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ABSTRACT Due to low runtime overhead and simple implementation of DM (Deadline Monotonic)
scheduling, it is widely used in real-time systems. Aiming at the schedulability test problem of the sporadic
task DM scheduling under uniprocessor, a density upper bound of 0.693 is analyzed, which can determine the
schedulability of a task set in linear time. The theoretical analysis process is carried out in three steps. Firstly,
the case is considered where the task set contains only two tasks and the deadline ratio between the tasks is
less than 2. Secondly, the case is considered where the task set contains multiple tasks and the deadline ratio
between any two tasks is still less than 2. Finally, the case is considered where the task set contains multiple
tasks and the deadline ratio between tasks is an arbitrary value. The experimental results show that the upper
bound of density is higher than related methods and the run time overhead is much lower than that of other
available exact schedulability tests. The time complexity is O(1) when a task is dynamically added to a task
set, while that of other methods increases rapidly along with the number of tasks. In addition, we combined
this upper bound and other tests to further propose an exact schedulability test, which effectively reduces
the running time overhead by 30.8% compared with the state-of-the-art schedulability test. Due to the high
efficiency of our schedulability test, an online schedulability test can be implemented in open real-time
systems.

INDEX TERMS Deadline monotonic, open real-time system, sporadic task, schedulability test, task density.

I. INTRODUCTION
Real-time systems [1] are widely used in safety-critical appli-
cations such as aerospace [2], automobiles [3], industrial
control, robotics, communications, and medical electronics.
It plays an important role in a system with strict timing
requirements, fast response, and stability. The correctness
of event processing results depends not only on the process
but also on the time when the processing is completed. In a
hard real-time system, if the system cannot meet the deadline
requirements for event processing, the output results will
become meaningless and even cause serious consequences.

Safety-critical unmanned systems such as spacecraft are
typical real-time systems with limited computing resources.
On the one hand, the system often contains a large number of
data acquisition, calculation, control output and other strong
real-time tasks, which need to meet the deadline requirements
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and ensure their real-time performance. On the other hand,
to run stably in the complicated environment, the processor
performance is relatively low and computing resources are
limited. For example, computers in satellites may have strong
cosmic radiation, which may lead to a SEU(Single Event
Upset) phenomenon. We need to reduce the main frequency
of the processor, and the memory chip is designed to be
reinforced, so it is difficult to achieve high-performance
computing.

In order to ensure the real-time performance of a system,
task scheduling is the most critical technology. The indus-
try currently generally adopts an off-line scheduling strat-
egy, that is, using linear programming [4] or response time
analysis [5] and other means to plan out the task execution
sequence and form a fixed execution schedule. Tasks are
started at a fixed time point, with a fixed period, and exe-
cuted sequentially. Representative examples include table-
based fixed-point scheduling strategy [6], 653 scheduling
framework [2] and so on. With the expansion of spacecraft
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functions, in face of changing the external environment and
internal state without changing hardware resources, the sys-
tem functions should be able to expand dynamically. Such
as changes in user requirements or resistance to discovered
security threats, we may reconstruct the system by software
online updating [7]. At this time, the system is transformed
into an open system and tasks may be dynamically added to
it. However, the off-line scheduling technology is no longer
applicable, and online scheduling methods are needed.

The DM(Deadline Monotonic) scheduling is proven to be
the optimal fixed-priority scheduling algorithm for real-time
tasks that share a critical instant [8]. The closer the task
deadline, the higher the assigned priority, and vice versa. Due
to its low runtime overhead and simple implementation, it is
widely used in real-time systems [9], for example, aerospace
and other strong real-time high safety-critical systems [10].
The dynamic addition of new tasks may cause time slice
preemption and resource sharing to the original tasks in the
system, which may cause tasks to miss the deadline and
cause serious consequences. In order to ensure the safety and
real-time performance of the spacecraft system with limited
computing resources, schedulability tests with low running
time overhead are required.

Therefore, our motivation can be divided into the following
two aspects.

On the one hand, it comes from actual engineering needs.
We need to perform online schedulability tests of task sets
in resource-constrained computer systems such as spacecraft
computers. However, existing schedulability tests are not
applicable because of the high running time overhead.

On the other hand, for sporadic task DM scheduling, there
are no research results on density upper bound analysis. If we
can find a density upper bound, the schedulability of a task
set can be obtained in linear time, which will greatly improve
the analysis speed and make the system have better real-time
performance. When the system dynamically adds a task, the
time complexity is only O(1), which enables the spacecraft
system to perform an online schedulability analysis.

Therefore, we need to find a schedulability test with
low running time overhead to implement online schedula-
bility analysis for resource-constrained embedded real-time
systems.

The main contributions and innovations of the research are
summarized as follows:

1) We analyze that a density upper bound for the sporadic
task is 0.693, which can determine the schedulability
of a task set in linear time.

2) We combined this upper bound and other tests to further
propose an exact schedulability test, which effectively
reduces the running time overhead by 30.8% compared
with the state-of-the-art schedulability test.

The first chapter of this article introduces the background,
the second chapter introduces related work, the third chapter
describes the mathematical model of the task, the fourth
chapter carries on the theoretical analysis and proof of
the upper bound of density, and the fifth chapter is the

experiment and result analysis. The running time overhead
and the schedulable ratio of this algorithm are compared with
the other available schedulability tests. The last chapter is the
conclusion of our work.

II. RELATED WORK
The time complexity of schedulability determination for a
real-time task set is a classic theoretical problem, and it
is listed as one of the five open topics in the real-time
scheduling field [11]. In the real-time scheduling field,
fixed priority and dynamic priority scheduling are widely
studied.

As we know, the EDF(Earlier Deadline First) schedul-
ing is the optimal dynamic priority scheduling method in
a single-processor preemptive system. The closer the job
deadline, the higher the assigned priority, and vice versa. For
periodic tasks [12], the necessary and sufficient condition for
the schedulability test of EDF scheduling is that the task set
utilization rate is less than or equal to 1. However, for sporadic
tasks [13], the time complexity of EDF scheduling proves to
be an NP-hard problem.

In a fixed-priority scheduling system, each sporadic task
is assigned a different priority, and all jobs of the task
inherit this priority. Due to the advantages of low run-
time overhead and simple implementation, fixed-priority
scheduling is widely used in real-time operating systems,
such as Ucos [14], FreeRTOS [15] and VxWorks [16].
Ekberg et al. reduced the fixed-priority scheduling problem to
the dynamic priority EDF scheduling problem through poly-
nomial time and proved that the schedulability determination
of the fixed-priority preemptive scheduling for sporadic tasks
is also an NP-hard problem [17].

Liu and Layland proposed the RMS (Rate-Monotonic
Scheduling) algorithm for periodic tasks [12], which belongs
to the fixed-priority preemptive scheduling. According to the
period of the task (representing task request rate) to assign
task priority, it is the optimal scheduling algorithm in fixed
priority scheduling. A sufficient schedulability test of the
hard real-time task set is given and the time complexity is
only O(n), which lays the foundation for the development of
real-time scheduling theory. Later, Bini et al. [18] proposed
using the hyperbolic bound to determine the schedulability of
the task set scheduled by RMS. Leung Y T [8] first proposed
the DM scheduling, which was proven to be the optimal
fixed-priority scheduling algorithm for tasks that share a
critical instant. The shorter the task’s deadline, the higher
the task’s priority assigned. Audsley N C [19] investigated
schedulability for mixtures of periodic and aperiodic tasks,
proposing a sufficient schedulability test for DM scheduling.
For the aperiodic task, Abdelzaber et al. gave a density upper
bound of a task set which is 0.59 [20], which can be used
for online schedulability tests in an open real-time operating
system. In fact, the sporadic taskmodel can be considered as a
special case of the aperiodic task model, so this density upper
bound can still be used as a schedulability test for sporadic
task.
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Regarding the schedulability determination of fixed-priority
preemptive scheduling for task sets assigned with arbi-
trary priority, Bonifaci V et al. [21] discussed the special
case of task systems with a harmonic period, and gave an
exact schedulability test with polynomial time complexity.
Chen et al. [22] proposed to determine the schedulability of
the tasks by verifying the hyperbolic formula. The time com-
plexity is only O(n2), but this is only a sufficient condition
for the schedulability test. In addition, it does not support the
schedulability test with release jitter, blocking time, etc.

All the above methods cannot exactly determine the
schedulability of a task set. Another more general method is
based on the RTA (Response Time Analysis) [5] [23], which
can exactly determine the schedulability of the task set, and it
is a sufficient and necessary condition for schedulability test.
The RTA is given by Joseph, Pandya and Audsley, which has
been widely studied in academia and applied in the industry.
The RTA uses a fixed-point idea that combines the processor
demands of all high-priority tasks. The iterative calculation
starts from an initial value until the response time of the
task no longer changes, so as to obtain the final response
time of the task. By comparing the relationship between the
response time and the deadline of the task, it can determine
whether the task is schedulable. If the response time is greater
than the deadline, the task cannot be scheduled, otherwise,
it can be scheduled. This method has high time complexity.
When time parameters are rational numbers, it is an NP-hard
problem [24].When time parameters are natural numbers, the
time complexity is O

(
n2∗Dmax

)
, where n is the number of

tasks, and Dmax is the maximum deadline of the task set [25].
Further extensions of the RTA are researches including block-
ing [26] [27], release jitter [28], arbitrary deadline [29] [30],
etc. In addition, the LP(linear programming) [4] can also be
used to solve the problem of schedulability determination,
which will set the objective optimization function according
to the scheduling goal, such as the minimum task switch-
ing overhead, etc., and then set the corresponding constraint
conditions according to various timing requirements. The
execution schedule of each task is obtained according to the
solution of each variable. Due to the large amounts of calcu-
lation and high time complexity of this method, a dedicated
computing server is often used to solve the problem, and it is
only suitable for offline scheduling systems.

In order to improve the efficiency of schedulability test,
more researches later were to improve the test speed by find-
ing a better initial value used in RTA. Lehoczky J et al. [31]
proposed that RTA only needs to check the multiple integer
time points, which can exactly determine the schedulability of
the task set scheduled by the RMS. Hansson H et al. [32] [33]
analyzed the lower bound of the response time and proposed
an initial value

R0i = RLBi = (Ci + Bi +
∑

j<i
JjUj)/(1−

∑
j<i

Uj).

However, due to the existence of the sum term in this
initial value, the test efficiency is not high. Since then,
based on [34], Davis et al. [35] extended the initial value

Di/2 to include release jitter Ji and blocking time Bi, and
obtained an improved initial value for exact schedulability
test R0i = (Di − Ji + Ci + Bi) /2, and proved that it is the
optimal initial value for RTA. The recent studies mainly
focus on the schedulability analysis of other task models.
They are self-suspended task model [36], restricted pre-
emptive scheduling [37], DAG(Direct Acyclic Graph) task
model [38],multi-core scheduling [39] and so on.

Although the schedulability test theory has been developed
for many years and has made great progress, the above meth-
ods still have two problems. On the one hand, available linear
time analysis algorithms lead to inefficient use of the proces-
sor. On the other hand, the exact schedulability test methods
still have a high running time overhead, which results in a
limited range of practical applications.

III. TASK MODEL
We consider the schedulability test of sporadic tasks DM
scheduling under uniprocessor. The classic triplet model is
shown in Fig. 1, τi = (Ti,Ci,Di).Ci represents theworst-case
execution time of the task τi. Di represents the relative
deadline of τi. One arrival of a task is called an instance
(also called job) and the instance arrives at any time, but there
is a minimum arrival time interval Ti between two instances.
In the worst-case, it can be regarded as the period of τi. τ

j
i

represents the jth instance of τi. τ
j+1
i represents the (j+ 1)th

instance of τi. The difference between the arrival time of τ ji
and the arrival time of τ j+1i is greater than or equal to Ti,
where j ∈ N . According to the relationship between Di and
Ti, if Di = Ti, then τi is called an Implicit Deadline task.
If Di ≤ Ti, then τi is called a Constrained Deadline task.
If Di and Ti are not related then τi is called an Arbitrary
Deadline task. The set of real-time tasks is denoted as SH =
{τ1, τ2, . . . , τn}, where n represents the task number of SH .
If we compare the aperiodic taskmodel [20] with the sporadic
task model, the former has a worse worst-case scenario due
to the fact that each job of a task has no arrival moment,
execution time and deadline constraints. In fact, the sporadic
taskmodel can be considered as a special case of the aperiodic
task model.
πi represents the priority of τi. The larger the πi, the higher

the priority of τi. The task’s index is arranged in order of
priority from high to low, and πj > πi if and only if j < i.

The response time Ri of τi represents the difference
between the task’s finish time and arrival time. Let 1 denote
the sum of the processor demand of all high-priority tasks {τj}
in the interval [0,Ri], j < i, so Ri = Ci +1.
τi is called schedulable, which means that each instance of

τi can finish before the deadline, that is Ri ≤ Di.
The real-time task set SH is called schedulable, which

means that all tasks in SH are schedulable, that is, ∀τi ∈
SH , τi is schedulable.
The schedulability analysis refers to obtaining information

such as the response time and schedulability of the task
through mathematical derivation.
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FIGURE 1. Sporadic task model.

The schedulability test refers to the process of using the
schedulability analysis method to determine whether the task
is schedulable. It is also called schedulability determination.

The sufficient schedulability test means that if a task is
determined to be schedulable, the task must be schedulable,
but if it is determined to be unschedulable, the task is not
necessarily unschedulable.

The exact schedulability test means that if a task is deter-
mined to be schedulable, the task must be schedulable, oth-
erwise, the task must not be schedulable. It is also commonly
referred to as a sufficient and necessary condition for schedu-
lability determination.

The utilization of τi is expressed as ui = Ci/Ti, and the
utilization of SH is expressed as U =

∑
ui, τi ∈ SH .

The density of τi is expressed as dti = Ci/Di, and the
density of SH is expressed as DT =

∑
dti, τi ∈ SH .

The density upper bound analysis method means that the
schedulability of a task set is determined by using the sum
of the density of all tasks. They do not need to determine the
schedulability of each task to get the schedulability of the task
set. Therefore, such methods usually have very low run time
overhead.

We consider the Constrained Deadline tasks, τi =
(Ti,Ci,Di), which satisfies 0 < Ci ≤ Di ≤ Ti,Ti,Ci,
Di ∈ R. Tasks are independent of each other, with no shared
resource access.

IV. DENSITY UPPER BOUND ANALYSIS
Real-time task set SH = {(T1,C1,D1), (T2,C2,D2), . . . ,
(Tn,Cn,Dn)},D1 ≤ D2 ≤ . . . ≤ Dn, π1 > π2 > . . . >

πn. The density upper bound of the task set is analyzed in
three steps. First, the case is considered where SH contains
only two tasks, and the deadline ratio is less than 2, that
is D2/D1 < 2. Second, the case is considered where SH
contains multiple tasks, but the deadline ratio of any two tasks
is less than 2, that is, Di/Dj < 2, τi, τj ∈ SH . Finally, the
case is considered where SH contains multiple tasks and the
deadline ratio between tasks is an arbitrary value. We use a
special-to-general proof approach. For each case, we analyze
the minimum density of the task set under the condition that
the processor is fully utilized. The minimum density may be
obtained by taking the derivative and is the upper bound of
the density in this case. Then we take the minimum value of
density upper bound in these three cases as the density upper
bound in any case of the task set. Our proof strategy is similar
to that of Liu and Layland [12]. As our goal is to find the
upper bound on the density, we have to find the worst-case
and obtain the minimum density by taking the derivative.

A. STEP 1
Real-time task set SH = {(T1,C1,D1),
(T2,C2,D2)},D1 ≤ D2,D2/D1 < 2, π1 > π2, analyze the
schedulability of SH .
Analysis. According to the relationship among D2,T1 and

C1, there are 3 cases:
Case 1. D1 ≤ D2 < T1. In order to obtain the minimum

density of SH when SH makes full use of the processor, let

C2 = D2 − C1 (1)

As shown in Fig. 2.

FIGURE 2. Case 1.

Combining equation (1), the density of SH is DT =∑
dti = C1/D1 + C2/D2 = C1/D1 + (D2 − C1)/D2.

Obviously, whenD1 is larger,DT will be smaller. Combining
the condition D1 ≤ D2 < T1, we can know when D1 = D2,
DT is the smallest, and there is

DTmin =
C1

D1
+
D2 − C1

D2
=
C1

D2
+
D2 − C1

D2
= 1 (2)

Case 2. T1 ≤ D2 < T1 + C1. In order to obtain the
minimum density of SH when τ1 and τ2 makes full use of
the processor, let

C2 = T1 − C1 (3)

As shown in Fig. 3.
Combining equation (3), the density of SH is DT =∑
dti = C1/D1 + C2/D2 = C1/D1 + (T1 − C1)/D2.

Obviously, when D1 and D2 is larger, DT will be smaller.
Combining the conditions D1 ≤ T1 and T1 ≤ D2 < T1+C1,
there is

D1 = T1 , D2 = T1 + C1 (4)

Therefore, DT is the smallest, that is

DTmin =
C1

D1
+
T1 − C1

D2
=
C1

T1
+
T1 − C1

T1 + C1
(5)

Case 3. T1 + C1 ≤ D2 < 2D1. In order to obtain the
minimum density of SH when τ1 and τ2 make full use of the
processor, let

C2 = D2 − 2C1 (6)
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FIGURE 3. Case 2.

FIGURE 4. Case 3.

As shown in Fig. 4.
Combining equation (6), the density of SH is

DT =
∑
dti = C1/D1 + C2/D2 = C1/D1 + (D2 −

2C1)/D2 = C1/D1 + 1− 2C1/D2.
Obviously, whenD1 is larger andD2 is smaller,DT will be

smaller. Combining the conditions D1 ≤ T1 and T1 + C1 ≤

D2 < 2D1, there is

D1 = T1,D2 = T1 + C1 (7)

Therefore, DT is the smallest, that is DTmin = C1/D1 +

1−2C1/D2 = C1/D1+1−2C1/(T1+C1) = C1/T1+ (T1−
C1)/(T1 + C1).
Same as equation (5), we can combine Case 1,2 and 3 to

derive

DTmin = min
{
C1

T1
+
T1 − C1

T1 + C1
, 1
}

(8)

As C1 ≤ T1, there is C1/T1 + (T1 − C1)/(T1 + C1) =
1+C1(C1−T1)/[T1(T1+C1)] ≤ 1. Combining equation (8),
we can get

DTmin =
C1

T1
+
T1 − C1

T1 + C1
(9)

∂DTmin/∂C1 = 1/T1 − 2T1/ (T1 + C1)
2
= 0, the solu-

tion is

C1 = T1
(√

2− 1
)

(10)

Substituting equation (10) into equation (9), there is

DTmin =
T1
(√

2− 1
)

T1
+

T1 − T1
(√

2− 1
)

T1 + T1
(√

2− 1
)

= 2
(√

2− 1
)

(11)

Therefore, for the real-time task set SH = {(T1,C1,D1),
(T2,C2,D2)},D1 ≤ D2,D2/D1 < 2, π1 > π2, if DT =∑
dti = C1/D1 + C2/D2 ≤ 2

(√
2− 1

)
, then SH can be

scheduled.
Example 1: Real-time task set SH = {(T1,C1,D1),

(T2,C2,D2)},D1 ≤ D2,D2/D1 < 2, π1 > π2, from
the analysis in the first step, we can know that if C1 =

T1
(√

2− 1
)
,D1 = T1,D2 = T1 + C1 =

√
2T1, then τ1

and τ2 will make full use of the processor and the density
of SH takes the minimum value DT = C1/D1 + C2/D2 =

2
(√

2− 1
)
, as shown in Fig. 5.

B. STEP 2
Real-time task set SH = {(T1,C1,D1),
(T2,C2,D2), . . . , (Tn,Cn,Dn)},D1 ≤ D2 ≤ . . . ≤

Dn,Di/Dj < 2, where j < i, πj > πi, τi, τj ∈ SH , analyze
the schedulability of SH .
Analysis. In the interval [0, t], the preemption time caused

by τj to low-priority tasks is Pj (t),

Pj (t) =
t
Tj
Cj +1j

(
t,Cj,Tj

)
(12)

From the fixed-priority preemptive scheduling, we can
know that 1j

(
t,Cj,Tj

)
is a certain function. For t and Cj,

it is a non-decreasing function, that is 1j
(
t ′,Cj′,Tj

)
≥

1j
(
t,Cj,Tj

)
, t ′ > t,Cj′ > Cj. For Tj, it is a non-increasing

function, that is 1j
(
t,Cj,Tj′

)
≥ 1j

(
t,Cj,Tj

)
,Tj′ > Tj.

Combining equation (1), under the condition ofmaking full
use of the processor, it must satisfy

Dn =
n∑
j=1

Pj (Dn) =
n∑
j=1

{
Dn
Tj
Cj +1j

(
Dn,Cj,Tj

)}
(13)

Obviously, from equation (13), Dn is a constant. We can
treat Ck as a function with Tk as its argument. if Tk decreases,
Ck will not increase, where 1 ≤ k ≤ n, that is

Ck
(
T ′k
)
≤ Ck (Tk) , Tk ′ < Tk (14)

The density of SH is DT =
∑n

k=1 dk = Ck/Dk . Obvi-
ously, when Ck is smaller, DT will be smaller. Combining
equation (14), we can know that ∀τk ∈ SH ,Tk = Dk , DT
takes the minimum value. ∀τk ∈ SH , τk = (Dk ,Ck ,Dk)
is the Implicit Deadline task model and it can be regarded
as a classic periodic task model. Therefore, we only need to
consider the case where Tk is equal to Dk .
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FIGURE 5. The minimum density of two tasks.

According to the enlightenment of the analysis in the first
step, C1,C2 . . .Cn can be adjusted to make full use of the
processor and make the density of SH be the minimum value.
It can be described as follows.

If C1 = D2 − D1,C2 = D3 − D2, . . . ,Cn−1 = Dn −
Dn−1,Cn = Dn − 2 (C1 + C1 + . . .Cn−1), then DT =∑
τi∈SH dti can be minimized.
Analysis. Assuming that C1 = D2 −D1 is not true, one of

the following two cases must be true.
Case 1: If C1 = D2 − D1 + 1 ,1 > 0 holds, in order to

fully utilize the processor, there is C2 = D3−D2−1,C3 =

C3, . . . ,Cn = Cn.
Assuming C1

′
= D2 − D1,C2

′
= D3 − D2,C3

′
=

C3, . . . ,Cn′ = Cn, there is DT − DT ′ = C1/D1 + C2/D2 −

(C1 −1)/D1 − (C2 +1)/D2 = 1(1/D1 − 1/D2).
According to the condition D1 ≤ D2, DT − DT ′ ≥ 0,

we can get that when C1 = D2 − D1, DT =
∑
τi∈SH dti will

take the minimum value.
Case 2: If C1 = D2 − D1 − 1 ,1 > 0 holds, in order to

fully utilize the processor, there is C2 = D3−D2+21,C3 =

C3, . . . ,Cn = Cn.
Assuming C1

′
= D2 − D1,C2

′
= D3 − D2,C3

′
=

C3, . . . ,Cn′ = Cn, there is DT − DT ′ = C1/D1 + C2/D2 −

(C1 +1)/D1 − (C2 − 21)/D2 = 1(2/D2 − 1/D1).
According to the condition D1 ≤ 2D2, so DT − DT ′ ≥ 0,

we can get that when C1 = D2 − D1, DT =
∑
τi∈SH dti will

take the minimum value.
It can be derived in the same way that

C1=D2−D1 ,C2=D3 − D2, . . . ,

Cn−1=Dn − Dn−1, Cn=Dn − 2 (C1+C1 + · · · + Cn−1)

(15)

will make full use of the processor and DT =
∑
τi∈SH dti

beminimized. Therefore, there isDTmin = C1/D1+C2/D2+

. . .+Cn−1/Dn−1+[Dn−2 (C1 + C2 + . . .Cn−1)]/Dn. Com-
bining equation (15), there is

DTmin =
D2

D1
+
D3

D2
+ · · · +

Dn
Dn−1

+
2D1

Dn
− n (16)

In order to find the minimum value of DTmin, we calculate
the partial derivative of each variable.

∂DTmin
∂D1

=
−D2

D1
2 +

2
Dn
= 0 ⇒ 2D1

2
= D2Dn (17)

∂DTmin
∂D2

=
1
D1
+
−D3

D2
2 = 0⇒ D2

2
= D1D3 (18)

∂DTmin
∂D3

=
1
D2
+
−D4

D3
2 = 0⇒ D32

2
= D2D4 (19)

∂DTmin
∂Dn−1

=
1

Dn−2
+
−Dn
Dn−22

= 0⇒ Dn−12 = Dn−2Dn

(20)
∂DTmin
∂Dn

=
1

Dn−1
+
−2D1

Dn2
= 0⇒ Dn2 = 2D1Dn−1

(21)

FromEquation (17) to (20), we can see thatD1,D2, . . . ,Dn
are geometric series. Combining equation (21). The common
ratio q is solved.

(D1qn−1)2 = 2D1D1qn−2 ⇒ q = n√2 (22)

Substituting equation (22) into equation (16), we can get
DTmin = (n− 1) q+ 2D1/[D1qn−1]−n = n

(
n
√
2− 1

)
.

Therefore, for the real-time task set SH = {(T1,C1,D1),
(T2,C2,D2), . . . , (Tn,Cn,Dn)},D1 ≤ D2 ≤ . . . ≤

Dn,Di/Dj < 2, j < i, πj > πi, τi, τj ∈ SH , if DT =
∑
dti =

C1/D1 +C2/D2 + . . .+Cn/Dn ≤ n
(

n
√
2− 1

)
, then SH can

be scheduled.

C. STEP 3
Real-time task set SH = {(T1,C1,D1), (T2,C2,D2), . . . ,
(Tn,Cn,Dn)},D1 ≤ D2 ≤ . . . ≤ Dn, where j < i, πj >
πi, τi, τj ∈ SH , analyze the schedulability of SH .
Analysis. If ∃τi,Dn/Di ≥ 2, there is

Dn =
Dn
Di
Di + p, p ≥ 0, m =

Dn
Di
≥ 2 (23)

Replacing τi with τi′, where

τi
′
=
(
Ti′,Ci′,Di′

)
,Ci′ = Ci,Di′ = mDi,Ti′ = Di′ (24)

In order to make full use of the processor, Cn needs to
increase (m− 1)Ci at most. Therefore, there is DT ′ = DT −
Ci/Di − Cn/Dn + C ′i/D

′
i + [Cn + (m− 1)Ci]/Dn.

Substituting equation (24), we can get DT ′ = DT +
(m− 1)Ci[(1/ (mDi + p)− 1/(mDi)].
Combining equation (23), we can see that DT ′−DT ≤ 0,

so DT ′ ≤ DT .
Therefore, the density of task set will be minimized if and

only if ∀τi, τj,Di/Dj < 2. The schedulability analysis result
is the same as Step 2.

Summarizing the above three steps, we can derive the
following theorem.
Theorem 1: The real-time task set SH = {(T1,C1,D1),

(T2,C2,D2), . . . , (Tn,Cn,Dn)}, D1 ≤ D2 ≤ . . . ≤ Dn,
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π1 > π2 > . . . > πn, if

DT =
∑

dti =
C1

D1
+
C2

D2
+ . . .+

Cn
Dn
≤ n

(
n√2− 1

)
Then SH can be scheduled.
When n → ∞,DT ≈ 0.693. Hence, the density upper

bound of the sporadic task DM scheduling is 0.693. This
result shows that the upper bound on the density of
the sporadic task and the upper bound on the utilization of
the periodicic task [12] are consistent.

Theorem 1 is a schedulability test for DM scheduling and
it is called DM improve(SH ).

Algorithm 1 Bool DM Improve(SH )
Input: Real-time task set SH
Output: The schedulability of SH
1: DT = 0;
2: for τi : SH do
3: DT = DT + Ci/Di;
4: end for
5: if DT > n

(
n
√
2− 1

)
then

6: return false;
7: else
8: return true;
9: end if

Example 2: Real-time task set SH = {(T1,C1,D1),
(T2,C2,D2), . . . , (Tn,Cn,Dn)}, D1 ≤ D2 ≤ · · · ≤

Dn, π1 > π2 > . . . πn, from equation (15) and (22), there
is

Di+1
Di
= q = n√2, Ti = Di,Ci = Di

(
n√2− 1

)
,

Cn = Dn − 2
∑n−1

i=1
Ci

The density upper bound of SH can take theminimumvalue
DTmin = n

(
n
√
2− 1

)
, as shown in Fig. 6.

V. EXPERIMENT AND RESULT ANALYSIS
In the schedulability test of the real-time task set, the per-
formance of the improved DM(called DM improve in the
experiment) proposed in this paper is compared with the
available schedulability tests.

As the sporadic task model can be considered as a special
case of the aperiodic task model, the density upper bound
in [20] can still be used as a schedulability test for sporadic
tasks and is referred to as the original DM in this paper.
Schedulability tests compared in this paper include the orig-
inal DM (called DM original in the experiment) [20], the
original RTA (called RTA original in the experiment) [5],
the improved RTA (called RTA improve in the experiment,
which is the state-of-the-art schedulability test) [35] and
Hyperbolic algorithm [22]. 9 sets of comparative experiments
will be conducted. Experiment 1-3 compare the schedulable
ratio r , and Experiment 4-8 compare the run time overhead t .
In addition, another exact schedulability test is proposed and

FIGURE 6. The minimum density of multiple tasks.

TABLE 1. Experimental system parameters.

is compared in Experiment 9. Computers are discrete systems
and the parameters Ti,Ci,Di of a task are randomly gener-
ated as integers, which are in accord with actual engineering
applications.

In order to meet the actual applications, we choose the
aerospace computer as the experimental platform. The China
space station computer is a typical embedded real-time sys-
tem. It uses the Chinese-produced 32-bit radiation-resistant
single-core processor BM3803 based on the SPARC archi-
tecture [40]. It runs the SpaceOS real-time operating system.
The SpaceOS is developed by the Beijing Institute of Control
Engineering, which has high reliability and has been widely
used in many major aerospace projects in China. The experi-
mental platform parameters are shown in TABLE 1.

A. REGARDING THE SCHEDULABLE RATIO, THE DEFAULT
EXPERIMENTAL PARAMETERS ARE AS FOLLOWS
• Number of task sets: Generate random task sets. The
task set density DT is in the range (0.1, 1], and the
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FIGURE 7. The schedulable ratio comparison when DT/U = 1.1.

ratio of task set density to utilization is DT/U . The
step size is 0.045, and 100 task sets are generated for
each step. Counting the proportion of the number of task
sets determined to be schedulable as the corresponding
schedulable ratio under the current density, so a total of
2000 task sets will be generated;

• The number of tasks: n = 20, the density dti of task is
generated by UUnifast algorithm [41];

• Task deadline Di: The deadline of the task is uniformly
distributed, and the range is [1, 20000];

• Worst-case execution time Ci: The density of each task
is multiplied by the deadline Di to obtain the worst-case
execution time Ci of the task. If Ci is less than 0, the task
deadline is regenerated until Ci is greater than 0;

Experiment 1: The ratio of task set density to utilization is
DT/U = 1.1, and other parameters are kept as default. The
task set density DT is different, and the comparison of the
schedulable ratio r is tested.
Experiment 2: The ratio of task set density to utilization is

DT/U = 1.2, and other parameters are kept as default. The
task set density DT is different, and the comparison of the
schedulable ratio r is tested.
Experiment 3: The ratio of task set density to utilization is

DT/U = 1.5, and other parameters are kept as default. The
task set density DT is different, and the comparison of the
schedulable ratio r is tested.

Experimental results: When the task set density is low, the
schedulable ratio of all schedulability tests is 1. When
the density is greater than 0.59, the schedulable ratio of
the original DM quickly drops to 0. When the density is
greater than 0.69, the schedulable ratio of the improved DM
quickly drops to 0. Therefore, under the same schedulable
ratio, the density upper bound of improved DM is 0.1 higher
than the original DM. As the ratio DT/U increases, the
starting point for changes in the schedulable ratio of original
RTA, improved RTA, and Hyperbolic increases, as shown
in Fig. 7, 8, and 9. We can see that the original RTA and
improved RTA have the highest schedulable ratio.

Result analysis: Original DM and improved DM are
density upper bound analysis methods. According to the

FIGURE 8. The schedulable ratio comparison when DT /U = 1.2.

FIGURE 9. The schedulable ratio comparison when DT /U = 1.5.

calculation formula, the density upper bound of original
DM is about 0.59, and that of improved DM is about 0.69.
The drop in schedulable ratio has nothing to do with the
ratio DT/U . The density upper bound proposed in [20] is
for the aperiodic task model, but it also applies to the spo-
radic task model we considered. The density upper bound
we derived is a bit higher than paper [20]. Thus, for the
sporadic task, the schedulable ratio of improvedDM is higher.
Hyperbolic is only a sufficient condition for the schedula-
bility determination. Original RTA and improved RTA are
based on response time analysis and they are exact schedu-
lability tests, so the schedulable ratio of original RTA and
improved RTA are higher than that of Hyperbolic. As the
ratioDT/U increases, the frequency of task requesting is rel-
atively reduced, and the amount of preemption to low-priority
tasks by high-priority tasks decreases, thereby increasing the
schedulable ratio.

B. REGARDING THE RUNNING TIME OVERHEAD, THE
DEFAULT EXPERIMENTAL PARAMETERS ARE AS FOLLOWS
• Number of task: A task is generated randomly and added
dynamically to the task set each time. Therefore, the task
number n of the task set gradually increases, and the
range is [1, 30]. In order to prevent the interference of
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extreme values when a task is randomly generated, the
experiment is repeated 20 times for each step, and the
average run time overhead of these 20 experiments is
taken as the result of the current step;

• The task set density DT : The task set density DT grad-
ually increases with the dynamic addition of tasks, and
the maximum is 0.5. Each task density dti is generated
by the UUnifast algorithm [41], and the ratio of the task
set density to the utilization is DT/U ;

• Task deadline Di: The deadline of the task is uniformly
distributed, and the range is [1, 20000];

• Worst-case execution time Ci: The density of each task
is multiplied by the deadline Di to obtain the worst-case
execution time Ci. If Ci is less than 0, the task deadline
is regenerated until Ci is greater than 0;

Experiment 4: The ratio of task set density to utilization
DT/U = 1.1, other parameters remain the default. The task
set dynamically adds a task. The task number n of the task
set is different, and the comparison of the average run time
overhead t is tested.
Experiment 5: The ratio of task set density to utilization

DT/U = 1.2, other parameters remain the default. The task
set dynamically adds a task. The task number n of the task
set is different, and the comparison of the average run time
overhead t is tested.
Experiment 6: The ratio of task set density to utilization

DT/U = 1.5, other parameters remain the default. The task
set dynamically adds a task. The task number n of the task
set is different, and the comparison of the average run time
overhead t is tested.
Experimental results: As the number of tasks increases,

the running time overhead of original DM and improved
DM remain unchanged, while the running time overhead
of original RTA, improved RTA and Hyperbolic increases
rapidly. As shown in Fig. 10, 11, and 12, as DT/U increases,
the running time overhead of original RTA, improved RTA
and Hyperbolic is relatively reduced. The running time of
improved DM and original DM is the same, only 0.005ms,
which is much lower than that of Hyperbolic, original RTA
and improved RTA.

Result analysis: Original DM and improved DM are den-
sity upper bound analysis methods, which can incremen-
tally accumulate current task density. Therefore, the running
time overhead has nothing to do with the number of tasks
and the ratio DT/U . The density upper bound of original
DM is a constant 1/(1 +

√
1/2), and the density upper

bound of improved DM is n( n
√
2− 1), which can be cal-

culated in advance through an array, so it has the same
constant running time overhead as original DM and further
improve the speed of schedulability test. The original RTA,
improved RTA and Hyperbolic will determine the schedula-
bility of the newly added task and all lower priority tasks.
When the task parameters are integers, the running time
overhead increases quadratically with the increase of the
number of tasks [25]. As the ratio of task set density to
utilization DT/U increases, the task set utilization decreases

FIGURE 10. The run time overhead comparison when DT /U = 1.1.

FIGURE 11. The run time overhead comparison when DT /U = 1.2.

FIGURE 12. The run time overhead comparison when DT /U = 1.5.

relatively. According to the upper bound of response time
[Ci+

∑
j<i Cj

(
1− Uj

)
]/(1−

∑
j<iUj), we can know that the

task response time is reduced [42]. Therefore, it converges
faster and the running time overhead of the original RTA and
improved RTA is relatively reduced.
Experiment 7: All parameters are generated following

Experiment 2. The task set utilization U is different, and
the comparison of the average running time overhead t is
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FIGURE 13. The impact of utilization on the run time.

tested. As shown in Fig. 13, with the utilization of the task set
increases, the running time overhead of the original RTA and
improved RTA increases significantly. However, the running
time cost of other schedulability tests is almost constant.

Experimental analysis: The original DMand improvedDM
determine the schedulability through the upper bound of den-
sity and do not need iteration. Therefore, the change in the uti-
lization of the task set will not have an impact on the running
time overhead. According to the upper bound of response
time [Ci+

∑
j<i Cj

(
1− Uj

)
]/(1−

∑
j<iUj), it can be seen that

the worst-case response time of a task is related to the utiliza-
tion of high-priority tasks. When the utilization increases, the
worst-case response time will increase, thus making the num-
ber of iterations increase. Therefore, the running time over-
head of the original RTA increases. The initial value adopted
by improved RTA is R0i = (Di − Ji + Ci + Bi) /2. When the
utilization of the task set is low, this initial value is much
larger than the response time of the task and the schedulability
can be obtained without iteration. Therefore, the increase in
the utilization of the task set will not lead to an increase in the
runtime overhead of the improved RTA. However, when the
utilization is higher than 0.65, the response time of the task
is close to the deadline, so that the improved RTA requires
multiple iterations to obtain the schedulability result and the
running time overhead increases rapidly.When the utilization
is higher than 0.7, it can be seen from Experiment 2 that
the schedulable ratio drops, so the sufficient test Hyperbolic
will fail easily. Hyperbolic will exit early and the running
time overhead will gradually decrease. When the utilization
is higher than 0.85, tasks are almost unschedulable and the
higher priority task cannot be scheduled first, so the exact
test ends soon, resulting in the running time overhead of the
original RTA and improved RTA being significantly reduced.
Therefore, when the task set is at an unschedulable critical
utilization, the running time overhead of the exact tests will
fluctuate greatly.
Experiment 8: The ratio of task set density to utilization

DT/U = 1.5, the number of tasks is 30, and the utilization
is 0.5. As shown in Fig. 14, the maximum period Tmax
of tasks is different, and the comparison of the run time

FIGURE 14. The impact of maximum period on the run time.

overhead t is tested. As the Tmax increases, the runtime
overhead of the original RTA fluctuates slightly, and other
schedulability tests are a constant. The run time overhead of
the original DM and improved DM will not change because
they only depend on the number of tasks. The period increases
will cause the execution time and deadline to increase simul-
taneously. Therefore, the schedulability of tasks remains
unchanged. The run time overhead of the original RTA,
improved RTA and Hyperbolic is related to the schedulable
ratio. Therefore, the running time overhead of these tests is
unchanged with the Tmax increases.

In actual engineering applications, we may not know the
information of the task set in advance, including utilization,
number of tasks and density. In this case, we can combine
improved DM and improved RTA to become a new schedu-
lability test called DM with RTA. The pseudo code is shown
in Algorithm 2. Improved DM is used first to test the schedu-
lability of the task set. If it is schedulable, it ends. Otherwise,
improved RTA will be used to further test the schedulability
of the task set.

Algorithm 2 Bool DMWith RTA(SH )
Input: Real-time task set SH
Output: The schedulability of SH
1: if DM improve(SH ) then
2: return true;
3: else
4: for τi : SH do
5: R#0i = (Di + Ci)/2;
6: Ri =RTA improve(τi,R#0i );
7: if Ri > Di then
8: return false;
9: end if
10: end for
11: return true;
12: end if

The next experiment compares the schedulable ratio and
running time overhead of this schedulability test and other
tests.
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TABLE 2. Comparison of DM with RTA and other tests.

Experiment 9: The task set is randomly generated by the
following parameters. The number of tasks is generated ran-
domly in the range [1, 30] and the utilization is generated ran-
domly in the range [0.1, 1]. DMwith RTA, improved DM and
improved RTA perform schedulability determination to task
set, and their schedulable ratio and running time overhead
are measured. As shown in TABLE 2, the schedulable ratio
of DM with RTA is 0.8100 which is the same as improved
RTA. However, the run time overhead of DM with RTA is
only 0.6979ms and it is much lower than that of improved
RTA, making a reduction of 30.8%. Therefore, DMwith RTA
dominates improved RTA. Compared with improved DM, the
schedulable ratio of DMwith RTA has increased by 42%, but
the running time overhead has increased by about 5.5 times.
In general, this running time overhead is an acceptable range.

Since improved DM has linear time complexity character-
istics and improved RTA can make an exact schedulability
determination, we combined them to get DM with RTA,
making full use of the advantages of both. Therefore, the
schedulability can be exactly determined, and the running
time overhead of the schedulability determination can be
reduced. DM with RTA has strong versatility and is a very
worth schedulability test.

C. EXPERIMENTAL CONCLUSION
We compare the existing related research results in experi-
ments. The experimental results show that the density upper
bound of sporadic task DM scheduling is about 0.69. The
running time overhead of improved DM when a task is
added dynamically to the task set has nothing to do with the
number of tasks and DT/U . It is a constant time, which is
equal to the existing density upper analysis bound methods,
only 0.005ms. However, the running time overhead of other
schedulability tests increases rapidly along with the number
of tasks and it is much larger than the density upper bound
analysismethods. The lower the ratio of task set density to uti-
lization, the more the number of tasks, the greater the advan-
tage of our improved DM test. In addition, we combined the
characteristics of the existing tests to further propose an exact
schedulability test DM with RTA, which effectively reduces
the running time overhead by 30.8% compared with the state-
of-the-art schedulability test. Which one of our methods is
used can be determined according to the actual application
scenario. If we are very concerned about the run time over-
head, we can use improved DM. If we are more concerned
about the schedulable ratio, then we can use DM with RTA.

VI. CONCLUSION
We analyze that the density upper bound of sporadic task
DM scheduling is about 0.69. The theoretical analysis process
is carried out in three steps. Firstly, the case is considered
where the task set contains only two tasks and the deadline
ratio between the tasks is less than 2. Secondly, the case is
considered where the task set contains multiple tasks and
the deadline ratio between any two tasks is still less than 2.
Finally, the case is considered where the task set contains
multiple tasks and the deadline ratio between tasks is an
arbitrary value. We compare the existing related research
results in experiments. The experimental results show that the
density upper bound of sporadic task DM scheduling is about
0.69. The running time overhead of the schedulability test
when a task is added dynamically to the task set has nothing
to do with the number of tasks. The time complexity is
O(1). The running time is equal to the existing density upper
analysis boundmethods, only 0.005ms. However, the running
time of other schedulability tests increases rapidly along with
the number of tasks and it is much larger than the density
upper bound analysis methods. In addition, we combined the
characteristics of the existing tests to further propose an exact
schedulability test DM with RTA, which effectively reduces
the running time overhead by 30.8% compared with the
state-of-the-art schedulability test. We analyze a theoretical
density upper bound and it is of great value for theoretical
and engineering applications. Due to the high efficiency of
our schedulability test, an online schedulability test can be
implemented in open real-time systems. Next, we will con-
sider multi-core systems.
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