are barely distinguishable from one another and the station-
ary interval between them is completely absent from these
results.

D. REAL-TIME VALIDATION WITH MAGNETOMETER
For the validation of the system in a setup close to the deploy-
ment on a relevant environment, a real-time scenario was
tested. The measurements received from the magnetic sensor
are sent to the host together with the computed local station-
arity measures. An application running on the host computer
was developed to read and plot the received measurements
and the stationarity test results in real-time.

E. ENERGY EFFICIENCY AND DEVICE UTILIZATION
The resource utilization and power consumption analyses of
the system implemented in the Artix XC7A100T-CSG324
FPGA device were performed. The results are provided for
the system that integrates a weak stationarity test with a
window timeframe L of 100 measurements.
Table 4 shows the amount of reconfigurable logic resources

used by the implementation of the complete system in the
FPGA device. The system uses a small part of the device
resources, allowing other functionalities to be implemented
in the same device.

The power estimation for the system implemented in the
Artix XC7A100T FPGA device is shown in Table 5. The

TABLE 5. FPGA device power analysis.

power analysis for the routed design was performed using
a vectorless approach and default environmental settings in
Vivado. It is obvious that the power consumption, which
is a critical aspect in computations performed on satellites,
is two orders of magnitude less than in a general-purpose
processor, which is one of the main reasons for targeting an
implementation of this analysis method in FPGA devices.

V. SUMMARY AND CONCLUSION
We designed, implemented, and tested an FPGA device to
collect data from a scientific instrument on-board spacecraft
and to characterize the weak stationarity properties of the
measured variable. The algorithm uses the concept of a local
stationarity measure computed as a function of time by mov-
ing a window of fixed length over the entire time series.

The laboratory tests performed with the FPGA design
provide accurate results for synthetic and real-time sig-
nals, fully compatible with independent calculations per-
formed on the same data with a scientific data analysis
software.

The solution is based on an Artix XC7A100T-CSG324
FPGA device. It can also be easily adapted for space tol-
erant systems and it demonstrates the feasibility of this
prototype to perform on-board weak stationarity tests. The
FPGA design facilitates a more efficient utilization of
the limited computational and energy resources available
on-board.

As the resource utilization is relatively low (less than 15%),
several instances of this architecture can be used in the same
FPGA device. All instances will work in parallel, thus sig-
nificantly increasing the overall performance compared to a
processor-based implementation.

The proposed FPGA-based solution for estimating the
weak stationarity is part of a broader effort meant to build
a library able to perform on-board time series analyses.
An immediate future development is to use the components
employed in this study to design an FPGA-based solution for
the detection of discontinuities from in-situ data – an impor-
tant aspect for solar system plasma exploration, particularly
in the interplanetary space. The end goal is to integrate all the
solutions we developed in recent years in a single design for
on-board applications.

REFERENCES
[1] W. H. Matthaeus and M. L. Goldstein, ‘‘Stationarity of magnetohydrody-

namic fluctuations in the solar wind,’’ J. Geophys. Res. Sp. Phys., vol. 87,
no. A12, pp. 10347–10354, 1982.

[2] M. Echim, T. Chang, P. Kovacs, A. Wawrzaszek, E. Yordanova, Y. Narita,
Z. Vörös, R. Bruno, W. Macek, K. Mursula, and G. Consolini, ‘‘Turbu-
lence and complexity of magnetospheric plasmas,’’ in Space Physics and
Aeronomy Collection: Magnetospheres in the Solar System, Geophysical
Monograph 259, vol. 2, 1st ed. R. Maggiolo, N. André, H. Hasegawa, and
D. T. Welling, Eds. Washington, DC, USA: American Geophysical Union,
2021.

[3] S. Perri and A. Balogh, ‘‘Stationarity in solar wind flows,’’ Astrophys. J.,
vol. 714, no. 1, p. 937, 2010.

[4] V. K. Jagarlamudi, T. Dudok de Wit, V. Krasnoselskikh, and
M. Maksimovic, ‘‘Inherentness of non-stationarity in solar wind,’’
Astrophys. J., vol. 871, no. 1, p. 68, Jan. 2019.

VOLUME 10, 2022 9675



D. C. Turicu et al.: FPGA-Based Solution for Computing Local Stationarity Measure From Satellite Data

[5] D. Perrone, R. Bruno, R. D’Amicis, D. Telloni, R. D.Marco,M. Stangalini,
S. Perri, O. Pezzi, O. Alexandrova, and S. D. Bale, ‘‘Coherent events at ion
scales in the inner heliosphere: Parker solar probe observations during the
first encounter,’’ Astrophys. J., vol. 905, no. 2, p. 142, Dec. 2020.

[6] S. Aminikhanghahi and D. J. Cook, ‘‘A survey of methods for time series
change point detection,’’ Knowl. Inf. Syst., vol. 51, no. 2, pp. 339–367,
May 2017.

[7] G. Montanez, S. Amizadeh, and N. Laptev, ‘‘Inertial hidden Markov
models: Modeling change in multivariate time series,’’ in Proc. AAAI Conf.
Artif. Intell., 2015, pp. 1819–1825.

[8] Y. Kawahara and M. Sugiyama, ‘‘Sequential change-point detection based
on direct density-ratio estimation,’’ Statist. Anal. DataMining, vol. 5, no. 2,
pp. 114–127, 2012.
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