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ABSTRACT Similarity learning which is useful for the purpose of comparing various characteristics of
images in the computer vision field has been often applied for deep metric learning (DML). Also, a lot
of combinations of pairwise similarity metrics such as Euclidean distance and cosine similarity have been
studied actively. However, such a local similarity-based approach can be rather a bottleneck for a retrieval
task in which global characteristics of images must be considered important. Therefore, this paper proposes
a new similarity metric structure that considers the local similarity as well as the global characteristic on the
representation space, i.e., class variability. Also, based on an insight that better class variability analysis can
be accomplished on the Stiefel (or Riemannian) manifold, manifold geometry is employed to generate class
variability information. Finally, we show that the proposed method designed through in-depth analysis of
generalization bound of DML outperforms conventional DML methods theoretically and experimentally.

INDEX TERMS Deep metric learning, image retrieval, Stiefel manifold, non-linear mapping.

I. INTRODUCTION
Deep metric learning (DML) is a learning method that can
increase intra-class compactness and inter-class variability
by quantifying intrinsic or extrinsic relationship between
images. Since the existing DML methods [14], [37] are
based on a similarity metric that can successfully encode the
images of various attributes, they have been widely applied
to product searching [32], face verification [37], perturbation
analysis [30], etc.

The similarity metric is mainly defined using the pairwise
sample-based Euclidean distance or cosine similarity [23],
[37]. Among popular triplet-based methods [37], some used
the mining [15] for complexity reduction and the others [39]
adopted multiple samples with margin. Even episode-based
learning scheme with meta data [65] was grafted into [37].
Recently, the similarity metric [23], [43] applying cosine
similarity (or dot product) to the softplus function has
received a lot of attention owing to high performance. Also,
some methods [34], [41] tried to maximize global fea-
tures on the embedding space by using a histogram or beta

The associate editor coordinating the review of this manuscript and

approving it for publication was Genoveffa Tortora .

function. To further improve the performance, [31], [44], [48]
suggested the ensemble of the above-mentioned similarity
metrics at the feature-level or network-level.

On the other hand, class variability, one of the core proper-
ties of DML, can be analyzed through discriminant analysis
(DA) [2]. Basically, the goal of DA is to find a projection com-
ponent that maximizes the ratio of intra-class compactness
and inter-class variability, and was mainly used to analyze
dimension reduction and discriminative eigenpair. Eigenpair
indicates a tuple of eigenvalue and eigenvector. The perfor-
mance of DA was guaranteed even on manifolds [29] and
the association of DA with pairwise sample-based DML was
already verified [1].

Note that most DML studies only considered local sim-
ilarity based on pairwise connection. Since DML must be
able to improve the retrieval performance, global features
such as semantic representation need to be reflected in
the similarity metric [13], [66]. In addition, since existing
DML methods defined the embedding space produced by
convolutional neural networks (CNNs) as a vector space,
they had a limit in reflecting nonlinear characteristics
such as multi-variate covariance (see Sec. II.B for detailed
motivation).

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 7439

https://orcid.org/0000-0003-3838-126X
https://orcid.org/0000-0001-8742-3433
https://orcid.org/0000-0003-4765-8371


D. H. Kim, B. C. Song: Probabilistic Principal Geodesic Deep Metric Learning

FIGURE 1. Some methods of representing data of the embedding space in a low-dimensional representation space. Unlike the Euclidean space assumed
by existing DML techniques, the manifold can analyze the intrinsic characteristics of data through geodesic and matrix form. For example, in the manifold,
the similarity can be calculated by considering the class attribute of ’bird’ rather than features such as angles and colors of the image (see Section IV.A for
details). The red arrow indicates the direction of latent vector, i.e., the representation component of data, and it enables compact representation on
Stiefel manifold. Here, [Sil] indicates the silhouette score. Triplet-semi with ResNet50 [16] and the CUB200-2011 dataset were used for this experiment.

In order to overcome the drawbacks of the conventional
DMLs, we come up with two ideas as follows: 1) Based on
a pairwise similarity metric reflecting local characteristics,
we reflect even a global characteristic in the representation
space, i.e., class variability. 2) We also consider nonlin-
ear characteristic by analyzing the class variability in the
low-dimensional space (LDS) derived from the embedding
space.

Class variability is observed through the global charac-
teristics of samples corresponding to discrete labels [45].
This global property is space dependent. This fact provides
justification for analyzing class variability from the manifold
and global characteristics of the space.

As in Fig. 1, we compared the silhouette scores [64] of a
few representation spaces to choose an appropriate represen-
tation space. The silhouette score is a metric that shows the
degree of partitioning of clustered data, and can quantify the
learning tendency of retrieval tasks. Silhouette scores were
highest in the order of Stiefel, Riemannian, and Euclidean
space. This result shows that compact representation in a
matrix form enables discriminative class variability analysis.
In this experiment, Euclidean space and manifold employed
PCA and local linear embedding for low dimensional embed-
ding [3], respectively. On the other hand, [17] reported that
matrix representation of embedding space is more useful for
learning the intrinsic characteristics of images than vector
representation. This report supports analysis of Fig. 1.

Therefore, this paper presents a new metric loss for DML.
First, we derive class variability factor by using manifold
sampling [55] and eigenpair obtained through DA in a non-
linear manifold such as Stiefel. Next, we map this factor
into a one-dimensional line manifold to associate with a 1D
similarity metric like Euclidean distance. Then, we define the
projected factor as the geodesic factor (GF) (see Sec. III.A).
Finally, we present several geodesic metric losses (GMLs)
based on locality-perspective metric and GF (see Sec. III.B).
Note that GF can be interpreted from the following two points
of view.

• GF for analyzing class variability on LDS has the same
goal as subspace clustering [54]. In other words, we can

regard that GF explicitly grafts subspace clustering
paradigm to the retrieval task.

• GF plays a role of self-supervision that allows the
embedding layer to further reflect class variability in
learning. Note that GF is not used in testing, and only the
embedding layer that can understand the class variability
of data distribution is used in testing.

This paper is organized as follows. Sec. II describes our
motivation from a technical point of view, and then previews
preliminary knowledge for the proposed method. Sec. III
depicts the design procedure of GF. Sec. IV evaluates the
performance of the proposed method qualitatively and quan-
titatively.

II. PRELIMINARIES
A. NOTATION
Let zi = f (xi)∈ Z be a d-dimensional (embedding) vector of
an image xi∈ X corresponding class labels yi∈ Y , where f is
CNN-based embedding network [16], [18]. Also, let a set of
embedding vectors and the number of classes be Z = {zi}Ni=1
and C , where N is the minibatch size. Linear DA (LDA) is
used to find the d-dimensional optimal eigenvectors {ei}mi=1
that maximize the ratio of intra-class compactness and inter-
class variability. LDA can be reinterpreted by finding the opti-

mal eigenmatrix E ∈ Rd×m: E∗ = max
E

∣∣ET6bE∣∣
|ET6wE|

, where

E∗ = (e1|e2| . . . |em),6b = 6t−6w (inter-class covariance),
6t (total covariance), and 6w (intra-class covariance) [2].
The eigenpair of E∗, i.e., {(λi, ei)}mi=1 can be found using the
eigenvalue equation. Here, λ1≥ . . . ≥λm. And the eigenvalue
solver plays a technical role to perform forward/backward
pass operation (e.g., DA and gradient calculation) during end-
to-end learning of LDA (SDA in Fig. 2).

B. MOTIVATION
As a representative similarity metric, Mahalanobis distance
between zi and zj is defined by

D2
6

(
zi, zj

)
=
(
zi − zj

)T
6−1

(
zi − zj

)
∼=

d∑
k=1

(
zi − zj

)T ekeTk
λk

(
zi − zj

)
(1) (1)
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FIGURE 2. Generation process of geodesic factor (GF) φ. The class variability factor vp is obtained by uniform sampling on the tangent space TW S̄t .
W and Q indicate two points on Stiefel manifold St, respectively.

If covariance matrix 6 is I, Eq. (1) becomes the Euclidean
distanceD

(
zi, zj

) (
= Dij

)
and6−1 can be approximated by a

scale term
ekeTk
λk

based on eigenpair (e, λ) [4]. Early metric
learning techniques [9], [45] assumed z as data and they
focused on projecting data into a discriminative LDS through
a covariance matrix. On the other hand, the latest metric
learning techniques [23], [37] could handle the retrieval task
only with the local linearity of the embedding vector z under
the assumption of6−1 = I , thanks to CNN’s feature analysis
capability. However, the previous approaches that seldom
took into account the global information of feature (or data)
and nonlinearity in designing metric showed limitations in
improving performance in the fine-grained retrieval task.
Reference [36] designed the scale term of Eq. (1) using an
orthogonal layer and a scale layer on the Stiefel manifold.
Since the two layers were only designed for scale-invariance
purpose, eigenpairs could not be dealt with explicitly. This
indicates that the global characteristics such as class variabil-
ity could not be reflected properly. Therefore, we intend to
design a GF that can reflect the spectrum of eigenpairs, i.e.,
global information on a nonlinear space.

C. GEOMETRY OF MATRIX MANIFOLD
1) RIEMANNIAN MANIFOLD
A Riemannian manifold (M, g) is a smooth manifold M
equipped with a Riemannian metric g.g is defined as the inner
product on the tangent space TwM for each point w (∈M),
g (·, ·) : TwM× TwM→ R.

2) GEODESIC
A geodesic is a locally shortest curve on M. The geodesic
γ (t) : t ∈ [0, 1] on M, s.t. γ (0) = w, γ̇ (0) = v (∈ TwM)

can be represented by Expw (tv) [5].

3) GEOMETRY OF STIEFEL MANIFOLD
Stiefel manifold is composed of a set of k × p orthonormal
matrices as in Eq. (2):

St (k, p) ,
{
W ∈ Rk×p

|W TW = Ip
}
, (2)

where Ip denotes a p × p identity matrix and p ≤ k . Note
that Stiefel manifold of Eq. (2) can be considered as a unitary

group or a hypersphere. For example, if p = 1, St (k, p) can be
regarded as a unit hypersphere, that is, sphere manifold Sk−1M .
Also, when p = k , St (k, p) is regarded as a unitary group Uk .
Then, at a point on Stiefel manifold, i.e., W ∈ St (k, p), the
tangent space is defined by

TWSt (k, p) =
{
V ∈ Rk×p

|W TV + V TW = 0
}

(3)

Also, Lie group SO (k), which operates through group action
like matrix multiplication on Stiefel manifold, is defined by

SO (k) ,
{
R ∈ Rk×k

|RTR = Ik , det(R) = 1
}

(4)

Then, the group action betweenR ∈ SO (k) andW ∈ St (k, p)
is expressed as RW ∈ St (k, p). As a result, the concept of this
group action is used to design a retraction map or lifting map
on Stiefel manifold (­ in Fig. 2) [7].

Usually, (length) normalization [46] is applied to embed-
ding vectors to meet Stiefel constraint, and orthogonal initial-
ization is applied to the other trainable parameters.

III. METHOD
A. GEODESIC FACTOR (GF) GENERATION
The process of generating GF consisting of three steps begins
just after feature extraction process as in Fig. 2. Assume the
Stiefel manifold is LDS.

1) ADAPTIVE LDS SEARCHING
The first step is to use a specific dimension reduction tool [3]
that maps embedding space to a low-dimensional representa-
tion space (¬ in Fig. 2). This data-adaptive dimension reduc-
tion tools in [3] are simple, but they are powerful projection
methods that allow generalization even for out-of-distribution
(OOD) samples. And then, pairwise inner product (PIP)
criterion [52] is used to find the optimal dimension in the
dimensionality reduction process.∥∥∥ZZT − Ẑ ẐT∥∥∥ = d − k + 2

∥∥∥ẐTZ⊥∥∥∥2 , (5)

where Z ∈ RN×d and Ẑ ∈ RN×k . Note that the criterion of
Eq. (5) consists of a bias component d − k and a variance
component 2

∥∥ẐTZ⊥∥∥2 [52]. The optimal trade-off between
bias and variance terms becomes the sweet spot we find.
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Specifically, k that minimizes Eq. (5) becomes the dimension
of LDS. Based on k selected by Eq. (5), LDS St ∈ RN×(k×p)

is generated. Note that when p = 1, LDS is regarded as
a Riemannian manifold, and from when p ≥ 2, LDS is
considered to be Stiefel manifold. Refer to Sec. IV for an
experiment to analyze variation of p-values.

2) STIEFEL DISCRIMINANT ANALYSIS (SDA)
The second step is to obtain the eigenpair required to quantify
the class variability on St through SDA. SDA consists of
a nonlinear mapping onto tangent space and an eigenvalue
solver.

First, a point Q on St is mapped to V on the tangent
space TWSt by nonlinear mapping. Here,W and Q mean the
intrinsic mean [11] of St and an arbitrary point, respectively.
Since a well-known logarithmic map [11] may not be defined
as a closed form, lifting map RP−1W , which is the inverse
process of retraction map RPW , is used for this step [22] (­
in Fig. 2).

V = RP−1W (Q) ≡ QSp −W , (6)

where Sp is the symmetric positive semidefinite p× p matrix
such that QSp − W ∈ TWSt. Next, RP−1W of Eq. (6) is
computed as follows [22]: 1) Compute M = W TQ, 2) solve
Continuous-time Algebraic Riccati Equation (CARE) [22]
(−M) Sp + Sp

(
−MT

)
+ 2Ip = 0 for Sp, and 3) com-

pute QSp −W . Before obtaining the eigenpair on TWSt,
we transform the matrix space into the vector space according
to the existing approaches [51] for transforming the data
shape onmanifold. Specifically, based onKronecker product-
based vectorization operation TWSt (k, p) ⊗ TWSt (k, p) →
TW S̄t (kp, 1), St is transformed into product space S̄t [51].
So, an eigenpair that can reflect data consistency is obtained.
Finally, based on V̄ on TWS̄t , eigenpair (e, λ) is produced
by LDA.

3) GENERATING GF
The third step is to quantify class variability in the repre-
sentation space. First, the quantification process is based on
an eigenpair and a probability model-based sampling [55].
In detail, as in Eq. (7), class variability factor vp is sampled
on TW S̄t by using the average eigenvalue λavg reflecting
separability per class label as the range of the probability
model [55] (® in Fig. 2).

vp∼UTW S̄t

(
RPWCm±ε1λavg

)
∈ Rkp, (7)

where the probability model assumes a uniform distribu-
tion U, ε1 is a scale factor, and the center value of U is
computed by RPWCm that is the retraction map of Cm and
kp-dimensional zero vector 0, i.e., Cm + 0 [22]. Cm =

1
|Call |

∑
(za,zp,zn)∈Call

(
Dap + Dan

)
, where z’s subscripts a, p,

and n indicate anchor, positive, and negative points, respec-
tively and Call stands for a set of all possible pairs.

Then, GF φ is determined by placing vp on the line man-
ifold that reflects the separability characteristics as much as

possible through the discriminative eigenvector e1 ∈ Rkp:

φ = eT1 vp (8)

Since φ is the global information that quantifies class vari-
ability in the representation space and it lies on the line
manifold, it can be fused with the scalar similarity metric
reflecting local characteristics. Also, because φ is defined
based on (inter-)class variability, it gradually becomes larger
as latent vectors corresponding to different class supervision
are separated, that is, similarity learning progresses. It can
alleviate the inherent overfitting problem of similarity learn-
ing by playing a momentum in the gradient operation (see
Sec. III.C). In the next section, the one-dimensional GF φ
generated through Eq. (8) is used for the purpose of reflecting
the class variability factor in the Euclidean distance or cosine
similarity.

B. DEFINING GEODESIC METRIC LOSS (GML)
This section presents three versions of GML based on repre-
sentative or latest DMLs [23], [31], [37].

GML-Tri is based on matrix multiplication of squared
Euclidean distance D2 and φ as in Eq. (9).

LTri
(
za, zp, zn

)
=

1
Np

∑Np

i=1

[(
D2
ap1

T
N8

)
i
− β1

]
+

+
1
Nn

∑Nn

i=1

[
β1 −

(
D2
an1

T
N8

)
i

]
+

−ε2

kp∑
i=1

λi (9)

where D2
=
[
D2
i

]T
, 8 = [φi]T , i = 1 . . . ,N . To reflect all

elements of φ in D2, an N -dimensional all-one vector 1N
is used. Similar to [14], [37], the first and second terms of
Eq. (9) are defined by hinge function [·]+ and class specific
margin β1 [46], and they are trained so that za and zp are
located close to each other, and za and zn are located far
from each other. The third term encourages tangent space
TWS̄t to find the discriminative eigenpair (e, λ). On the other
hand, in order to reduce the computational burden of Eq. (9),(
D2
ap1

T
N8

)
i
∈ RN is reconfigured as follows:(

D2
ap1

T
N8

)
i
= D2

api
(φ1 + · · · + φN ) = D2

api
φs.

Similarly, D2
aniφs is reconfigured. Among N samples, the

numbers of pairs satisfying D2
apφs > β1 and D2

anφs < β1
are Np and Nn, respectively.
GML-PA employs φs like GML-Tri, and utilizes Proxy-

Anchor (PA) [23] as the baseline.

LPA (z,p)

=
1∣∣P+∣∣ ∑

p∈P+
log

1+ φs
∑
z∈Cp

e−α(CS(z,p)−β2)


+

1
|P|

∑
p∈P

log

1+φs
∑
z∈Cn

eα(CS(z,p)+β2)

−ε2 kp∑
i=1

λi

(10)
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FIGURE 3. Conceptual view of the proposed method. Here, the color of
each vector represents class label information.

where CS indicates cosine similarity, and Cp and Cn denote
the sets of vectors in positive and negative relationships with
a proxy vector p, respectively. P and P+ denote the set of all
and positive proxies, respectively [23].

The exponentially exploding or asymptotically vanishing
phenomenon that occurs frequently in [23] is controlled by
φs. Thus, φs can give stability to similarity learning.

GML-DiVA is designed using DiVA [31] as the baseline,
which ensembles several similarity metrics at the network
level. The loss function of GML-DiVA is as follows:

LDiVA = Ldisc + Lsha + Lint + Lreg (11)

where Ldisc is the margin loss [46] based on the class label
triplet set

{
ya, yp, yn

}
with ya = yp and ya 6= yn.Lsha andLint

are losses when the configuration conditions of the triplet set
are ya 6= yp 6= yn and ya = yp = yn, respectively. Lreg is the
regularization loss proposed in [31]. Similar to GML-Tri in
Eq. (9),Ldisc is defined bymultiplying the Euclidean distance
of margin loss by φs.Lsha andLint are also defined likeLdisc.

The goal of GML-DiVA is to create synergy with loss func-
tions defined through φs for understanding global semantic
similarity. Please refer to Appendix I for GML-Cont and
GML-MS handled in the experiment section.

1) COMPLEXITY ANALYSIS
O
(
Np3

)
and O

(
Nkp2

)
are required for CARE equation and

non-linear mapping to TWS̄t, respectively. Here, N � k, p.
In addition,O

(
N 2d

)
is required for eigenvalue solver, which

is less than O
(
N 3C

)
of Triplet [10]. On the other hand,

compared to O (NC) of PA [23], the N -squared complexity
of eigenvalue solver is somewhat burdensome. Table 1 shows
that when considering the performance improvement by the
proposed method, the additional time required for learning is
sufficiently tolerated. In the test phase, the proposed method
uses only the embedding layer like other techniques, so it
consumes the equivalent testing time.

TABLE 1. Elapsed training time per epoch on CUB200. Since all methods
use only the embedding layer, testing times are the same as 10.5 seconds
(CPU: Intel XEON E5-1650, GPU: GTX 1080TI).

FIGURE 4. Performance analysis of R@1 and R@2 on Cars196. Here,
magenta, blue, and brown represent GML-PA, Proxy-Anchor, and MS,
respectively.

C. GRADIENT ANALYSIS OF GML
Eq. (9) is differentiated to analyze the effect of φs on the
behavior of the embedding vector.

∂Ltri
∂zp
=

∂

∂zp

(
D2
apφs − β1

)
=
∂D2

ap

∂zp
φs + D2

ap
∂φs

∂zp
(12)

∼= 2φs
(
zp − za

)
= 2Dapφs

(
zp − za
Dap

)
(12)

∂Ltri
∂zn
=

∂

∂zn

(
β1 − D2

anφs

)
= −

∂D2
an

∂zn
φs − D2

an
∂φs

∂zn

∼= 2φs (za − zn) = 2Danφs

(
za − zn
Dan

)
(13)

Here, only the case where the hinge function is greater than 0
is handled, and the gradient term of φs can be omitted because
it is relatively smaller than the gradient term of D2. In addi-
tion, the gradient of D2

ap can be decomposed into a size

component 2Dapφs and a direction component
(
zp−za
Dap

)
, and

the size component can be tuned by φs unlike the triplet.
Fig. 3 conceptually describes the movements of vectors

according to metric losses such as Trip-semi and GML-Tri,
through gradient analysis. In case of Trip-semi, since the
gradient is only proportional to the size component Dan, the
negative vector zn can be easily belong to different class label
region at the beginning of learning. As such, it will be difficult
for zn, which was initially mis-learned, to be included in the
region of the original class label. On the contrary, zn which
belongs to za’s class in the latter part of learning is hard to
escape from the region of this class (¬ of Fig. 3). On the other
hand, the gradient of GML-Tri, i.e., GML based on triplet loss
is affected by Dan and φs that is the sum of all components of
GF. As a result, φs, which quantifies class variability, plays
a role of clipping the gradient of Dan at the beginning of
learning, and acting as a momentum at the end of learning.
(­ of Fig. 3).
Fig. 4 shows the positive impact of GF in the early stages

of learning. GML-PA showed a steep increase in recall rate
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TABLE 2. Performance comparison on CUB200-2011, CARS196, and SOP. Superscript 128 and 512 represent the embedding vector size, and superscript
512B represents the results of train/test images of 256× 256 size with 512 embedding vector size. Here, ‘PA’, ‘TRI’, and ‘CONT’ represent proxy-anchor,
Trip-Semi, and contrastive, respectively. ∗ indicates our own implementation results.

in the early stage of learning (0-10 epochs) than PA and MS.
This momentum is maintained even when the k of recall@k
increases, and it affects the peak performance.

See Appendix I for gradient analysis of anchor za, Stiefel
manifold, and derivation of GML-PA.

D. GENERALIZATION BOUNDS OF GML
This section analyzes the generalization bound of the simi-
larity metric structure based on the representative covering
number [25]. Let A be a parameterized model that is opti-
mized byCall and the similarity metric ρ ofZ . In addition, let
the expected triplet set generated by a probability distribution
P be

(
z, z′, z′′

)
∼ P. Then, the generalization bound of A in

the metric space (Z, ρ) is defined as follows.
Theorem 1: Assume that ρ (za, z) ≤ γ , ρ

(
zp, z′

)
≤ γ ,

ρ
(
zn, z′′

)
≤ γ for ∀za, zp, zn, z,z′, z′′ and γ > 0. If A

satisfies∣∣L (ACall ; za, zp, zn
)
− L

(
ACall ; z, z

′, z′′
)∣∣ ≤ η (Call)

(14)

and N (γ,Z, ρ) < ∞, then A is (|Y|N (γ,Z, ρ) ,
η (Call))-robust. Here, L

(
ACall ; ·

)
is the loss function of

A optimized with Call as input, N (·) is Z ’s covering num-
ber [25], and η (·) : (Z × Z)N → R indicates a real-valued
function.

Proof: For the proof of Theorem 1 and the details of
η (Call) and the covering number, see Appendix II.
On the other hand, based on Theorem 1, the bounds of

different similarity metric structures can be compared as
follows.
Theorem 2: Let the generalization bound of the similarity

metric structure [23] based on cosine similarity be ηL . ηL
assumes a softplus function type. Also, as in [37], let the hinge

function with margin that is based on Euclidean distance be
ηE . Then, the following relationship is established between
ηL and ηE .

ηL ≤ ηE ≤ η (Call) (15)

Proof:Refer toAppendix II for the proof ofTheorem2.
ηE and ηL correspond to the bounds of GML-Tri andGML-

PA, respectively. Eq. (15) provides theoretical indicators
regarding optimization stability and convergence between
different similaritymetric structures. In addition, the structure
with tight generalization bounds improves retrieval perfor-
mance (see Table 2 of Sec. IV.A). From this point of view,
Theorem 2 can be an explicit tool for analyzing the relation-
ship between the retrieval performance and the generalization
bound.

IV. EXPERIMENTS
A. CONFIGURATION DETAILS
We used PyTorch library for network design and parameter
optimization. All experiments were performed five times on 4
NVIDIA GeForce GTX 1080 TI GPUs. We adopted the
training protocol of the base techniques [23], [31], [37] to
which GML is applied. Two backbone networks of ResNet50
(R50) [16] and BN-Inception (BN) [18] were used. For pre-
processing, a center crop of 224 × 224 (or 256 × 256)
and horizontal flip were applied to input images. As in the
other techniques, only the embedding layer trained by GML
was used for evaluation, and the GF generation process was
excluded. Please refer to Appendix III for specific details.

B. HYPER-PARAMETER SETTING
For PA as the base technique, AdamW [28] with learning
rate of 10−4 and N = 180 were used, and for the others,
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TABLE 3. Performance comparison with ensemble methods on CUB200-2011, CARS196, and SOP. ‘G’ indicates GoogleNet V2. The experiment setup is the
same as in table 2.

TABLE 4. Performance comparison according to the different manifolds
on CUB200-2011. Other experiment settings are the same as table 2.

Adam [21] with learning rate of 10−5 and N = 112 were
used. ε1 of Eq. (7) and ε2 of Eq. (9) were set to 1e-1 and 1e-6,
respectively. Also, α and β2 of Eq. (10) were set to 48 and
1e-1. Isomap [3] was used for LDS searching, and the default
set of LDS dimension k was {3, 4, 5}, and p was set to 2.

C. DATASETS
Four natural and artificial image datasets were adopted for
training and testing. Cars196 [26] contains 16,185 images
of 196 car classes. The first 98 classes (8,054 images) for
training and the remaining 98 classes (8,131 images) for
testing. CUB200-2011 [42] consists of 11,788 images of 200
bird classes. The first 100 classes (5,864 images) for training
and the remaining 100 classes (5,924 images) for testing.
Stanford online products (SOP) [32] consists of 120,053
images of 22,634 product classes. 11,318 classes (59,551
images) for training and 11,316 classes (60,502 images) for
testing. In-shop clothes [27] consists of 72,712 images of
7,986 classes: 3,997 classes for training and 3,985 classes for
testing. The test set is divided into query set (14,218 images)
and gallery set (12,612 images). See Fig. 5 for more details.

D. EXPERIMENTAL RESULTS
1) QUANTITATIVE RESULTS
Quantitative evaluation was performed on the CUB200-2011,
Cars196, and SOP datasets. Recall@Q (R@Q) [20] was
employed for retrieval performance evaluation, and nor-
malized mutual information (NMI) [38] was adopted
for clustering performance evaluation. Table 2 listed
Euclidean distance-based and cosine similarity-based tech-
niques [23], [33], [39], [43] in the order of embedding vector
size, and then showed their performance.

The greatest performance improvement was observed in
GML-Cont and GML-Tri. For example, in CUB200-2011,
GML improved R@1 by 6% and 6.8%, respectively, in com-
parison to the base technique (see the 2nd and 6th rows in

FIGURE 5. An example of datasets for DML.

Table 2). Note that among the triplet-based DML techniques,
GML-Tri was the best. GML-Tri showed R@1 gap of only
0.3% from PADS-Tri [35] for CUB200-2011, but it provided
significant R@1 differences of 2.1% and 2.4% for Cars196
and SOP datasets, which can guarantee generalization perfor-
mance. Also, it showed a steady performance gain of more
than 1% over DSML [53]. This proves that a loss function
inspired by subspace-clustering is more effective in retrieval
tasks than SNR-based class variability analysis [53] and rein-
forcement learning-based sampling [35].

GML-PA achieved the highest performance improvement
among cosine similarity-based techniques. Seeing the 12th

row, R@1 was 70.7% in CUB200-2011 and 87.5% in
Cars196. In case that the input image size is set to 256×256,
GML boosted the performance of PA [23] and HORDE [19]
by about 1% (see the last row). This is SOTA performance in
this embedding vector size.

Next, Table 3 compares GML-DiVA with conventional
ensemble methods [31], [44], [48]. GML-DiVA showed bet-
ter performance in terms of both recall and NMI than [44]
and [48] with embedding vector size of 512 or more.

Although GML-DiVA showed a meaningful R@1 of 1.7%
for the SOP dataset, its overall performance improvement
was not significant, compared to GML-Tri and GML-PA
of Table 2. Actually, DiVA is somewhat different from the
purpose of GML designed for improving a single metric
because DiVA boosts performance through fusion of metrics.
Based on a study [50] showing that the ensemble performance
depends on the performance of single metrics, we can inter-
pret that the metric used in GML-DiVA has a positive effect
on the classifier fusion process.

VOLUME 10, 2022 7445



D. H. Kim, B. C. Song: Probabilistic Principal Geodesic Deep Metric Learning

FIGURE 6. An examples of confusion matrix based on the distance
correlation (DC). A larger DC value means a similar image. Both GML-PA
and PA were trained with CUB200-2011 and then evaluated with test split
of CUB200-2011, Cars196, and SOP.

FIGURE 7. R@1 accuracy versus embedding vector size on Cars196.

E. QUALITATIVE RESULTS
In this section, a qualitative evaluation in terms of similarity
was performed using a confusionmatrix based on the distance
correlation (DC) index. Note that well-known Euclidean
distance is difficult to effectively reflect the similarity of
latent vectors as well as disentanglement characteristics. So,
we analyzed the relationship between vectors based on DC.
As in Fig. 6, for the same class label images I1 and I2,
both GML-PA and PA showed high DC values of about 0.7.
However, the DC value between a ’bird’ image I1 and a ’cup’
image I4 was 0.41 for GML-PA and 0.47 for PA. This supports
the outstanding discrimination performance of GML. In the
case of PA, although the class label is different, the DC
(0.44) between I3 and I1, which have a common attribute
of ‘bird’, is smaller than the DC (0.45) between I3 and I6,
which have completely different attributes. On the other hand,
GML-PA shows an ordinaryDCdistribution. This experiment
result shows that GML-PA can learn similarity metric by
reflecting not only class label but also image attribute. See
Appendix IV for more examples of Fig. 6 and latent space
visualization.

F. ABLATION STUDY
In this section, we performed comparative analysis on the
hyper-parameters of GF. Fig. 7 evaluates the techniques used
for LDS searching of Sec. III.A according to the embedding

FIGURE 8. Performance variation according to k and p of the St(k,p) on
CUB200-2011. Since we assumed a compact Stiefel manifold,
we experimented only when p ≤ k .

vector size. The performance was highest in the order of
GML-PA, Proxy-Anchor, and MS. As the embedding vec-
tor size increased from 32 to 256, R@1 also improved in
proportion to the capacity of the embedding layer. However,
from 512 and above, the performance of all techniques was
saturated around 87%. This indicates that the embedding
layer no longer provides sensible information in calculating
the similarity metric. Also, the performance variation accord-
ing to LDS search methods amounted to about 1%. On the
other hand, it is noteworthy that the technique showing the
best performance differs depending on the embedding vector
size. For example, LLE showed the best performance of about
73.8% at 32, and IsoMap of about 87.8%was the best at 1024.

Figure 8 shows the performance of GML-PA according to
k and p of St (k, p). GML-PA showed a performance variation
of about 2.0% at various combinations of k and p. Although
GML-PA is somewhat sensitive to parameters, overall perfor-
mance was clearly improved compared to authentic PA. Note
that GML-PA with p = 1 also showed higher performance
than PA (68.4%). This proves that class variability has a
positive effect on similarity learning. In detail, the perfor-
mance according to k rarely shows a certain trend, whereas
p is somewhat proportional to the R@1. This is because
p indicates the capacity for data representation on Stiefel
manifold.

Finally, Table 4 evaluates the performance for differ-
ent manifolds and non-linear mappings. We performed
this experiment with manifolds created while changing the
orthogonal parameter p of the Stiefel manifold. From Table 4,
we can observe that the Stiefel-based method has a per-
formance advantage of about 1% R@1 over Riemannian
and Unitary. Next, the logarithmic map [11] was used to
generate the tangent space, but only the variation within
0.3% of the recall rate was observed. As a result, applying
the same interpretation as in Fig. 7, finding an appropriate
p on Stiefel manifold is equivalent to creating a GF that
reflects the class variability of the embedding space well.
Refer to Appendix V for additional materials such as experi-
mental results on the in-shop clothes dataset and performance
changes according to minibatch size.
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V. RELATED WORKS
A. METRIC LEARNING SUMMARY
The goal of DML is to learn the projection matrix from
the input space into the representation space [9], [45].
Various regularization terms have been proposed to miti-
gate overfitting in the DML process [6], [47]. In addition,
CNN-based DML techniques such as pair losses [24] and
triplet losses [37] have appeared to deal with high image
dimensions. Also, there were studies on the concept of neigh-
borhood component analysis (NCA) that locate points on
the representation space in the discriminative decision space
based on class supervision information [12]. On the other
hand, unlike the previous studies, there were cases where
global information on embedding spacewas quantified in var-
ious ways and used as a tool for similarity learning [34], [41].
Finally, a novel efficient retrieval approach for the image
retrieval task from bulk databases has emerged [67]. [67] has
in common with the proposed method in that color and tex-
ture features are extracted considering both local and global
views of the image. And it is noteworthy that features useful
for improving retrieval performance were extracted from the
frequency domain.

B. LATEST DML APPROACHES
Recently, several metric learning techniques based on
the analysis of class variability have been proposed. For
instance, DSML [53] defined the signal-to-ratio (SNR) from
the (Euclidean) distance and variance between samples in a
mini-batch, and then used it as a loss function. However, due
to the inherent characteristics of SNRmetric, DSML can only
be applied to metric learning based on triplet or contrastive
distance. That is, it is difficult to apply to different techniques
in terms of formula such as PA [23]. PADS [35] proposed
an adaptive negative sampling mechanism through a class
variability factor and a feedback loop based on reinforcement
learning. PADS, which suggested a new sampling concept,
is easy to attach and detach. However, since PADS does
not structurally change the loss function, it does not affect
similarity learning. Also, since PADS analyzes the statistical
property on Euclidean space, it cannot capture the non-linear
properties of the data. Finally, [63] analyzed class variability
on a manifold. Reference [63] quantified class variability on
the Riemannian manifold and applied this to basic metric
learning techniques such as triplet. However, [63] is numeri-
cally unstable and sensitive to outlier samples because other
constraint terms such as orthogonality are not employedwhen
mapping to the manifold.

C. DISCRIMINANT ANALYSIS (DA)
The objective of DA is to obtain a factor that maximizes
inter-class variability in a given space, and then perform
dimension reduction and eigenvalue analysis using the factor.
For example, dimension reduction could be performed after
defining the relationship between samples through Laplacian
graphs [49] or Laplacian graphs based on the Gaussian kernel
could be used for constructing an intra/inter-class covariance

matrix [40]. One of the major features of DA is that it can
perform pattern analysis in association with manifold geom-
etry. For example, Louis et al. proposed a probabilistic DA
based on probabilistic model to deal with manifold charac-
teristics [29]. On the other hand, since DA has a common
goal with metric learning, the relationship between DA and
metric learning has been theoretically analyzed [1]. However,
as far as we know, there have been no recent studies that
have performed the retrieval task using both DA and metric
learning at the same time.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a method for successfully obtaining
nonlinear characteristics in embedding space and presents
a novel metric structure based on this characteristic. The
proposed method will inspire recent DML studies which con-
sider only the Euclidean distance or cosine similarity in vector
space. Future study will be to apply nonlinear characteristics
to diverse DML techniques and to propose an optimization
method for efficiently computing matrix computation.

APPENDIX I
(GRADIENT ANALYSIS OF GML)
A. FORM OF GML-CONT AND GML-MS
The GML-Cont and GML-MS used in the experiments of the
main body are defined by

LCont
(
za, zp, zn

)
=

1
Np

∑Np

i=1

(
D2
api
φs

)
+

1
Nn

∑Nn

i=1

[
β1 − D2

aniφs

]
+

− ε2

kp∑
i=1

λi (I.1)

LMS
(
z, zp, zn

)
=

1
N

∑
z∈Z

1
αms

log

1+ φs ∑
zp∈Cp

e−αms(<z,zp�λms)


+

1
βms

log

1+ φs ∑
zn∈Cn

eβms(<z,zn�λms)

− ε2 kp∑
i=1

λi

(I.2)

where < ·, · > denotes dot product and αms, βms, and λms
are set to 2, 50, and 1, respectively. Here, Cp and Cn denote
the sets of vectors in positive and negative relationship with
z, respectively.

B. GRADIENT OF GML-TRI
The final form of Eq. (9) of the main body is given by

LTri
(
za, zp, zn

)
=

1
Np

∑Np

i=1

[
D2
api
φs − β1

]
+

+
1
Nn

∑Nn

i=1

[
β1 − D2

aniφs

]
+

− ε2

kp∑
i=1

λi

(I.3)
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FIGURE 9. DC confusion matrices on Cars196 test split. Image sets belonging to the intra-class are as follows: {Ik , Ik+1},
k = 1,3,5,7,9.

FIGURE 10. DC confusion matrices on Cars196 test split. The intra-class configuration is the same as Fig. 9.

FIGURE 11. DC confusion matrices on SOP test split. The intra-class configuration is the same as Fig. 9.
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FIGURE 12. DC confusion matrices on SOP test split. The intra-class configuration is the same as Fig. 9.

FIGURE 13. DC confusion matrices on CUB-200-2011 test split. The intra-class configuration is the same as Fig. 9.

The partial derivatives of Eq. (I.3) with respect to a triplet set
za, zp, zn and β1 are as follows:

∂Ltri
∂zp

=
∂

∂zp

[
D2
apφs − β1

]
+

=
∂D2

ap

∂zp
φs + D2

ap
∂φs

∂zp

∼=

2φs
(
zp−za

)
=2Dapφs

(
zp−za
Dap

)
, if D2

apφs>β1

0, otherwise
(I.4)

∂Ltri
∂zn

=
∂

∂zn

[
β1 − D2

anφs

]
+

= −
∂D2

an

∂zn
φs − D2

an
∂φs

∂zn

∼=

2φs (za−zn)=2Dapφs
(
za−zn
Dan

)
, if D2

anφs < β1

0, otherwise
(I.5)

∂Ltri
∂za
=



Dap

(
2
(
za − zp

)
Dap

φs

)
+ Dan

(
2 (zn − za)

Dan
φs

)
,

if D2
anφs < β1 and D2

apφs > β1

Dap

(
2
(
za − zp

)
Dap

φs

)
,

if D2
anφs > β1 and D2

apφs > β1

Dan

(
2 (zn − za)

Dan
φs

)
,

if D2
anφs < β1 and D2

apφs < β1

0,

if D2
anφs > β1 and D2

apφs < β1

(I.6)

∂Ltri
∂β1
= −1

{
β1 < D2

apφs

}
+ 1

{
β1 > D2

anφs

}
(I.7)

The magnitues of embedding vector gradients are tuned by
φs. In Eq. (I.7), 1 {·} outputs 1 when the given condition is
satisfied, and 0 otherwise.
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FIGURE 14. DC confusion matrices on CUB-200-2011 test split. The intra-class configuration is the same as Fig. 9.

FIGURE 15. DC confusion matrices on In-shop query split. The intra-class configuration is the same as Fig. 9.

C. GRADIENT OF GML-PA
The loss function of GML-PA is defined by Eq. (I.8), and
the derivative analysis on cosine similarity CS is given by
Eq. (I.9).

LPA (z,p) =
1∣∣P+∣∣ ∑

p∈P+
log

1+ φs
∑
z∈Cp

e−α(CS(z,p)−β2)


+

1
|P|

∑
p∈P

log

1+ φs
∑
z∈Cn

eα(CS(z,p)+β2)


−ε2

kp∑
i=1

λi (I.8)

∂LPA
∂CS

=


1∣∣P+∣∣
−αφsh+p (z)+

∂φs

∂CS
h+p (z)

1+ φs
∑

z′∈Cp h
+
p (z′)

, ∀z∈Cp

1
|P|

αφsh−p (z)+
∂φs

∂CS
h−p (z)

1+ φs
∑

z′∈Cn h
−
p (z′)

, ∀z∈Cn

(I.9)

where h+p (z) = e−α(s(z,p)−β2) and h−p (z) = eα(s(z,p)+β2) are
positive and negative similarity metrics for embedding vector
z given proxy p, respectively. In Eq. (I.8), the scale factor φs
is multiplied by the value of the cosine similarity value of the
cosine function.

Note that the gradients of GML-Cont and GML-MS can
be analyzed in the same way as GML-Tri and GML-PA,
respectively.

D. GRADIENT OF φs
In general, φs created through the sampling process cannot
perform the backpropagation process. To solve this problem,
we build an end-to-end algorithm by referring to the re-
parameterization trick of [56].

E. GRADIENT ON THE STIEFEL MANIFOLD
Let a point W be a trainable parameter. The process of
updating W on the Stiefel manifold St consists of 4 steps as
follows: First, find the derivative of the objective function
∇L∗ (Wt) of W at iteration t . Second, map ∇L∗ (Wt) to
∇StL∗ (Wt) on TWtSt using the lifting map. Third, through
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FIGURE 16. DC confusion matrices on In-shop query split. The intra-class configuration is the same as Fig. 9.

the specifically determined momentum Mt and ∇StL∗ (Wt)

at iteration t , calculate the momentumMt+1 for the next step.
Finally, update Wt to Wt+1 on the Stiefel manifold along the
direction ofMt+1. Formore details, please refer [57] and [58].

APPENDIX II
(GENERALIZATION BOUNDS OF GML)
In this section, background knowledge for generalization
bound analysis and proof of Theorem II.2 are examined.

F. BACKGROUND
Definition II.1 (Covering Number [25]): For a metric space
(Z, ρ) and V ⊂ Z , we say that V̂ ⊂ V is a γ -cover of V
if ∀t ∈ V , ∃t̂ ∈ V̂ such that ρ

(
t, t̂
)
≤ γ . The γ -covering

number of V is defined by

N (γ,V, ρ) = min
{⌈

V̂
⌉
:V̂isaγ − cover of V

}
(II.1)

In particular, when V is compact, N (γ,V, ρ) is finite,
leading to a finite cover. Then, Z can be partitioned into
|Y|N (γ,V, ρ) subsets such that two vectors z and z∗ belong
to the same subset, i.e., y = y∗ and ρ (z, z∗) ≤ γ .
The robustness of the pairwise similarity metric through

subset samples placed on a compact space is defined as
follows.
Definition II.2 (Robustness of Metric Learning [59]): An

algorithm A is (N (·) , η (·))-robust for N (·) ∈ N and
η (·) : (Z × Z)N → R if Z can be partitioned into N (·)

disjoints sets, denoted by {Qi}
N (·)
i=1 , such that the following

holds for all Call ∈ ZN : ∀
(
za, zp, zn

)
∈ Call , ∀z, z′, z′′ ∈

Z,∀i, j, k ∈ [N (·)].
If za, z ∈ Qi, zp, z′ ∈ Qj, zn, z′′ ∈ Qk , then∣∣L (ACall , za, zp, zn

)
− L

(
ACall , z, z

′, z′′
)∣∣ ≤ η (Call)

(II.2)

where ACall is the hypothesis learned by A on Call .

N (·) and η (·) quantify the robustness of the algorithm
and depend on the training sample. A shown in [59],
Definition II.2 guarantees the following generalization
bound.
Theorem II.1 (Generalization Bound of Metric Learn-

ing [59]): If a learning algorithm A is (N (·) , η (·))-robust
and the training sample consists of the triplets Call , then for
any δ > 0, with probability at least 1− δ we have:

∣∣R (
ACall

)
−Remp

(
ACall

)∣∣ ≤ η (Call)+3U
√
N ln2+ ln 1

δ

0.5N
(II.3)

where R and Remp are expected and empirical losses based
on
(
z, z′, z′′

)
and

(
za, zp, zn

)
, respectively.U is a pre-defined

constant.
It is noteworthy that the generalization bound of A can be

analyzedmore clearlywithTheorem II.2 thanTheorem II.1.
Theorem II.2 shows that the loss of triplet tuples located
close to each other in the partitions split by the covering
number has a certain range.
Theorem II.2: Fix γ > 0 and a metric ρ of Z , suppose

that ∀za, zp, zn, z, z′, z′′:
(
za, zp, zn

)
∈ Call , ρ (za, z) ≤ γ ,

ρ
(
zp, z′

)
≤ γ , ρ

(
zn, z′′

)
≤ γ . If A satisfies∣∣L (ACall , za, zp, zn

)
− L

(
ACall , z, z

′, z′′
)∣∣ ≤ η (Call)

(II.4)

and N (γ,Z, ρ) < ∞. Then the algorithm A is
(|Y|N (γ,Z, ρ) , η (Call))-robust.

G. GENERALIZATION BOUND FOR GML-TRI
We focus on GML-Tri in Eq. (I.3) and derive a generalization
bound by showing that GML-Tri satisfies Theorem II.2.
First, assume ‖z‖2 ≤ R. Using Definition II.1, we can parti-
tionZ into |Y|N (γ,V, ρ) subsets such that if two examples
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FIGURE 17. Grid-wise T-SNE visualization of the embedding space on the test split of CUB-200-2011 dataset.

z and z′ belong to the same subset, then y = y′ and ρ
(
z, z′

)
≤

γ . For ∀za, zp, zn, z, z′, z′′ ∈ Z and ya, yp, yn, y, y′, y′′ ∈ Y ,
if ya = y, ‖za − z‖2 ≤ γ , yp = y′,

∥∥zp − z′
∥∥
2 ≤ γ ,

yn = y′′,
∥∥zn − z′′

∥∥
2 ≤ γ , then

(
za, zp, zn

)
and

(
z, z′, z′′

)
are

either both admissible or both non-admissible triplets. We do
not consider the non-admissible case as the respective loss
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FIGURE 18. Grid-wise T-SNE visualization of the embedding space on the test split of Cars196 dataset.

has 0. Thus, we only consider the case of admissible triplets
as follow:

L
(
za, zp, zn

)
− L

(
z, z′, z′′

)
=

[
D2 (za, zp)φs − β1]

+

+

[
β1 − D2 (za, zn) φs

]
+

−

[
D2 (z, z′)φ′s − β1]

+

−

[
β1 − D2 (z, z′′)φ′s]

+

(II.5)

VOLUME 10, 2022 7453



D. H. Kim, B. C. Song: Probabilistic Principal Geodesic Deep Metric Learning

FIGURE 19. Grid-wise T-SNE visualization of the embedding space on the test split of SOP dataset.

Since hinge loss is a function with a 1-Lipschitz bound,
we can rewrite Eq. (II.5) as follows:

L
(
za, zp, zn

)
− L

(
z, z′, z′′

)
≤ |
√
φs
(
za − zp

)T (za − zp
)√
φs

−
√
φs (za − zn)T (za − zn)

√
φs

+
√
φ
′

s

(
z− z′′

)T (z− z′′
)√
φ
′

s

−
√
φ
′

s

(
z− z′

)T (z− z′
)√
φ
′

s| (II.6)
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FIGURE 20. Grid-wise T-SNE visualization of the embedding space on the query split of In-shop dataset.

In Eq. (II.6), additional termsmay be introduced to bind terms
having similar properties to each other.

(II.6) ≤ |
√
φs
(
za − zp

)T (za − zp
)√
φs

−
√
φs
(
za − zp

)T (z− z′
)√
φ
′

s

+
√
φs
(
za − zp

)T (z− z′
)√
φ
′

s

−
√
φ
′

s

(
z− z′

)T (z− z′
)√
φ
′

s
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+
√
φ
′

s

(
z− z′′

)T (z− z′′
)√
φ
′

s

−
√
φ
′

s

(
z− z′′

)T
(za − zn)

√
φs

+
√
φ
′

s

(
z− z′′

)T
(za − zn)

√
φs
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√
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Eq. (II.8) is expressed by Holder’s inequality as follows:

(II.8) ≤
∥∥∥√φs (za − zp

)∥∥∥
2
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)∥∥∥

2
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)√
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2

+
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2
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2
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√
φs|
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2

+

∥∥∥√φszn −√φ′sz′′∥∥∥2 ∥∥∥(za − zn)
√
φs

∥∥∥
2

≤
∥∥z̃a − z̃p∥∥2 ‖z̃a − z̃‖2 + ∥∥z̃a − z̃p∥∥2 ∥∥z̃′ − z̃p∥∥2
+‖z̃a − z̃‖2

∥∥z̃− z̃′∥∥2 + ∥∥z̃′ − z̃p∥∥2 ∥∥z̃− z̃′∥∥2
+
∥∥z̃− z̃′′∥∥2 ‖z̃− z̃a‖2 + ∥∥z̃− z̃′′∥∥2 ∥∥z̃n − z̃′′∥∥2
+‖z̃− z̃a‖2 ‖z̃a − z̃n‖2 +

∥∥z̃n − z̃′′∥∥2 ‖z̃a − z̃n‖2
(II.9)

where the product of each element of triplets
(
za, zp, zn

)
and
√
φs is redefined as z̃a, z̃p, z̃n, and the product of each

element of triplets
(
z, z′, z′′

)
and
√
φ
′

s is redefined as z̃, z̃
′, z̃′′,

respectively.

Since φs and φ′s obtained through the bounded eigen spec-
trum have specific bounds, z̃ also have a certain bound, i.e.,
‖z̃a − z̃‖2 ≤ γ̃ ,

∥∥z̃p − z̃′∥∥2 ≤ γ̃ ,
∥∥z̃n − z̃′′∥∥2 ≤ γ̃ , and

‖z̃‖2 ≤ R̃. The covering number Ñ (·) is also changed accord-
ingly. Finally, we can conclude the generalization bound of
GML-Tri is given by

(II.9) ≤ 2γ̃ R̃× 8 = 16γ̃ R̃ (II.10)

We can say that GML-Tri is
(
|Y | Ñ (γ̃ ,Z , ‖·‖2) , 16γ̃ R̃

)
-

robust, which means η (Call) in Eq. (II.4) is equal to
16γ̃ R̃. �

H. GENERALIZATION BOUND FOR GML-PA
In this section, we guarantee the generalization bound of
GML-PA by using Theorem II.2. Let ρ and ρ′ denote the
cosine similarity corresponding to the part of empirical and
expected loss, respectively. Then, we can show the general-
ization bound of GML-PA is given by∣∣log (1+ ρ)− log

(
1+ ρ′

)∣∣ ≤ η (Call) (II.11)

Here, since the positive and negative terms are derived identi-
cally, it can be assumed that Eq. (II.11) has the same meaning
as Theorem II.2.

By the way, the cosine similarity metric ρ having a finite
range in the compact space satisfies the Taylor expansion as
follows:

log (1+ ρ) =
∞∑
i=1

(−1)i+1
ρi

i
≤ (−1)1+1

ρ1

1
= ρ (II.12)

According to Eq. (II.12), the relationship between GML-PA
with softplus function structure and GML-Tri with hinge
function structure can be expressed by∣∣log (1+ ρ)− log

(
1+ ρ′

)∣∣ ≤ ∣∣ρ − ρ′∣∣ ≤ η (Call) (II.13)

If the generalization bounds of GML-PA and GML-Tri are
defined as ηL and ηE , respectively, this can be re-written by
ηL ≤ ηE ≤ η (Call) = 16γ̃ R̃.

Therefore, it can be inferred that GML-PA also has a
finite generalization bound, which is a more compact bound
than ηE . �

I. GENERALIZATION BOUNDS FOR
GML-CONT AND GML-MS
GML-Cont/MS has the same structure as GML-Tri/PA, but
only the composition of the constant term has changed.
Therefore, the generalization bounds of GML-Cont and
GML-MS can be equally derived from Eqs. (II.4) and (II.13).

APPENDIX III
(HYPER-PARAMETER SETTING)
J. GML-PA/MS
Embedding network is trained for 80 epochs with the initial
learning rate of 10−4 on the CUB200-2011 and Cars196, and
for 120 epochs with the initial learning rate of 6×10−4 on the
SOP and In-shop. Decay factor of optimizer is set to 10−4.

7456 VOLUME 10, 2022



D. H. Kim, B. C. Song: Probabilistic Principal Geodesic Deep Metric Learning

Step-wise learning rate reducer (StepLR) with the step size
of 10 and the ratio of 0.5 is used for convergence stability
on the CUB200-2011 and Cars196, and the step size of 20 and
the ratio of 0.25 on the SOP and In-shop. In case of GML-PA,
the learning rate for proxies is scaled up 200 times for faster
convergence. Random sampling is used to configure mini-
batch during training phase. Default minibatch size is 180.

K. GML-TRI/CONT
Embedding network is trained for 100 epochs with the initial
learning rate of 10−5 on the CUB200-2011 and Cars196, and
for 100 epochs with the initial learning rate of 4×10−5 on the
SOP and In-shop. Decay factor of optimizer is set to 4×10−4.
StepLR with the step size of 25 and the ratio of 0.3 is used
for convergence stability on the four DML public datasets.
Distance-based sampling [46] is used to configure minibatch
during training phase. Default minibatch size is 112.

L. GML-DiVA
Embedding network is trained for 150 epochs with the initial
learning rate of 10−5 on the four DML public datasets. The
configuration of StepLR is the same as GML-Tri. Distance-
based sampling [46] is used to configure minibatch during
training phase. Default minibatch size is 112. Other detailed
coefficients are set by referring to [31].

APPENDIX IV
(ADDITIONAL QUALITATIVE RESULTS)
In this section, qualitative results in terms of confusionmatrix
based on the distance correlation (DC) index is additionally
examined.

We qualitatively compare the results in Figs. 9-16 obtained
through the CUB200-2011 [42], Cars196 [26], and Stanford
Online Products (SOP) [32] datasets. The main comparison
method is Proxy-Anchor (PA) [23]. The overall DC value
between inter-class images is lower in GML-PA than in PA.
This is because the inter-class variability property has been
further considered in GML-PA. For example, in Fig. 13, the
DC value between I1 and I5 images of PA is 0.7, which is
higher than that between all intra-class images.

Figures 17, 18, 19, and 20 show the embedding spaces
using grid-wise T-SNE visualization tool [60]. We can see
the images which contain similar attributes locate close to
each other, vice versa. Compared to the visualization results
of [23], our 2D embedding plot shows discriminative location
of images.

APPENDIX V
(ABLATION STUDY)
Table 5 shows the performance for the in-shop clothes dataset.
As in the SOP dataset, GML-PA shows an excellent R@1
performance improvement of 1.2% for the embedding vector
size of 512. Since the performance has already reached the
upper limit, it is difficult to expect further improvement.
On the other hand, GML-Cont and GML-Tri, which have

TABLE 5. Experimental results on in-shop clothes dataset. The
experiment setup is the same as in table 2 in main body.

TABLE 6. Performance according to minibatch size.

a weaker saturation in performance, show noticeable R@1
improvements of 7% and 8.8%, respectively.

Next, 6 shows the performance according to the minibatch
size. Since the similarity metric is calculated using piecewise
components in a minibatch, smaller minibatch size tends to
show lower performance. However, GML-PA consistently
shows higher performance than PA even in a relatively small
minibatch size. This demonstrates that GML-PA is less sen-
sitive to the minibatch size, which is important for extracting
local information.
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