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ABSTRACT Face clustering is an effective method for taking advantage of unlabeled face data. Recent
studies use graph convolutional networks (GCNs) to learn feature embeddings from the neighborhood
information between face images. However, most of the face clustering methods require numerous over-
lapping subgraphs to characterize the local structure around the nodes, which causes significant redun-
dancy. Moreover, the nonlinearity of the GCN itself increases the calculation complexity, which further
reduces the model’s training efficiency. In this study, we propose a lightweight clustering framework,
the confidence-based simple graph convolutional network (CSGCN), for face clustering, which achieves
more accurate clustering results and significantly improves the efficiency of GCN-based face clustering.
Specifically, CSGCN does not construct any subgraphs but convolves the entire graph as a whole and
also removes the nonlinearity of the convolution in the graph convolution module, which further reduces
the computational complexity. Subsequently, an effective new confidence score is constructed to better
characterize the embedded features and to ensure that the subsequent clustering still maintains a high
accuracy rate under the aforementioned model simplification. In addition, while most of the existing
GCN-based methods are actually supervised, we construct an unsupervised confidence to make it more
suitable for clustering tasks. Extensive experiments with MS-Celeb-1M, YouTube-Faces and DeepFashion
datasets show that our method not only improves the clustering accuracy but also significantly reduces the
execution time, whether in supervised or unsupervised models.

INDEX TERMS Face clustering, confidence score, simple graph convolutional networks.

I. INTRODUCTION

In recent years, with the progress of face detection tech-
nology, large numbers of face images are easily obtainable
from various surveillance cameras and through the internet.
However, labeling these face images is very time-consuming
and expensive. Datasets, manually labeled by humans, are
of questionable accuracy [1]. Automatically analyzing facial
features is a necessary advancement. Face clustering is an
effective and basic task in facial feature analysis with a wide
range of applications, and has been extensively studied in pre-
vious works [2]-[14]. There are many important applications
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for face clustering in image retrieval [5], [15], data cleaning
and marking [9], [16]-[19], and criminal investigation [20].

Some traditional clustering methods, such as the K-means
clustering algorithm [21], density-based spatial clustering of
applications with noise (DBSCAN) [22], and hierarchical
agglomerative clustering (HAC) [23], [24], make unrealistic
assumptions about the distribution of data. The drawbacks
of these algorithms limit their application in face clustering
problems with complex distributions of facial representa-
tions. To address this constellation of real problems, recent
studies have shown that utilizing graph convolutional net-
works (GCNs) and supervised information [7], [8], [10], [13]
can enhance the characteristics of face clustering. GCNs learn
cluster patterns rather than completing a cluster.
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Although these graph-convolution-based supervised meth-
ods can effectively deal with complex clustering patterns,
they also have some problems. First, they construct numerous
overlapping subgraphs [7], [10]. The subgraphs are overly
redundant, which increases the consumption of comput-
ing resources and severely limits their efficiency. Second,
these methods [7], [8] make assumptions when constructing
subgraphs, and need to set many hyperparameters, which
increases the difficulty of parameter adjustment and model
training. Third, the nonlinear calculation complexity of the
GCN itself is high, which affects the training time. Thus,
fast and accurate clustering is still difficult for face clus-
tering. In response to these problems, we do not attempt
to construct subgraphs, but to operate on the entire graph,
with the intention of avoiding the assumption of constructing
subgraphs and the adjustment of hyperparameters. Addition-
ally, we remove the nonlinearity of the GCN, making our
model more efficient. To maintain a good clustering effect in
a simplified situation, we construct an effective confidence
score to guide the subsequent clustering module.
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FIGURE 1. The core idea of our model. The confidence of the nodes in the
graph is learned through the graph convolution module. The new graph is
reconstructed from the obtained embedding feature information. Then
the reconstructed graph is combined with the confidence to obtain the
final clustering result through the clustering module.

Specifically, we propose a new face clustering framework
called a confidence-based simple graph convolutional net-
work (CSGCN). Fig 1 shows the core idea of our model.
Previously, we converted the face feature data extracted by
convolutional neural networks (CNNs) into graph data using
K nearest neighbor (KNN) method. We design two modules
for our framework, namely, the graph convolution module
and the clustering module. The graph convolution module
embeds the original data and obtains the confidence of each
node. The confidence score indicates the possibility of a node
belonging to a certain category. The clustering module is used
to group the nodes into clusters according to the confidence
scores and embedding features. In summary, unlike the other
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face clustering models, CSGCN is more efficient and works
well without labels.

Finally, we conduct numerous experiments on the
MS-Celeb-1M [16] and YouTube-Faces [25] datasets. The
results of those experiments show the advantages of our
CSGCN model. In addition, we also test it on a subset of a
challenging long-tailed dataset called DeepFashion [26] with
similar results. The main research contributions of this study
are as follows:

« We propose a new face clustering framework that does
not construct any subgraphs but convolves the entire
graph as a whole and removes the nonlinearity of the
convolution in GCN, which significantly improves the
efficiency.

¢ Most of the existing GCN-based methods are super-
vised, whereas our method can be extended to an unsu-
pervised version, which is more suitable for clustering
tasks.

o The proposed method shows good performance and
efficiency for the MS-Celeb-1M, YouTube-Faces and
DeepFashion datasets.

In this section, we briefly introduce our research. The rest
of this paper is structured as follows: In Section II, we sum-
marize related studies of face clustering and GCN in detail.
Section III presents the specific implementation details of
the model proposed in this article. Section IV presents a
series of experiments to analyze the performance of various
clustering algorithms. Finally, we summarize this study and
point towards future work in Section V.

Il. RELATED WORK
In this section, we will introduce related works on face clus-
tering and graph convolutional neural networks.

A. FACE CLUSTERING
Face clustering is a method used to process large amounts of
unlabeled face data. However, the face data extend across a
large-scale, and the facial feature distribution is very compli-
cated. Some conventional and common clustering algorithms
show poor performance in real and complex face clustering
tasks. K-means [21] needs to set the value of k in advance, and
the clustering result is highly affected by the value of k. The
time complexity of the spectral clustering [27] is extremely
high, which is not conducive to expanding to large datasets.
DBSCAN [22] and hierarchical DBSCAN [28] produce poor
clustering effects on high-dimensional data. Border-peeling
clustering [29] produces excessive clustering, forming too
many clusters for data with complex shapes. Robust border-
peeling clustering [30] and robust continuous clustering [31]
cannot effectively handle high dimensions and large datasets.
Overall, these traditional clustering algorithms make some
unrealistic assumptions about the distribution of data. Thus,
face clustering remains a challenging task.

Early face clustering methods focused on the design of
handcrafted features [15], [32] and then used traditional
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clustering algorithms to cluster faces. Owing to progres-
sions in deep learning, subsequent works make use of
deep features and concentrate on the design of similar-
ity metrics. Zhu et al. [5] proposed a method called the
rank-order distance to measure the affinity between two
face images. Lin et al. [33] trained a linear support vector
machine (SVM) based on the nearest neighbors of face sam-
ples to calculate the similarity measure between deep facial
features. Otto ef al. [3] proposed a face clustering method
based on an approximate rank-order to measure face image
pairs. Shi et al. [4] designed conditional pairwise cluster-
ing(ConPaC), which formulated the clustering task as a
conditional random field model. Lin ef al. [2] designed a
new density-based strategy by introducing minimal cover-
ing spheres of neighborhoods based on support vector data
descriptions (SVDDs) [34]. Zhan et al. [9] trained a classifier
to aggregate multiview information to select face image pairs
that belong to the same category.

Compared with the above studies, GCN is an effective
method for processing graph structure data so it can be
better applied to face clustering problems. Recent studies
have shown that introducing supervisory information into
face clustering can improve the performance. Wang et al. [7]
transformed the face clustering problem into a link prediction
problem. This was the first study to apply the GCN to the
task of face clustering. They trained a GCN model to predict
the link probability between the pivot node and its neigh-
boring nodes. Yang et al. [8] learned clustering patterns by
detecting segmentation paradigms. A GCN-based detection
and segmentation module was proposed to complete the face
clustering task. Yang ef al. [10] used GCN to infer the con-
fidence of nodes and the connectivity of edges to complete
clustering. Guo et al. [11] fused GCN and long short-term
memory (LSTM) to obtain embedded face data based on
density and then used traditional algorithms to achieve a good
effect.

B. GRAPH CONVOLUTIONAL NETWORK

Convolutional neural networks (CNNs) have been widely
used in many fields such as image classification. The data
in these fields are usually presented in the form of a regu-
lar grid in Euclidean space. However, many non-Euclidean
structural data exist naturally in real applications, such as
social analysis [35], [36] and computer vision [7], [8], [37].
Because of the diversity and complexity of the graphic struc-
ture, CNNs cannot process it directly. Graph convolutional
networks (GCNs) [38] are a natural extension of CNNSs in
the graph domain and are used to explore the relationship
and interdependence between objects in the graph. GCNs
have proven to perform well in many tasks [38]-[42]. Some
recent studies extended GCN to deal with large-scale graphs.
Hamilton et al. [39] used a multilayer aggregation function
to sample the neighbors in each layer, without any dependen-
cies on the global graph structure. Chen et al. [43] further
reduced the computational costs by sampling nodes instead
of neighbors. The model proposed by Wu et al. [44] was easy
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to train and is easily extended to large datasets. Experiments
show that simple graph convolutional networks (SGCNs) will
not have a significant negative impact on the accuracy of
many graph-based tasks but they will bring great efficiency
improvements.

lll. METHODOLOGY

In this section, we elaborate on our proposed model frame-
work, including the graph convolution module and clustering
module. We will introduce in detail the design of the super-
vised and unsupervised confidence in the model as well as a
time complexity analysis.

A. OVERVIEW

Clustering is performed on the given face feature data
X =[x1,--,xy]7 € RV*P where N is the number of face
images, and D is the dimension of the data feature. Our main
goal is to assign the same label y; to multiple face pictures of
the same person.

Our mission is to find valuable face pictures in complex
data. The pictures are equivalent to cluster centers. How-
ever, what kind of picture is a face photo with important
information? In a real face dataset, the face photos of the
same person will have various postures, angles, expressions
and possibly occluded parts, or the environment behind them
may be messy. The faces that were captured from a frontal
angle with proper brightness and a normal expression will be
the faces with significant information; these are called pivot
faces. These face pictures are the most valuable faces that
we need. We believe that the cluster centers of clusters are
generally these pivot face images, and these images belong
to a certain class with high credibility.

The task of the first stage of our model is to determine
the pivot face images. The next task is to link the other face
images to the pivot face images. The connected subgraphs
form a cluster. We map the relationship between face images
to the relationship between the nodes in the graph. The rela-
tionship between the face images is similar to the structural
information between nodes in the graph. We hope that struc-
tural information can be learned using a learnable model.
Graph convolution is a good choice for learning the structural
information of graphs by aggregating adjacent information.

As shown in Fig 2, our framework is divided into two
modules. The graph convolution module utilizes the GCN
module to automatically learn to find the pivot faces, which
are the cluster centers in the cluster. The clustering module
uses a clustering algorithm to obtain the connected graph
through the relationship between the cluster center and the
neighbors to complete the clustering task.

B. GRAPH CONVOLUTION MODULE

First, to obtain a pivot face image, we design a model based
on the GCN. It is primarily used to predict the probability that
face images are pivot faces. Secondarily, it is used to obtain a
better feature embedding representation.
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FIGURE 2. Overview of the proposed CSGCN clustering framework. The original image is passed through CNN to obtain the embedded features, and
then the embedded features are used to form a graph through KNN. We put the graph into the graph convolution module, obtain new node
embedding features through aggregation, and obtain the confidence score of the node through classification. Then, we recompose the node
embedding feature to obtain a new embedding graph and put the feature embedding graph and the node confidence set into the clustering module

to get the clustering result.

Each face image is regarded as a node, and G = (V, E) is
obtained through the KNN composition. We convert the face
feature data into graph data. The clustering of face images
is converted to the clustering of nodes in the graph. The
adjacency matrix of the graph is expressed as A € RV>*N,
where a; ; is the affinity relation between nodes i and j, which
is the cosine similarity between x; and x;. If the two nodes are
not connected, then a; ; = 0.

The design of our GCN model is as follows: the model
takes the feature embedding matrix as input:

Fo =X

According to some theoretical experience of SGCN [44],
we make the embedding matrix Fj of the /41 layer a linear
aggregation of layer /; therefore, at each step, the embedding
matrix is defined as:

Fii1 = oF; + (1 — o)D" 'AF,W,,

where A is the adjacency matrix of nodes in the graph,
D; = Zj A;; is the diagonal matrix, « is a balance parameter,
which is learnable and used to balance the importance of the
weight of the updated feature and its own feature. Wy is a
parameter matrix that can be learned and used to transform
the feature embedding. This is similar to the parameter matrix
in CNN, except that it is used for a graph structure.

The GCN model aggregates the node features and its adja-
cent node features to obtain a new feature embedding F7 .
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After embedding the features, we access a node classifier
based on a fully connected network. Each node in the graph
will obtain a score ', as follows:

s =F.W +b.

We design a confidence score s from the real label data,
as follows:

1
S=A-— E aij— E ajj
|Nl| vieN; v;eN;
sAE (At
Yi=Yi Yi#Yi

Ha-n— Y ay

ISl
where N; represents the neighborhood around v;, a;; is the
affinity between v; and vj;, y; is the ground-truth label of
v, and S; is all the vertices with the same label as v;. This
score reflects the importance of nodes. The higher the score,
the greater the probability that it is the desired pivot face
image.

The former is the relationship between a node and its sur-
rounding neighbors. This reflects whether it is an important
central node. The latter is the average similarity between a
node and all the nodes with the same label as this node. This
reflects a type of global information, which will shorten the
distance of the same class of nodes in the GCN aggregation
process.
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Additionally, we design an unsupervised method to define
confidence based on [45], [46]. The unsupervised confidence
score is defined as follows:

1
Sy = — Z €jj-
18l

Vj€S;

Given a radius, §; is the set of nodes in the range of v;,
and v; is the node of the set §;. e; j represents the edge weight
between v; and v;.

Due to the powerful representation abilities of GCN,
we use feature embedding after GCN aggregation. This also
shows the effect of not losing supervision information in the
experiment.

According to this confidence design, the loss function of
the node classifier model is as follows:

1 N

£=NZ|S,'—S;|2.

i=1

The feature embedding obtained through GCNs is also very
important. We save the embedding feature F; obtained from
the top layer of the GCN and use KNN to form a new graph.
Then, further processing is performed on the new embedding
graph to obtain the clustering result.

Our method uses a subgraph-free mode, compressing the
entire graph into the GCN. The convolution process aggre-
gates the characteristics of the neighboring nodes around
each node each time. Since no special subgraph selection
strategy is required, many hyperparameters for selecting sub-
graphs in many previous studies are omitted. This allows our
model to be tuned better and faster than other methods based
on the GCN.

C. CLUSTERING MODULE

In the clustering stage, we obtain the feature embedding
Fp and the confidence set S. As shown in Algorithm 1,
we connect each node to the surrounding high-confidence
nodes to obtain a connected relationship. We use the weighted
merge search algorithm for path compression to connect the
connected graph to form a subgraph. Specifically, we find
the root nodes of all the nodes and the nodes with the
same root node belonging to the same cluster. We assign
them cluster class identifiers to obtain the clustering
results.

D. COMPLEXITY ANALYSIS

In the graph convolution module, the computational cost is
mainly concentrated in the graph convolution part. Since the
value of K in the graph is much smaller than N, Matrix A is a
particularly sparse matrix, which means that graph convolu-
tion can be implemented as sparse matrix multiplication. The
number of edges in Matrix A is E, so the time complexity of
the graph convolution is O(|E|). The time complexity of the
edge generation part of the clustering module is O(nlogn), and
the time complexity of the link edge is O(logn).
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Algorithm 1 Confidence-Based Clustering

Input: Face image set V; Embedding feature F'; Confidence
score set S; Threshold 8; Number of neighbors k;
Output: Clusters clusterld,

1: M = findMostConfidenceNodes(S)
2: edges = ¢

3: for all m; in M do

4:  find its k nearset neighbors v;

5. ifdist(m;, vj) <1-6 then

6: edges = edges U {{m;, v;}}

7. endif

8: end for

9:

for all (e;, ¢;) in edges do

10:  u = findParent(e;)

11: v = findParent(e;)

12:  if size[u] < size[v] then

13: clusterld[u]= v; size[v]+ =size[u]
14:  else

15: clusterld[v]= u; size[u]+ =size[v]
16:  end if

17: end for

18: return clusterld,

IV. EXPERIMENTS

In this section, we evaluate the CSGCN method. This
includes the introduction of datasets and evaluation stan-
dards, the experimental implementation details, the compari-
son methods and the experimental results.

A. EXPERIMENTAL SETTINGS

1) DATASETS

We perform clustering tests on the famous face dataset
MS-Celeb-1M [16], which is made up of 100,000 identities
and approximately 10 million images. We use a subset of
them, which is divided into a training set and a testing set
similar to [8], [10] settings. The training set has 86,000
identities and 580,000 face images, and the testing set has
a similar size; the testing set and the training set have no
overlapping identities.

YouTube-Faces [25] is another commonly used face
dataset. There are 3,425 videos in the dataset with a total of
1,595 identities. We use 14,653 face images of 159 identities
for training, leaving 1,436 identities with 140,629 face pic-
tures for testing.

We also test our model CSGCN on a relatively large subset
of Deepfashion [26]. The training set contains 25,752 pictures
of 3,997 categories, and the testing set contains 26,960 pic-
tures of 3,984 categories. There is no overlapping category
between the testing set and the training set.

2) EVALUATION METRICS
To assess the performance of the clustering algorithm pro-
posed in this article, we make use of two commonly used
evaluation indicators, normalized mutual information (NMI)
and Bcubed F-score [47].
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As a method of evaluating clustering algorithms, mutual
information (MI) is used to measure the similarity between
the real label and the label predicted by the model, and
normalized mutual information (NMI) adjusts the value of
MI between O and 1. Therefore, given the real category set
T and the predicted category set P, NMI is defined as:

I(T, P)
~H(T)H(P)

where H () represents the entropy function, and (T, P) rep-
resents the mutual information between set 7 and set P.

The Bcubed F-score is another common evaluation metric
for clustering tasks. Assume that 7'(i) is the ground-truth label
of node i, and P(i) is the label we predicted. Correct(i, j) is
defined as the correctness of the pair as:

NMI(T,P) =

I, ifTG)=T(@G) and P>)=P()

Correct(i, j) = : 0, otherwise

The precision rate P is defined as:
P = Ej[Ej.pg=p(i)| Correct (i, j)]1,
and the recall rate R is defined as:
R = Ei[Ej.rj=T(0)[Correct (i, )]].

Finally, Bcubed F-score is defined as:

_ 2PR
~ P+R

3) IMPLEMENTATION DETAILS

In the experiment, we empirically set the K values in
MS-Celeb-1M, YouTube-Faces and DeepFashion to 80, 120,
and 10, respectively. We use those K values to construct the
KNN graph. Since there are too many nodes constructed by
the MS-Celeb-1M and YouTube-Faces datasets, our GCN
module uses only one hidden layer. In the DeepFashion
dataset, the GCN was designed as two hidden layers. We use
momentum stochastic gradient descent (SGD), to set the
initial learning rate to 0.1, and then the weight decays to 1e™>.

B. METHOD COMPARISON

We conduct comparative experiments to compare the pro-
posed method with other clustering methods. Considering
that we designed the supervised and unsupervised versions,
we evaluate them separately. In order to adapt to various
methods, in the MS-Celeb-1M dataset, we randomly select
one-tenth of the data for testing, which contains 580K images
of 8,573 identities. In the YouTube-Faces dataset, we use
1,436 identities with 140,629 face data for testing. We also
test a subset of the DeepFashion dataset, which is a challeng-
ing long-tailed dataset. For all the methods in the experiment,
we adjust various the hyperparameters to obtain the best
results.
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1) SUPERVISED FACE CLUSTERING

Since most of the existing GCN-based methods are super-
vised, we first experiment with supervised face clustering.
The baselines contain some of the most recent supervised
methods as follows:

CDP (consensus-driven propagation) [9] performed
clustering by exploiting a more robust pairwise relationship
by gathering different predictions.

L-GCN [7] constructed an instance pivot subgraph (IPS)
and used GCN for inference to predict the link relationship
between two unlabeled samples.

GCN-D [8] is a supervised approach that divides the face
clustering problem into GCN-based detection and segmenta-
tion modules.

GCN-VE [10] applied GCN to predict the node confidence
and edge connectivity, and obtained clustering by connecting
each node to the neighbor with the highest connectivity in the
candidate set.

CSGCN-S is a GCN-based model based on supervised
information proposed in this paper.

The performance of the experimental results in the
MS-Celeb-1M, DeepFashion and YouTube-Faces datasets
are shown in Tables 1, 2 and 3, respectively. We report the
F-score and NMI and report the particular precision rate P
and recall rate R for computing the F-score. We also report
the running time of the algorithm and the number of clusters
formed by clustering in the MS-Celeb-1M and DeepFashion
datasets. This further helps us evaluate the strengths and
weaknesses of various algorithms. All the methods achieve
notable F-score and NMI because they use supervised infor-
mation and are based on learning. It is worth noting that
CDP the only method without GCN. The other methods with
GCN, including L-GCN, GCN-D and GCN-VE, are consis-
tently superior to CDP but they are an order of magnitude
slower than CDP because of their numerous overlapping sub-
graphs. Compared with these methods, our CSGCN-S has the
best performance and can achieve a computational efficiency
close to CDP, which is not based on GCN. Additionally,
we discover that the number of clusters formed by L-GCN
in MS-Celeb-1M are numerous, while the number of clus-
ters obtained by our method is comparatively conservative.
The results of these experiments show that our CSGCN can
achieve more accurate clustering results and significantly
improve the efficiency of the GCN-based face clustering
algorithm.

In addition, we perform statistical analysis on the exper-
imental results of CDP, L-GCN, GCN-D, GCN-VE and
CSGCN-S on three datasets to verify whether our method
is significantly better than the other supervised algorithms.
The Friedman test [48]-[50] is a commonly non-parametric
statistical test used to detect differences in treatments across
multiple test attempts. Using the Friedman test, we calculate
the p—value = 0.013 < 0.05, which proves that there are
significant differences among the results of these supervised
algorithms (0.05 is the significance threshold in statistic, and
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TABLE 1. Comparison of our supervised method and other supervised methods on the MS-Celeb-1M dataset. The best results are marked as bold.

Method P R F-score NMI Clusters Time
CDP 82.34 75.37 78.7 94.69 58602 2.3m
L-GCN 84.32 84.41 84.37 96.12 44587 86.8m
GCN-D 94.62 78.02 85.52 96.27 74285 62.2m
GCN-VE 95.26 78.53 86.09 96.44 57041 11.5m
CSGCN-S 93.83 81.12 87.01 96.92 42214 3.8 m

TABLE 2. Comparison of our supervised method and other supervised methods on the DeepFashion dataset. The best results are marked as bold.

Method P R F-score NMI Clusters Time
CDP 72.31 48.18 57.83 90.93 6622 1.3s
L-GCN 74.53 50.39 60.13 90.67 9882 23.3s
GCN-D 76.05 48.34 59.11 89.48 9246 13.1s
GCN-VE 78.67 48.57 60.06 90.5 6079 18.5s
CSGCN-S 75.13 50.42 60.34 91.42 7907 2.1s

TABLE 3. Comparison of our supervised method and other unsupervised
methods on the YouTube-Faces dataset. The best results are marked as
bold.

Method P R F-score NMI
CDP 97.14 83.03 89.53 97.59
L-GCN 97.39 84.34 90.39 97.64
GCN-D 96.91 86.36 91.33 97.97
GCN-VE 98.11 84.59 90.84 97.83
CSGCN-S 97.86 85.87 91.47 97.99

less than 0.05 means that there is a significant difference).
Therefore, considering the performance in Tables 1, 2 and 3,
our approach is superior to the others.

Next, we further compare the significant differences
between our method and each other algorithm in pairs. Gen-
erally, there are two commonly used pairwise significance
test methods: Nemenyi test [S1] and Wilcoxon signed rank
test [52]. However, according to the research of [53], when
there are five methods for the Nemenyi test, it is necessary to
test at least 38 datasets to obtain a meaningful conclusion.
In reality, it is very difficult to obtain so many large-scale
face datasets at the same time, so this is impractical for
our task. Therefore, we use the Wilcoxon signed rank test
to compare the differences between the algorithms in pairs.
We calculate the pairwise p—value between the two methods
and obtain the visualization of p—value matrix below.

As shown in Fig 3, we use visualizations to show the
p—value between each supervised methods. As illustrated,
the darker the block, the smaller the p—value, and the greater
the significant difference. The darkest part indicates that the
p—value between the two methods is less than 0.05. Appar-
ently, our method is significantly better than other methods.
Therefore, we conclude that CSGCN-S has a statistically
significant advantage in supervised methods.

2) UNSUPERVISED FACE CLUSTERING

In addition, we extended supervised face clustering to an
unsupervised version. The unsupervised baseline is described
briefly below.
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FIGURE 3. The p—value of Wilcoxon signed rank test between the
supervised methods in pairs.

K-means clustering [21] is a commonly used classical
clustering method. It is an iterative algorithm for clustering
analysis.

HAC [23] combined closed clusters in a bottom-up man-
ner based on certain criteria. [24] calculated the distance
between two clusters by evaluating the distance between k
observations.

DBSCAN [22] selects the clusters based on the density
criteria they proposed and takes the sparse outliers as the
noise.

ARO (approximate rank-order clustering algorithm)
[3] uses an approximate nearest neighbor search and an
improved distance metric for clustering.

Spectral clustering [27] uses the eigenvalues and vectors
of the graph Laplacian matrix to find clusters.

MeanShift [54] is an iterative process. In short, it is neces-
sary to find data points that belong to the same cluster along
the direction of increasing density.

CSGCN-U represents the GCN-based model with the
unsupervised information proposed in this paper.

The results are presented in Table 4, 5 and 6. We compare
the performances of different unsupervised methods on the
MS-Celeb-1M, DeepFashion and YouTube-Faces datasets.
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TABLE 4. Comparison of our unsupervised method and other unsupervised methods on the MS-Celeb-1M dataset. The best results are marked as bold.

Method P R F-score NMI Clusters Time
K-means 81.33 79.23 80.26 94.54 8573 11.5h
HAC 98.29 54.91 70.46 92.92 122754 12.7h
DBSCAN 99.03 50.81 67.17 92.31 134744 1.9m
ARO 99.69 9.12 16.71 84.64 287267 27.5m
CSGCN-U 93.55 81.21 86.94 96.69 44427 3.8m

TABLE 5. Comparison of our unsupervised method and other unsupervised methods on the DeepFashion dataset. The best results are marked as bold.

Method P R F-score NMI Clusters Time
K-means 55.54 51.93 53.68 89.02 3991 9365
HAC 92.28 33.14 48.77 90.44 17410 110s
DBSCAN 87.66 38.22 53.23 90.75 14350 2.2s
ARO 67.21 43.66 52.94 88.63 10376 7.5s
MeanShift 72.68 46.52 56.73 89.29 8435 2.2h
Spectral 75.81 33.43 46.4 86.95 2504 2.1h
CSGCN-U 76.2 49.26 59.84 91.16 8282 2.1s

TABLE 6. Comparison of our unsupervised method and other
unsupervised methods on the YouTube-Faces dataset. The best results are
marked as bold.

Method P R F-score NMI
K-means 86.40 67.83 76.00 94.03
HAC 99.69 78.73 87.98 97.19
DBSCAN 98.31 80.78 88.69 97.41
ARO 99.84 60.6 75.42 94.35
CSGCN-U 98.16 84.03 90.54 97.69

For K-means, although it has achieved good results, it is
necessary to specify the number of clusters in advance, and
the number has a great impact on the results, which means that
it is difficult to use in a reality where the number of clusters
cannot be clearly defined. HAC has a lower F-score and forms
too many clusters, and it is also the most time-consuming
method in MS-Celeb-1M. DBSCAN is efficient but because
it assumes that clusters should have similar densities, it gener-
ates too many clusters. ARO depends on the number of neigh-
bors. It forms the most number of clusters in MS-Celeb-1M.
In addition, MeanShift and Spectral clustering perform well
on DeepFashion but they take a very long time to converge,
thus limiting their application. Therefore, we do not use
them for the MS-Celeb-1M and YouTube-Faces datasets.
Obviously, our CSGCN-U method is significantly better than
all the other conventional unsupervised clustering methods.
Notably, our model does not need to confirm the number of
clusters in advance. Owing to the use of an improved GCN
for feature embedding, our unsupervised model achieves very
good results.

Moreover, we also perform statistical analysis on the
experimental results of K-means, HAC, DBSCAN, ARO and
CSGCN-U to verify whether our method is significantly
different from other unsupervised algorithms. The Friedman
test is used to calculate that the p—value = 0.002 < 0.05,
which proves that there are significant differences among
these algorithms. Therefore, our approach is superior to the
others considering that it has the best F-score and NMI on
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FIGURE 4. The p—value of Wilcoxon signed rank test between the
unsupervised methods in pairs.

the three datasets. To further evaluate the pairwise signifi-
cant difference between algorithms, we employ the Wilcoxon
signed rank test again to calculate the p—value between the
algorithms in pairs.

As shown in Fig 4, we use visualizations to show the
p—value between the two methods. It can be seen that our
method is significantly better than the other methods intu-
itively. Therefore, we conclude that CSGCN-U has a statisti-
cally significant advantage in unsupervised methods.

C. ANALYSIS FOR EMBEDDING FEATURES

In order to further verify the validity of our embedded fea-
tures, we study feature discriminative power and feature dis-
tribution on two datasets.

1) FEATURE DISCRIMINATIVE POWER

First, we conduct experiments on the MS-Celeb-1M and
DeepFashion datasets to explore the feature discrimina-
tive power. As shown in Fig 5, for the feature embed-
ding obtained, we test the efficiency gain of the obtained
supervised and unsupervised embedding on the traditional
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FIGURE 5. Embedding feature discriminative power on MS-Celeb-1M (the top row) and DeepFashion (the bottom row).

clustering method. Specifically, we save the supervised and
unsupervised feature embeddings obtained in the inference
process, and use the traditional clustering methods later.

The accuracy is significantly improved, which shows that
GCN is used to learn the local information between nodes,
making the features more in line with the clustering standard.
It can be seen from the figure that ARO has the most obvi-
ous improvement effect. Our feature embedding can directly
improve the F-score and NMI performances of ARO to close
to the average level.

Overall, the performance gains shown by the supervision
model are more obvious.

2) FEATURE DISTRIBUTION ANALYSIS
In addition, we conduct experiments to analyze the embedded
feature distributions. Considering that this paper focuses on
face clustering, we only conduct this experiment on the face
dataset, MS1M. As shown in Fig 6, to observe the data dis-
tribution in the embedding space, we select 12 identities and
put their features into the t-SNE to visualize their distribution.
(a) shows the original features (after CNN extracted features),
(b) shows the graph convolution module using unsupervised
loss to the embedding feature, and (c) uses supervised loss.
From (a), we can see that these samples are scattered
together, and it is difficult to determine the division of cat-
egories without color labeling. After the GCN embeds the
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featurses of the data, the features are more compact. Similar
faces gather together more, whereas dissimilar faces will be
scattered. Therefore, the clustering results obtained are more
accurate. It can also be seen from the figure that the distance
between clusters after the supervised embedding feature visu-
alization is smaller, which is more conducive to clustering.

D. ABLATION STUDY

The CSGCN we proposed includes two main influencing
factors, the confidence score and graph convolution. To ver-
ify the effectiveness of each component, we carefully per-
form two kinds of ablation experiments and compare their
performance. First, we explore different values of A in the
confidence design described in Sec.III.B, as shown in Table 7,
when A = 1, we obtain a higher precision but a lower recall,
while when A = 0, we get a lower precision value but a higher
recall, and when A = 0.5, we obtain equilibrium and the
highest F-score and NMI.

Furthermore, graph convolution is another important com-
ponent of the proposed CSGCN. Therefore, we also compare
the simple graph convolution module with the traditional
GCN in terms of both accuracy and efficiency, and the results
are shown in Table 8. Here, CSGCN-NL means that the
traditional graph convolution module is used, that is, the non-
linearity in GCN is retained. Instead, CSGCN uses the sample
graph convolution module, which eliminates the nonlinearity
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FIGURE 6. Feature distribution visualization on t-SNE. Several identities are illustrated. Nodes of the same color indicates faces of the

same identity.

TABLE 7. Comparison on MS-Celeb-1M with different value of 1 in the
confidence.

Method P R F-score NMI
CSGCN(A =1) 95.24 78.1 85.82 96.4
CSGCN(A = 0.75) 94.64 79.06 86.15 96.54
CSGCN(A = 0.5) 93.83 81.12 87.01 96.92
CSGCN(A = 0.25) 94.24 80.11 86.68 96.47
CSGCN(A = 0.0) 93.86 79.42 86.04 96.46

TABLE 8. The effect of removing the non-linear layer in GCN on
DeepFashion.

Method P R F-score NMI Test-Time Train-Time
CSGCN-NL 75.24 5038 60.35 91.44 2.6s 12h
CSGCN 75.13 5042 6034 9142 2.1s 7h

of the network. After removing the nonlinear layer of the
GCN, the accuracy of the CSGCN decreases slightly, but the
efficiency of the model is greatly improved. Therefore, using
the CSGCN can significantly reduce training time with only
a slight impact on accuracy.

V. CONCLUSION

In this paper, a new face clustering framework is proposed,
which greatly optimizes the heuristic step problems and
addresses the large number of overlapping subgraphs in previ-
ous methods. The proposed method consists of two modules;
the graph convolution module predicts the confidence of the
nodes and embedding features, and the clustering module
is responsible for clustering the data based on the results
obtained by the previous module. Our method can complete
clustering in an unsupervised way without data annotation.
The proposed method significantly improves the accuracy
and efficiency of face clustering. In addition, experiments on
the Deepfashion dataset show that our method has application
prospects in datasets other than facial datasets.

In the future, we will conduct further experimental explo-
rations on the hyperparameter settings of the model. We will
also try to further expand the framework of the model to exca-
vate more useful information. In addition, due to the influence
of unfavorable external factors, there will be considerable
noise in the face photos. Therefore, in the future, we need
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to focus on how to reduce the impact of noise on the model,
and improve its robustness.
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