
Received December 28, 2021, accepted January 9, 2022, date of publication January 13, 2022, date of current version January 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142894

SimulateIoT-FIWARE: Domain Specific Language
to Design, Code Generation and Execute IoT
Simulation Environments on FIWARE
JOSÉ A. BARRIGA , PEDRO J. CLEMENTE , JUAN HERNÁNDEZ,
AND MIGUEL A. PÉREZ-TOLEDANO
Quercus Software Engineering Group, Department of Computer Science, Universidad de Extremadura, 10003 Cáceres, Spain

Corresponding author: José A. Barriga (jose@unex.es)

This work was supported in part by the Ministerio de Ciencia e Innovación (MCI) through the Agencia Estatal de Investigación (AEI)
under Project RTI2018-098652-B-I00; in part by the Government of Extremadura, Council for Economy, Science and Digital Agenda,
under Grant GR18112 and Grant IB20058; in part by the European Regional Development Fund (ERDF); and in part by the Cátedra
Telefónica de la Universidad de Extremadura (Red de Cátedras Telefónica).

ABSTRACT Systems based on the Internet of Things (IoT) are continuously growing in many areas such as
smart cities, home environments, buildings, agriculture, industry, etc. This system integrates heterogeneous
technologies into a complex architecture of interconnected devices capable of communicating, processing,
analysing or storing data. There are several IoT platforms that offer several capabilities for the development
of these systems. Some of these platforms are Google Cloud’s IoT Platform, Microsoft Azure IoT suite,
ThingSpeak IoT Platform, Thingworx 8 IoT Platform or FIWARE. However, they are complex IoT platforms
where each IoT solution has to be developed ad-hoc and implemented by developers by hand. Consequently,
developing IoT solutions is a hard, error-prone and tedious task. Thus, increase the abstraction level
from which the IoT systems are designed helps to tackle the underlying technology complexity. In this
sense, model-driven development approaches can help to both reduce the IoT application time to market
and tackle the technological complexity to develop IoT applications. In this paper, we propose a Domain-
Specific Language based on SimulateIoT for the design, code generation and simulation of IoT systems
which could be deployed on FIWARE infrastructure (an open-source IoT platform). This implies not only
designing the IoT system for a high abstraction level and later on code generation, but also designing
and deploying an additional simulation layer to simulate the system on the FIWARE infrastructure before
final deployment. The FIWARE IoT environment generated includes the sensors, actuators, fog nodes,
cloud nodes and analytical characteristics, which are deployed as microservices on Docker containers
and composed suitability to obtain a service-oriented architecture. Finally, two case studies focused on
a smart building and an agricultural IoT environment are presented to show the IoT solutions deployed
using FIWARE.

INDEX TERMS Model-driven development, Internet of Things, IoT simulation, services-oriented,
FIWARE.

I. INTRODUCTION
The Internet of Things (IoT) is widely applied in several
areas such as smart cities, home environments, agriculture,
industry, intelligent buildings, etc. [45]. In order to build
IoT applications, multiple technologies are available from
configuring a specific sensor to analysing a vast amount of

The associate editor coordinating the review of this manuscript and
approving it for publication was Hongwei Du.

data in real-time. Thus, data should be, among other actions,
stored, communicated, analysed, visualised and notified.
For this, multiple IoT cloud platforms have emerged for
development such as Google Cloud’s IoT Platform [17],
Microsoft Azure IoT suite [23], ThingSpeak IoT Platform
[47], Thingworx 8 IoT Platform [48] or FIWARE [13].

Each IoT platform has its own characteristics and
mechanisms to define devices, connect them, store and
analyse data or carry out notifications that provoke the well-
known (vendor lock-in problem [36]). Likewise, each IoT

7800 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-8377-1860
https://orcid.org/0000-0001-5795-6343
https://orcid.org/0000-0002-9417-9974

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

platform offers different services and QoS which should be
managed ad-hoc.

However, it is possible to define IoT solutions independent
of the IoT platforms on which they will be deployed. For
them, it is necessary to focus on the IoT application domain
and not on their specific technological issues. Model-Driven
Development(MDD) [43], [51] is able to tackle this hetero-
geneous technology (vendor lock-in problem) increasing the
abstraction level where the software is developed, focusing
on the domain concepts and their relationships. Thus, the IoT
concepts and relationships are defined by a model which can
be analysed and validated.

In this sense SimulateIoT [3] is an approach based on
Model-Driven Development (MDD) to define IoT environ-
ments (Set of components, such as sensors, actuators, Fog
or Cloud nodes, etc. that are part of an IoT architecture),
generate its code and deploy it. Later on, the IoT environment
generated could be simulated. This is because the MDD
allows 1) the definition of a Domain Specific Language
(DSL), able to model IoT environments, and 2) a model-to-
text (M2T) transformations needed to code-generation and
deploy the IoT environment.

However, SimulateIoT is limited to code generation
towards proprietary infrastructure based on microservices.
In order to show that an MDD approach is able to gen-
erate code on different technological platforms, it is inter-
esting extending the code generation to other technological
approaches such as cloud open-source IoT environments such
as FIWARE [13]. It is an open-source project that provides a
large catalogue of components for the development of IoT
environments, including, among other functions and compo-
nents tomanage, analyse or store the data which are generated
and shared in an IoT environment [13]. This paper presents
the extension of the SimulateIoTMDDplatform to deploy the
IoT environments modelled in the FIWARE open-source IoT
Platform. Consequently, it shows that is possible tomodel IoT
environments independently of technology and deploy them
on concrete IoT cloud platforms such as FIWARE. Thus, the
IoT concepts and relationships are defined by a model which
can be analysed and validated. Besides, the IoT environment
code, including all the artefacts needed, can be generated
from a model using model to text transformations, decreasing
error-proneness and increasing the user’s productivity.

The main contributions of this paper include:
• A proposal that shows that Model-Driven Development
is a suitable approach to develop tools and languages
to tackle the complexity of heterogeneous technology
successfully in the context of IoT environments such as
sensors, actuator, databases, complex-event processing
engines, communication protocols, etc.

• AModel-Driven Development proposal to generate IoT
solutions based on FIWARE infrastructure, hiding the
complexity of a cloud IoT framework.

• An extended version of SimulateIoT Domain Specific
Language named SimulateIoT-FIWARE that can be
used to define IoT environments and generate their

implementation based on the components provided by
FIWARE. That means reusing both SimulateIoTAbstract
Syntax (Metamodel and OCL constraints) and Simu-
lateIoTConcrete Syntax, while theM2T transformations
have been improved and adapted to generate, configure
and deploy FIWARE artefacts.

• Two case studies have been developed following the
methodology and tools presented, focusing on different
kinds of IoT systems. Note that, these two use cases are
the same as those defined in [3], demonstrating that it
is possible to deploy these same environments on the
FIWARE platform.

The rest of the paper is structured as follows. Section 2
introduces the FIWARE architecture and how IoT systems
should be implemented on it. Section 3 describes shortly
SimulateIoT Domain Specific Language. Section 4 presents
the integration of SimulateIoT DSL with the FIWARE archi-
tecture and artefacts. Section 5 describes the aspects related
to code generation towards FIWARE technology from mod-
els. Then, Section 6 illustrates the use of the Model-Driven
approach presented in two different case studies: Smart
Building and Smart Agro. In Section 7 the discussion and lim-
itations of the approach are described, before presenting the
related works in Section 8 and the conclusions in Section 9.

II. THE FIWARE ARCHITECTURE
FIWARE is an open-source project that defines and imple-
ments a universal set of standards for context data manage-
ment with the aim of optimising the development of IoT
environments in different fields, such as Smart Cities [16],
[27], Smart Buildings [15], Smart Agro [25], Smart Energy,
Smart Industry [13], etc. FIWARE makes IoT simpler by
means of driving key standards for breaking the information
silos, transforming Big Data into knowledge, enabling data
economy and ensuring sovereignty on your data [13]. Conse-
quently, usingFIWARE to design, develop andmanage an IoT
environment makes it possible reuse the advantages afore-
mentioned and to reuse the knowledge and tools developed as
part of FIWARE. In this sense, although FIWARE has several
components to support the developing of IoT environments in
the scenarios aforementioned, the main and only mandatory
component of any FIWARE solution is FIWARE Context
Broker. Mention that the concept of context within FIWARE,
is the state in which the IoT environment is at a given time.
Thus, the context elements or data are those that give context
to the environment, i.e., they define a characteristic of the
environment, such as climatic data of the environment as
temperature or wind speed and also data of the architecture
of the environment, such as geoposition of an element or the
speed at which it moves.

The FIWARE implementation is based on a set of lay-
ers and integrated elements such as i) Interface to IoT,
Robotics and third party systems, ii) Core Context Manage-
ment, iii) Context Processing, Analysis and Visualisation and
iv) Data/API management and Publication and Monetisation
of Context Information. Each layer is supported by several

VOLUME 10, 2022 7801

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

tools such as Context Broker, Complex Event Processing, IoT
Broker or IoT Backend Device Manager that constitute the
architecture that can be seen in Figure 1. These elements com-
municate among themselves through the NGSI protocol [14],
although FIWARE has a middleware that acts as a bridge
between NGSI and protocols such asMQTT orHTTP to com-
municate with external elements. Next, the most important
elements of the FIWARE architecture (Figure 1) are defined:
• The Context Broker element named Orion (Figure 1-1)
is the core of the FIWARE architecture. Orion allows
the management of the complete data lifecycle includ-
ing updates, queries, registrations and subscriptions.
In other words, Orion allows creation and registra-
tion of the context elements, such as sensors, actu-
ators, CEP engines, etc. and manages them through
updates and queries. In addition, devices can subscribe
to context information so when some condition occurs
these devices receive a notification [10]. Moreover, it
should be mentioned thatOrion Context Broker includes
MongoDB [30], a NoSql database [22] for the data
persistence required to perform the above-mentioned
functions as well as those of other FIWARE elements.

• A CEP (Complex Event Processing) (Figure 1-2) [8]
element allows more complex analysis techniques than
Orion Context Broker subscriptions. Thus, in order to
develop CEP applications in FIWARE, a CEP compo-
nent named CEP Perseo [12] has been included in the
FIWARE architecture. CEP Perseo is a CEP software
based on the Esper language [9], i.e., software that
listens for events that come from context information
to identify event patterns described by rules, in order
to immediately react to them by triggering actions [12].
CEP Perseo is composed of two basic elements, Perseo
front-end and Perseo core. Perseo front-end stores the
event rules (written using Event Processing Language
(EPL) [37]) on MongoDB and then, processes the
incoming events sending them to Perseo Core. Next,
Perseo Core checks incoming events against the event
rules and notifies Perseo front-end if an action must be
executed [11]. Finally, Perseo front-end sends notifica-
tions to the appropriate devices.

• The IoT Broker (Figure 1-3) element allows developers
to use a message broker such as Mosquitto [31] (based
on MQTT protocol) to ensure message exchange among
the devices or components defined in an IoT environ-
ment. It implements a publish/subscribe communication
protocol that makes it possible to interconnect the IoT
devices and components such as Sensors, Actuators or
other FIWARE components.

• The IoT Backend Device Management Figure 1-4) con-
sumes data from Sensors Figure 1-5) and sends it to the
Actuators (Figure 1-6). IoT-Agent carries out this task.
Thus, IoT-Agent acts as a bridge between the NGSI pro-
tocol and other protocols such asMQTT orHTTP. In this
way, the IoT-Agent brings a standard interface to all
IoT interactions at the context information management

level (Orion Context Broker) allowing each IoT device
to be able to use it own protocols to communicate
with FIWARE.

The elements described above are the main components
of the FIWARE platform which are enough to develop an
IoT environment on the FIWARE platform. However, as can
be seen in Figure 1, FIWARE offers a larger number of
components. These components aim to meet specific needs
such as service orchestration, Big Data processing, payment
management, etc.

For instance, supposing a general Smart Building case
study where several sensors are deployed in the building,
these sensors send data to a FIWARE instance, which are
analysed in real-time by a CEP component in order to notify
different event rules detected. Additionally, data processed is
stored for later analysis. The system architecture deployed to
support this IoT environment can be observed in Figure 2.
Developing this case study includes, among others, the

following:
• Define the sensors and actuators into Orion context
broker.

• Define and configure the messages that should be inter-
changed from/to devices to FIWARE architecture.

• Configure and deploy each node for the FIWARE infras-
tructure, including Orion context broker, CEP perseo,
databases, messages brokers, and so on.

• Define the EPL rules and deploy them on the CEP
Perseo.

• etc.
Additional issues should be taken into account and they

should be resolved by implementing additional ad-hoc
modules:
• Components such as Perseo notifies event matched
by HTTP protocol. Consequently, in order to notify
Actuators who are subscribed to a specific Topic,
an HTTP2MQTT converter should be developed.
In Figure 2 this module is named NotificationMiddle-
wareComponent.

• Originally, event patterns analysis can’t be defined on
Topic data. So, an additional infrastructure based on
Topic data should be registered on Orion. In Figure 2
is named OrionTopicManager.

Developing an IoT environment by hand involves tedious
and error-prone tasks. So, the complexity of the whole
process defined previously to implement and deploy the
IoT environment using heterogeneous technology should be
tackled by increasing the abstraction level of the defined
IoT environment. Therefore, the SimulateIoT model-driven
approach is extended and used to model and generate IoT
environments on FIWARE platform.

III. SimulateIoT: A MODEL-DRIVEN APPROACH TO
DEVELOPING IoT SIMULATION ENVIRONMENTS
In a Model-Driven Development approach like SimulateIoT,
the software development is guided through Models (M1)

7802 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 1. FIWARE architecture [13].

FIGURE 2. Smart building case study architecture deployed on FIWARE.

which conform to a MetaModel (M2). Moreover, a Meta-
model conforms to a MetaMetaModel (M3) which is
reflexive [2]. The MetaMetaModel level is represented by
well-known standards and specifications such asMeta-Object
Facilities (MOF) [29], ECore in EMF [46] and so on.
A MetaModel defines the concepts and relationships in
a specific domain in order to model partial reality based
(conceptual model). Additionally, OCL is formal language

used to describe semantic expressions on Metamodels such
as UML. These expressions typically specify invariant con-
ditions that must hold for the system being modeled [35].
So, Model conforms to a MetaModel requires to validate
with this semantic extensions (OCL invariants). Later on,
the validated models are used to generate totally or partially
the application code by model-to-text transformations [44].
Thus, the software code can be generated for a specific

VOLUME 10, 2022 7803

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

technological platform, improving the technological indepen-
dence and decreasing error proneness.
SimulateIoT is a tool that uses model-driven development

techniques to manage the IoT environments definition using
models, so, the models guide the system description and
the code generation. Subsequently, the code generated can
be deployed through several hosts or be used to deploy a
simulation of the IoT environment. There are three main
elements of SimulateIoT tools: 1) a Metamodel definition,
2) a Graphical Concrete Syntax definition and 3) the M2T
transformations to generate the code artefacts needed to
deploy, monitor and measure the IoT environment. In order
to be a self-contained paper, next the SimulateIoT proposal is
explained.

Figure 3 defines the domainmetamodel including concepts
related to sensors, actuators, databases, fog and cloud nodes,
data generation, communication protocols, stream process-
ing, and deployment strategies, among others. The relevant
elements are summarised below:
• The Environment element defines the global parameters
of the IoT simulation environment, including simula-
tionSpeed and the number of messages to interchange
among the nodes (numberOfMessages).

• Node is an abstract concept to represent each node in the
IoT simulation environment. It is extended by several
concepts such as EdgeNode or ProcessNode in order
to specialise each kind of node. A Node can publish
and subscribe to a specific Topic. It defines publish or
subscribe references towards a Topic element in which
it is interested. Note that, later on, each concrete kind of
Node could be definedwith specific constraints. Further-
more, the device position can be defined using latitude
and longitude attributes.

• The EdgeNode element makes it possible to define sim-
ple physical devices such as a sensor or an actuator
without process capacities. Each EdgeNode could be
linked with ProcessNode elements by Topic elements.
Moreover, each EdgeNode can be mapped with a phys-
ical device such as a temperature sensor, a humidity
sensor, a turn on/off light device or an irrigation water
flow device in the IoT environment. Additionally, the
CoverageSignalGain attribute allows users to define the
coverage reception capacity (offered by the different
ProcessNodes) of the device.

• A Sensor element extends the EdgeNode element and
defines a set of characteristics such as id or genera-
tion_speed. A Sensor element analyses a specific envi-
ronment issue (temperature, humidity, people presence,
people counter, etc.) and sends these data to be analysed
later. A Sensor element is able to publish on Topic ele-
ments which propagate data throughout the simulation
nodes.

• An Actuator element is a device in the IoT environment
that can execute an action from a set of inputs. For
instance, the inputs could determine that an actuator
turns a light on or off; other Actuators could require data

input to define the light’s luminosity. In order to receive
data, an Actuator element should be subscribed to
topics.

• Topic is a central element in this metamodel because it
defines the information transmitted among any kind of
Node elements. Thus, Topic elements are defined from
CloudNode and FogNode elements and help users to
model a publish-subscribe communication model. Obvi-
ously, the Topic element is a flexible concept to manage
the data interchange.

• Data element defines the simple data type to be gen-
erated (Boolean, short, integer, real, string). It has a
DataSource element tomodel either theDataGeneration
element or LoadFromFile element. The former (Data-
Generation element) models how synthetic data are gen-
erated, for instance, using an aleatory strategy among
two values defined in a GenerationRange element. The
latter (LoadFromFile element) models the path-file that
contains the historic data, for instance, it could be
defined by a CSVload element. In addition, external
tools such as [1], [19] can be linked to increase the
capabilities to offer additional data generation patterns.

• The ProcessNode element defines an IoT node with
process capability. For this, two subtype nodes could
be defined: CloudNode and FogNode. Essentially, both
have the same properties and only differ in their process
capability. Thus, in order to classify the ProcessNode
capacity (the size attribute) related to batteries, CPU,
memories, etc. a set of granularity values have been
defined (XS, S, L, XL and XXL) They make it possible
to define different kinds of nodes. This strategy allows
specifying the ProcessNode element capacity and asso-
ciating specific constraints, for example, in an XS Pro-
cessNode a ProcessesEngine such as a Complex Event
Processing (CEP) engine cannot be deployed. Hence,
granularity labels are used as in a Scrum project devel-
opment [42] to define task complexity. As mentioned,
ProcessNode can define Topic elements, with which can
be referenced by any kind of Node elements. Besides,
the redirectionTime attribute defines the frequency that
stored data are flushed towards the next ProcessNode
element defined by redirect references. The attribute
BrokerType defines the message-oriented broker that
currently is established by Mosquitto. In addition, the
ProcessNode element hides the complexity of how
data should be gathered and processed. For instance,
it defines how data will be stored, published or offered
to be analysed by stream processing engines (SP) or
complex event processing engines (CEP) by defin-
ing Component elements. Note that either the stream
processing or the complex event processing capabili-
ties help to define when an Actuator element should
carry out an action. Finally, the CoverageSignalPower
attribute is used to establish the range of coverage
offered by a ProcessNode for those mobile devices that
want to connect to it.

7804 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 3. SimulateIoT metamodel.

VOLUME 10, 2022 7805

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

• FogNode allows users to describe fog computing
instances [5] which could manage and coordinate sev-
eral devices or Actuators. Thus, this concept focuses
on aggregating data for a limited time or connection
conditions, that are released later on. Furthermore, a
FogNode element can include persistent data storage and
data processing.

• CloudNode extends ProcessNode and allows describing
a special node deployed in a public or private cloud
computing environment.

• The ProcessEngine element should be linked to a Pro-
cessNode, to allow real-time data analysis defining com-
ing from ProcessNode elements or EdgeNode elements.
To do this, defining complex event patterns can be
carried out by Rule elements. These patterns analyse
Topic data in real-time. Usually, a CEP (Complex Event
Processing) engine has a higher process capacity and
lower latency than an ESP (Event Stream Processing)
engine [4], [26].

• Rule elements are linked with the ProcessEngine ele-
ments defined at the ProcessNode element. Rule ele-
ments can be defined using the EPL language defined
for a concrete ProcessEngine kind.

• Notification elements make it possible to throw alerts
by using several notification kinds: TopicNotification or
eMailNotification. Obviously, the notification hierarchy
could be extended in further metamodel versions.

• Route element allows to define the route throughout the
coordinates by which the mobile device must move. For
this purpose, 3 different methods have been included for
their generation 1) Fog/Cloud Route, 2) Linear Route,
3) Random Route. Fog/Cloud Route allows the user to
establish a route from the selection of several Fog/Cloud
nodes so that the mobile device will move sequentially
among the selected nodes. Linear Route allows the user
to define 2 coordinates, in this way the mobile device
will move in a linear way between these coordinates.
Finally, Random Route generates a random route at run
time.

Later on, the SimulateIoT models can be created by
using a Graphical Concrete Syntax (Graphical editor) defined
by using Eugenia [24] from the SimulateIoT metamodel.
Figure 4 shows an excerpt from this graphical editor. It helps
users to improve their productivity allowing not only defining
models conforming to SimulateIoT metamodel but also their
validation using OCL constraints [35].

Once the models have been defined and validated con-
forming to the SimulateIoT metamodel, several artefacts can
be generated using an M2T transformation defined using
Acceleo [40]. The generated software artefacts include an
MQTT messaging broker, device infrastructure, databases,
a graphical analysis platform, a stream processing engine,
a docker container, etc.

IV. USING A MODEL-DRIVEN DEVELOPMENT APPROACH
TO GENERATE IoT APPLICATIONS WHERE FIWARE IS A
TARGET TECHNOLOGY
This section describes how to apply a Model-Driven Devel-
opment approach (based on SimulateIoT) to generate IoT
applications based on FIWARE. For this purpose, the tools
previously described (SimulateIoT and FIWARE) have been
integrated. In this way, an extended version of SimulateIoT
can define IoT environments and carry out M2T transfor-
mations based on the components provided by FIWARE.
That means reusing both SimulateIoTAbstract Syntax (Meta-
model and OCL constraints) and SimulateIoT Concrete
Syntax while the M2T transformations have been improved
and adapted to generate, configure and deploy FIWARE
artefacts. Next, SimulateIoT-FIWARE components and the
SimulateIoT components are compared, identifying the main
FIWARE components that should be integrated, configured
and deployed through the newM2T transformations based on
SimulateIoT-FIWARE components.

A. SimulateIoT VS SimulateIoT-FIWARE
This section shows the differences between SimulateIoT and
SimulateIoT-FIWARE version of SimulateIoT. Below are the
metamodel classes whose components or functions have been
modified after integration with (SimulateIoT-FIWARE).

From the FIWARE point of view, Sensors and Actuators
(see Figure 1-(5 and 6)) are external elements which the
FIWARE architecture is interconnecting. Consequently, the
code generation for several concepts defined on the Simu-
lateIoT models such as Sensors or Actuators among others
do not have direct mapping to FIWARE components as they
are external to FIWARE. Thus, their logic has been updated.

Next, Table 1 compares for each main SimulateIoT
metamodel element (ProcessNode, Component Database
or Component Process Engine) how it is implemented in
both SimulateIoT and SimulateIoT-FIWARE, including the
description of each component.

In addition to the mapping defined in Table 1,
two components have been specifically developed for
SimulateIoT-FIWARE: NotificationMiddleware and Orion-
TopicManager. Besides, as has been previously mentioned,
the Sensors behaviour has been modified.
• Sensors. Sensors have the same components in Sim-
ulateIoT and in the SimulateIoT-FIWARE, however,
in SimulateIoT-FIWARE Sensors publish their data
twice. On the one hand, one of the publications is
directly addressed to Orion Context Broker to enable
it to record the information published by each Sensor
separately, so that the data published by each Sensor
can be consulted independently. On the other hand, the
other publication is addressed to the OrionTopicMan-
ager component which allows Orion Context Broker to
record the data published in a certain Topic. In this way,

7806 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 4. Graphical editor based on the Eclipse to model conforming to the SimulateIoT metamodel.

all the data published in a specified Topic can be con-
sulted independently from the Sensor that published it.
In this way, for instance, the CEP component can apply
rules by Topic and it does not need to collect and consult
the data that each sensor has published in the Topic
where it is going to apply the rules. As for the topology
of Topics concerning the receipt of publications by each
sensor independently, it is as follows: ‘‘/token/Sensor-
Name + SensorId/attrs’’ for instance, when token is
1234 and SensorName and SensorId are parameters pre-
defined in a Sensor element within the IoT Environment
model, we get ‘‘1234/temperaturemeter5/attrs.’’

• NotificationMiddleware. SinceCEP Perseo only sends
its notifications by the HTTP protocol, a middleware is
necessary to act as a bridge between the HTTP protocol
and the MQTT protocol as this is used by the Actuator
elements to receive data or to receive notifications in this
instance. NotificationMiddleware performs the above
actions.

• OrionTopicManager. In SimulateIoT, the rules can
be applied by Topic. However, due to the internal
operation of Orion Context Broker and CEP Perseo,
applying rules by Topic becomesmore complex. To cope
with this complexity, an additional module named Ori-
onTopicManager has been developed, enabling CEP
Perseo to apply its rules by Topic as in SimulateIoT.
It allows reusing the SimulateIoTmetamodel and related
tools.

The Sensors logic,NotificationMiddleware component and
OrionTopicManager component will be generated from the
M2T transformation.

B. KNOWING THE INTERACTIONS OF THE INTERNAL
COMPONENTS IN ORDER TO INTEGRATE
FIWARE ARTEFACTS
In order to deploy the IoT environments of SimulateIoT
on FIWARE, it is necessary to define the relationship and
interaction between components. Thus, this section describes
these relationships or interactions that allow the deployment
of IoT environments on FIWARE.

• IoTAgent-Json and Mosquitto Broker. IoTAgent-
Json needs to receive the messages published in the
Mosquitto’s Topics from sensors to send them to Orion
Context Broker.

• Orion Context Broker and IoTAgent-Json. Orion
Context Broker can receive in NGSI protocol the mes-
sages published by the Sensors because IoTAgent-Json
is able to act as a bridge between Sensors and the Orion
Context Broker.

• Orion Context Broker and MongoDB. Firstly,
MongoDB is a functional dependency of Orion Context
Broker. Thus, Orion Context Broker needs to interact
with MongoDB to manage all the context data and the
devices. Figure 5 shows a sequence diagram illustrating
the interactions described up to this point which includes
IoT-Agent, Sensors, Mosquito, Orion Context Broker
and MongoDB.

• Orion Context Broker and CEP Perseo. CEP Perseo
needs to interact with Orion Context Broker. Specifi-
cally, CEP Perseo subscribes to Orion Context Broker
data and it is able to apply event pattern analysis to them.

• Perseo Core and Perseo-FrontEnd. CEP Perseo is
composed of two components which need to interact

VOLUME 10, 2022 7807

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

TABLE 1. Relationships among the main metamodel elements with the main target components.

with each other. Basically, Perseo Core is the CEP
engine which applies rules to the data and notifies
Perseo-FrontEnd. Perseo-FrontEnd is the component
that gets the data from Orion Context Broker and sends
them to Perseo Core.

• CEP Perseo and MiddlewareNotificationComponent.
CEP Perseo only sends its notifications through the
HTTP protocol, however, in the SimulateIoT code gen-
eration, the Actuators can only receive it through the
MQTT protocol.
MiddlewareNotificationComponent is an additional
component developed that listens to CEP Perseo notifi-
cations and redirects them to Actuators through MQTT.
Figure 6 shows a sequence diagram that illustrates the
interactions described up to this point. Note that in
Figure 6 data start from Orion to Perseo Front-end. The
elements involved in this sequence messages includes
PerseoFrontEnd, Orion, PerseoCore, MiddlewareNoti-
ficationComponent, Mosquito and Actuators elements.

• OrionTopicManager and Orion Context Broker.
In order to ensure the application of rules based on
Topics carried out by CEP Perseo, OrionTopicMan-
ager resends all the messages of a concrete Topic to

Orion Context Broker. Figure 7 shows a sequence dia-
gram illustrating the interactions described up to this
point. The elements involved in this sequence messages
includes Orion Topic Manager, Sensors, Mosquito and
Orion elements.

At this point, the steps needed to integrate FIWARE com-
ponents and SimulateIoT artefacts in order to be successfully
deployed has been explained. Next, the M2T transformation
and the specific IoT environment deployment characteristics
are described.

V. IoT ENVIRONMENT CODE GENERATION
AND DEPLOYMENT
This section describes the main characteristics of the M2T
transformation and deployment phase based on the analyses
about how to integrate FIWARE components and artefacts
defined on a SimulateIoT model (Section IV-B).

A. MODEL-TO-TEXT TRANSFORMATION
Once the models have been defined and validated, an M2T
transformation is able to generate the IoT environments that
have been modelled for a specific technology. Thus, the
generated software includes FIWARE components such as

7808 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 5. Orion Context Broker updated from Sensors by means of the IoT-Agent.

TABLE 2. Available code generation for each different kind of node defined from a SimulateIoT model.

Orion Context Broker, CEP Perseo or IoTAgent, and others
components can also be generated like an MQTT messaging
broker, device infrastructure, databases, a graphical analysis
platform, docker container, a REST API etc. These FIWARE
components can be deployed as a part of Node elements
defined on a SimulateIoT model. In this regard, Table 2 sum-
marises for each Node type the components that can be gen-
erated and deployed including NoSQL database, DataBase
Client, REST API,MQTT Broker,MQTT Client, Orion Con-
text Broker, CEP Perseo, IoTAgent, NotificationMiddleware
or OrionTopicManager. Besides, hardware requirements are
included with each component. These hardware requirements
indicate the minimum hardware power needed to deploy
each component of Cloud, Fog or Edge node. The hardware
power is represented with the following labels: XS, S, M, L,
XL, where XS represents the lowest hardware requirements,
for instance, a RaspBerry Pi, and XL represents the highest
hardware requirements, for instance, a cloud infrastructure.

In addition to these components, the M2T transformation
also generates all the configuration files required to deploy all
the artefacts successfully. These configuration files include:

• The registration in Orion for each device. An excerpt of
the device registry file configuration in Orion Context
Broker can be seen in Appendix B

• The specification of CEP Perseo’s rules. A fragment
of the file to configure CEP Perseo can be seen
in Appendix C.

• The connection of each component with the oth-
ers, which is managed with a docker-compose file.
An example of the docker-compose file is illustrated
in Appendix A.

• The deployment scripts needed to deploy the artefact
generated.

B. IoT ENVIRONMENT DEPLOYMENT ON
FIWARE INFRASTRUCTURE
The Execution phase involves deploying all the artefacts
generated from the models. So, several software artefacts
such as the MQTT messaging broker, device infrastruc-
ture, databases, graphical analysis platform, Orion, Perseo,
IoTAgent, etc. are configured and deployed.

VOLUME 10, 2022 7809

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 6. Managing CEP Perseo notifications to notify the event patterns detected to the Actuators.

FIGURE 7. OrionTopicManager operation and interactions.

It should be noted that, although it is a simulation, the
deployment of the Fog and Cloud layers of the environment is
a real deployment, in other words, the architecture generated
could be implemented in a real IoT environment. However,
the devices of the Edge layer (sensors and actuators) are fully
simulated, interacting with the rest of the layers publishing
data, imposing the pace of the simulation (speed of data
generation), connecting to and disconnecting from different
nodes in the Fog layer (displacement), receiving notifications
processed in the Fog or Cloud layer (actuators), etc.

Figure 2 shows the architecture of a Smart Building
environment where it is possible to observe the different

elements that can be deployed including a CloudNode or
FogNode, Sensors and Actuators. Note that CloudNode
and FogNode are composed of several elements, including
FIWARE elements such asOrion Context Broker,CEPPerseo
or IoTAgent.

Furthermore, each CloudNode/FogNode can define a
Complex Event Processing Engine or, in other words, the
inclusion of CEP Perseo. Besides, it includes Orion Context
Broker, IoTAgent-Json, a Non-SQL database, as MongoDB
is essential due to it being a dependency of Orion Context
Broker, a DataBase Client, a REST API, an MQTT broker
(e.g Mosquitto) and an MQTT Client. Likewise, as can be

7810 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 8. Case 01. The school of technology model conforms to the SimulateIoT metamodel.

observed in Figure 2, all of these elements are intercon-
nected and are deployed on Docker containers. Specifically,
all Docker containers are orchestrated using Docker Swarm.

Finally, along with the device code generated, a deploy-
ment script is included which contains the necessary instruc-
tions for deploying the IoT environments. Algorithm 1

VOLUME 10, 2022 7811

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

Algorithm 1 Deploying an IoT Environment Simulation on
FIWARE Architecture and Microservices

1 begin
2 //Step 1) Compilation and docker wrapping of

the artefacts.
3 while there are components which will have to

be compiled do
4 Compile component
5 if component should be in a docker then
6 Wrap component in a docker
7 endif
8 endwhile
9

10 //Step 2) Pushing of docker images to the
local registry.

11 while there are docker images to push to local
registry do

12 Push image
13 endwhile
14
15 //Step 3) Creating the Swarm Cluster.
16 create manager node ’Environment’
17 foreach fogNode do
18 Create worker node ’fogNode.name’
19 Connect worker node to the manager node
20 endforeach
21
22 //Step 4) Configuration of each Swarm node and

deploy of the FIWARE components on them.
23 foreach worker node do
24 Configure node
25 Deploy FIWARE components from docker-

compose-file
26 configure FIWARE components from

configuration files
27 endforeach
28
29 //Step 5) Pulling of docker images from the

local registry in each Swarm node.
30 foreach worker node do
31 foreach docker image wrapped for this node

in the local registry do
32 Pull image
33 endforeach
34 endforeach
35
36 //Step 6) Deployment of the docker components

as services from the manager node of the
Swarm cluster.

37 Connect to the swarm manager node
38 foreach worker node do
39 foreach pulled docker image in the worker

node do
40 Deploy docker as service
41 endforeach
42 endforeach
43 end

shows the deployment phase of an IoT environment
on FIWARE.

VI. CASE STUDIES
Next, two case studies have been defined using SimulateIoT.
The first one defines an IoT simulation for a a smart build-
ing while the second one defines an IoT simulation for an
agricultural environment. Note that these two cases are the
same as the ones modelled in [3]. Thus demonstrating that

the proposal presented in this paper can deploy these same
environments with SimulateIoT-FIWARE on the FIWARE
platform, without the need to know any technical aspects
about it.

A. CASE 01. SCHOOL OF TECHNOLOGY
The first case study presents the simulation of a smart build-
ing, more specifically, we have modelled our School of
Technologies. It has six buildings (Computer Science, Civil
Works, Architecture, Communications, Research and a Com-
mon Building). So, each building has its own environment
with a set of Sensors, Actuators and analysis information
processes.

1) CASE 01. MODEL DEFINITION
Figure 8 shows an excerpt from the School of Technology
model. The IoT system modelled includes several Node ele-
ments shared throughout the different buildings. Each build-
ing takes over its own ProcessNode (Figure 8 references 1.1,
1.2 and 2) which gathers all the information produced by the
Sensors (Figure 8 references 3.1 and 3.2). Thus, these data
are suitably stored on specific databases (Figure 8 references
6.1 and 6.2), analysed and monitored by the ProcessNode
element. In this case study, a FogNode element has been
defined for each building. For instance,Common_Building or
Computer_Science have defined FogNode elements (Figure 8
references 1.1 and 1.2).

Furthermore, a CloudNode named SchoolTechnology-
CloudNode (Figure 8 reference 2) is defined to store informa-
tion gathered from the FogNode elements. Both FogNode and
CloudNode elements define several Topic elements (Figure
8 references 5.1, 5.2 and 5.3) such as heating_temperature,
presence and smoke_detection. These Topic elements com-
municate data among the Node elements defined in the IoT
system.

In order to model the School of Technology case study,
several Sensors such as heating_temperature_meter, pres-
ence_detector, smoke_detector and so on have been defined
in Figure 8. Each of them publishes its own data on a specific
Topic element. As can be observed in Figure 8, the Sen-
sor elements publish data to several FogNode through Topic
elements.

Note that Sensor elements are EdgeNode elements that
generate data, so the data pattern generators should be defined
(Figure 8 references 4.1 and 4.2). For instance, in order to
describe the synthetic data generated by a temperature sensor
a .csv input file has been defined. It makes it possible to reuse
historical data. Other Sensors can define their synthetic data
generators using a random pattern, incremental pattern, etc.
So, the approach can consume synthetic data based on simple
data, range data, a specific set of values, the values obtained
from a .csv file, data obtained from a URL source or data
generated from the external tools such as [1], [19].

As mentioned, in Figure 8 each FogNode has its
own characteristics about how data should be managed
including storing, analysing or addressing. For instance,

7812 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

the ComputerScience FogNode element addresses the infor-
mation every thirty seconds, storing the data obtained in a
specificNoSQL database. Then all data are flushed to the next
node FogNode or CloudNode defined in the architecture and
named in the example SchoolTechnologyCloudNode.

On the other hand, the Common_Building FogNode ele-
ment defines a different behaviour in order to analyse the
data and take advantage of being close to the devices
that should carry out some action. For instance, the Com-
mon_Building FogNode defines a CEP engine component
and severalRule elements (Figure 8 reference 7), for example,
the rule_heating analyses the data obtained from a specific
Topic named heating_temperature to notify a specific action
to another Topic named turn_on_heating which is subscribed
by a specific Actuator named heating (Figure 8 reference
3.3. Thus, the rule_heating rule analyses the temperature
sent to the heating_temperature Topic element from the heat-
ing_temperature_meter Sensor. Consequently, it is gathered
and analysed by CEP Engine by means of the rule_heating
Rule. As a consequence, when the defined pattern is matched
(for instance, if (temperature < 20) then switch on heating),
the CEP engine generates an event to turn_on_off_heating
Topic.

2) CASE 01. CODE GENERATION AND DEPLOYMENT
Once the model has been defined, the M2T transformation
is applied with the following goals: i) to generate Java code
that wraps each device behaviour; ii) to generate configura-
tion code to deploy based on FIWARE components. These
files include the code necessary to register all devices in
Orion Context Broker and the code required to define all
rules in CEP Perseo. iii) to generate configuration code to
deploy the message brokers necessary (and connect them
with FIWARE), including the topic configurations defined;
iv) to generate for each ProcessNode and EdgeNode aDocker
container which can be deployed throughout a network of
nodes using Docker Swarm v) to generate the Swarm cluster
to deploy the simulation in orchestrated mode.

Figure 9 shows a simplified excerpt from the School of
Technology IoT model deployed (full version available in
Figure 12) and it includes the following: Each Node has
been deployed on a Docker container using Docker Swarm
technology. Each Docker container instance deploys the
characteristics defined on the IoT model, including: where
the nodes are deployed, and what the components included
in each ProcessNode are. Thus, each EdgeNode and Pro-
cessNode element carries out its own functions such as send-
ing messages, processing and storing messages, acting from
messages, etc.

Additionally, the code generated can be reused on the final
system deployed. For instance, the EdgeNode elements can
be replaced by physical devices (both Sensors andActuators),
and the Process Node can be deployed as Docker containers
either on-premise or on the cloud. Not only is the simulation
code generated, but also the final IoT system code is partially
generated.

Finally, executing the simulation modelled and later on
deploying it, makes it possible to analyse the final IoT
environment before it is implemented and deployed. The
analysis that can be carried out is fundamentally based on
the log behaviour of each node within the simulation. This
log behaviour includes parameters such as: i) Each com-
ponent performs its functions successfully, such as pub-
lishing, receiving, analysing, redirecting data, etc. ii) The
resources used by each component, such as CPU or Memory
usage iii) The general function of the IoT architecture mod-
elled, in other words, if the IoT environment is satisfying
the user needs or requirements iv) The evolution of the
above-mentioned parameters over time.

In this sense, users using the simulation logs, could evalu-
ate the behaviour of the environment by exposing it to differ-
ent levels of stress by experimenting with different number
of devices, size of published messages, publication periods,
etc. and study parameters such as a) jitter between messages,
checking in mongodb the timestamps of the messages of
a sensor, b) response delay of a particular component, for
instance, checking the CEP engine logs it can be seen when
a rule is met and when the notification is sent to the actuator,
c) packet loss rate, checking the difference of number mes-
sages between the messages published by a sensor (sensor
logs) and the messages stored in MongoDB from that
sensor, etc.

In short, users can carry out different experiments by cre-
ating different models and simulating them, thus determining
which aspects can be improved until the version that meets
his requirements is achieved.

B. CASE 02. AGRICULTURAL ENVIRONMENT
This case study focuses on designing an IoT system for man-
aging irrigation and weather data to improve crop production.
So, the case study has been designed to simulate the Sensors
and Actuators distributed over the countryside which can be
monitored in real-time. Nowadays, the agricultural domain
has several requirements [49], [50]: i) Collection of weather,
crop and soil information; ii) Monitoring of distributed land;
iii) Multiple crops on a single piece of land; iv) Differ-
ent fertiliser and water requirements for different pieces of
uneven land; v) Diverse requirements of crops for different
weather and soil conditions; vi) Proactive solutions rather
than reactive solutions.

For instance, Sensors such as temperature Sensors, humid-
ity Sensors, irrigation Sensors, PH Sensors and Actuators
such as irrigation artefacts help to monitor and save water,
optimising crop production.

This agricultural IoT environment has been designed over
ten hectares of soil where tomatoes are being cultivated. So,
for each hectare, a set of Sensors and fog nodes has been
shared. So, using fog nodes decreases the communication
requirements among them.

The sensor network is built by temperature, humidity,
irrigation and water pressure Sensors. These Sensors send
data to a specific Topic element linked to a FogNode

VOLUME 10, 2022 7813

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 9. Case 01. Deployment of the school of technology IoT model (Simplified version, full version available in
Figure 12).

element which is gathering data and re-sending them if
needed.

In addition, the irrigation Actuators have been defined
for controlling irrigation water. The notification events from
the FogNode elements are sent to Actuator elements using
messages by Topic elements.

1) CASE 02. MODEL DEFINITION
In Figure 10 an excerpt from an IoT model conform-
ing to the SimulateIoT-FIWARE metamodel is defined.
It shows different Sensor elements such as (ph_H1, tem-
perature_H1, Humidity_H1, etc.) which generate data for
simulation (Figure 10 references 3.1 and 3.2). Moreover,
several Fog computing nodes have been defined, although
in Figure 10 (for the sake of simplicity) only two FogN-
ode elements are shown (Figure 10 references 1.1 and 1.2).
They define several Topics such as Humidity, Temperature,
pH, Water_pressure, etc (Figure 10 references 5.1 and 5.2).
In addition, each FogNode element defines a CEP engine
by means of Perseo elements (Figure 10 references 7.1 and
7.2). Besides, several Rule elements (event pattern defini-
tions) such as rule_Humidity or rule_pH have been defined
to analyse the data gathered from Topic elements in real-
time. Likewise, when an event pattern is matched, a Notifi-
cation element such as Low_pH, High_pH, Low_Humidity,

High_Humidity and so on is thrown. For instance, the Actua-
tor element named Irrigator (Figure 10 references 3.1) is acti-
vated when the Notification element named Low_Humidity is
thrown.

2) CASE 02. CODE GENERATION AND DEPLOYMENT
Once the model has been completed and validated, an M2T
transformation is carried out obtaining the simulation code,
which can be deployed on a specific platform, specifically
using FIWARE components.

Thus, in order to define a scalable IoT environment, each
deployable element (EdgeNode, CloudNode, FogNode, Actu-
ators and ProcessEngine) is defined as a microservice, wrap-
ping each Node element in a Docker container. It is worthy
of mention that one component could have a complex archi-
tecture and be defined in several microservices. In conse-
quence, these kinds of components will be wrapped in several
Docker containers (each defined microservice in a container,
as for example in the case of FogNode and CloudNode com-
ponents). Figure 11 shows a simplified excerpt from the
case study deployment architecture (full version available
in Figure 13). In Figure 11 the main characteristics of
each node can be observed. For instance, each ProcessNode
defines anOrion Context Brokerwith itsMongoDB database,
an IoTAgent, a Mosquitto MQTT message broker and a CEP

7814 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 10. Case 02. AgroTech model conforming to the SimulateIoT metamodel.

Perseo engine. In addition, the Rule elements defined are
processed through the CEP Perseo engine defined.
Each ProcessNode element deployed on a Docker con-

tainer has its own characteristics:
• CloudNode, named AgroTe_CloudNode, is composed of
anOrion Context Brokerwith itsMongoDB [30], an IoT
Agent and a message-driven broker like Mosquitto (that
implements anMQTT communication protocol). More-
over, the CloudNode deploys a Compass instance [7] to
monitor the data gathered.

• Each FogNode namedHectare_1 andHectare_2 respec-
tively, is composed of an Orion Context Broker
with its MongoDB [30], an IoT Agent, a message-
driven broker likeMosquitto (that implements anMQTT

communication protocol) and a Perseo engine. Mon-
goDB stores the temporal data gathered by the FogN-
ode instance. Currently, the main difference between a
CloudNode and FogNode is the processing capability.
Using the size attribute at the FogNode element makes
it possible to define the process capabilities. Conse-
quently, both CloudNode elements and FogNode ele-
ments are deployed as Docker containers on hardware
nodes such as PC, VM or Raspberry Pi.

• The CEP characteristic defined at ProcessNode deploys
a complex event processor to process high amounts
of messages in real-time. As can be observed in
Figure 11 a CEP Perseo engine is deployed on each
FogNode. Later on, each CEP Perseo engine analyses

VOLUME 10, 2022 7815

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 11. Case 02. Agrotech deployment architecture (Simplified version, full version available in Figure 13).

the incoming events by the Rule elements associated
with it.

• The EdgeNode elements including Sensors and Actu-
ators defined in the model are suitably deployed in
Docker containers.

Later on, the execution information can be audited query-
ing the MongoDB database or using the monitoring tool
available on each ProcessNode. Moreover, each Docker is
generating log information during the IoT execution. Finally,
the nodes deployed are accessible from a dashboard tool that
gathers the available endpoints of each element, for example,
to query aMongoDB database or to show information about a
Mosquitto broker. In the above-mentioned ways, it is possible
to perform the analysis of the environment mentioned at the
end of Section VI-A.

VII. DISCUSSION
Model-driven development can be used to model complex
IoT environments using domain concepts. They need not be
tied to a specific technology, but rather an M2T transforma-
tion makes it possible to generate the code needed to deploy
and simulate the systems.

The technology used as a target, such as FIWARE, micro-
services (Thorntail), containers (Dockers), message-oriented
middleware, MQTT (Mosquitto) or a container orchestrator
(Docker Swarm) can be quickly replaced by other suitable
technology if needed. Of course, to change the target tech-
nology, an M2T transformation should be implemented.

For the reasons mentioned above, it has been considered
to give FIWARE an added value through integration with
SimulateIoT. The result of this integration is SimulateIoT-
FIWARE, which is able tomodel and generate an IoT environ-
ment with FIWARE artefacts. In short, SimulateIoT-FIWARE,
the resulting tool from the integration of FIWARE and Sim-
ulateIoT based on Model-Driven development, define an
abstraction layer that allows the use of FIWARE artefacts
without the need to know how these components work inter-
nally, that is, how they interact with each other and with the
other components of an environment, how their deployment
is configured, how they are configured to work in the environ-
ment, etc. with the final purpose of generating and deploying
an IoT environment powered by FIWARE.
Finally, the target users could be both: a) professional users

and b) students. Professional users could use the methodol-
ogy and tools presented in this work to define and analyse
complex IoT environments where finally heterogeneous tech-
nology is used, even though the core comprises components
provided by FIWARE. Besides, our approach can be used for
teaching purposes because it makes it possible for students
to learn about IoT concepts and relationships. In addition,
they can deploy the IoT simulation, and study the code gen-
erated to learn the technology used to deploy the IoT system.
Thus, they can understand IoT cutting-edge technology such
as FIWARE, edge technology and integration patterns such
as data patterns, IoT characteristics, publish-subscribe com-
munication protocols, MQTT, containers, NoSQL databases,
distributed systems and so on.

7816 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

A. LIMITATIONS
Although the domain-specific language and tools presented
offer a wide expressiveness, they have several limitations to
take into account:
• The Edge Nodes can be defined as mobile nodes by
using several approaches (FogCloudRoute, LinearRoute
and RandomRoute). However, IoT mobility is a wide
and interesting research area where multiples protocols
and mobility mechanisms could be additionally defined.

• For the sake of simplicity, the current version of our
simulator IoT environment for FIWARE allows defining
connected nodes by TCP/IP, and it is assumed that con-
nectivity is guaranteed.

• It is possible to simulate IoT environments defined
using a high-level domain-specific language. However,
the hardware simulation is only managed by the size
attribute at ProcessNode which implies several con-
straints to avoid creating specific software elements (see
Table 2). Obviously, it could be considered a simplistic
approach to tackle this complex problem, but in the end,
it helps users to model the IoT environments taking
hardware restrictions into account.

VIII. RELATED WORK
At this point, several Model-Driven Development approaches
have been defined to manage IoT complexity, however, there
are noMDD approaches focused on generating code for well-
know or global IoT platforms such as FIWARE. Next, addi-
tionalMDD approaches related to IoT environment definition
are analysed. Next, the main Model-Driven approaches to
generate IoT systems are reviewed.
FRASAD [33] is a model-driven software development

framework to manage the complexity of the Internet of
Things (IoT) applications. FRASAD is based on node-centric
software architecture and a rule-based programming model
that allows designers to describe their applications (IoT envi-
ronments).

An application within FRASAD could include several sen-
sors with multiple characteristics. For instance, some sensors
could publish temperature, others could receive it and, if rules
are specified, the centric-node will apply the rules to this tem-
perature data and from the result of the analysis, modify the
behaviour of the sensors.It is worthy of mention that, regard-
less of the characteristics chosen, within FRASAD all devices
are sensors, there is not a hierarchy of devices. In addition,
each sensor could have multiple inputs and outputs. Although
FRASAD provides multiple options to model sensors, users
cannot choose the target technology, for example, to apply
rules, to communicate each sensor (communication proto-
col), to store data, etc.
MDE4IoT [6] is a Model Driven Engineering [41]

approach that allows the modelling of IoT components and
supports intelligence as self-adaptation of Emerging Config-
urations in the IoT.WithinMDE4IoT they call Emergent Con-
figuration (EC) of connected systems a set of things/devices

with their functionalities and services that connect and coop-
erate temporarily to achieve a goal. In short,MDE4IoT allows
users to define an IoT environment that is able to adapt the
behaviour of its devices at run-time. For instance, MDE4IoT
could define and generate an IoT environment where several
inter-connected Smart-Lamps adapt their behaviour (light
colour, brightness, etc.) depending on the traffic flow or
other environmental data such as car speed, the distance
between cars, natural light, etc. MDE4IoT allows users to
define hardware and software characteristics of a device,
being able to define a sensor, an actuator or another kind of
device, of course, each with its own characteristics. However,
MDE4IoT does not allow users to choose the technology
they want to use, for instance, the users cannot choose the
database, the rule engine (to manage the EC), the communi-
cation protocol, etc. On the other hand, MDE4IoT generates
the code to be implemented in the physical devices of the
environment, not allowing a simulation of it. Additionally, a
global target such as FIWARE is not available.

Another approach such as [38] proposes a model-driven
software development framework that allows users to model
IoT environments with several types of devices with many
modelling features. It proposes that the stakeholders could
add features to the framework. These stakeholders are: 1) The
sensor Manufacturer/sensor Provider, who could add device
features such as device drivers, data models or device inter-
faces, 2) The Algorithm expert/Algorithm developer who
defines algorithm features as CPU/Memory requirements,
performance or accuracy, 3) The Domain Expert who man-
ages themodel requirements or themapping of the algorithms
to the sensors and 4) The System Administrator who could
add features such as CPU/Memory availability or the calcu-
lations of the network characteristics through devices and the
cloud. In this way, these four stakeholders could develop a
powerful framework to generate IoT environments, however,
although the abstraction layer to develop IoT environments
has been incremented with this framework, the user needs
to know several concepts about the domain of these four
stakeholders. For instance, this framework incorporates many
algorithms that can be added to devices, in this way, the user
does not need to know how to implement the algorithms, but
they need to know how they work because several algorithms
could do the same thing in different ways, and the user needs
to know which one best fits their needs and requirements.
The above-mentioned example can be extrapolated to the
other features which could be modelled with this framework.
In short, due to the low abstraction layer that this framework
provides, the users need to be experts in the IoT and all
the concepts around it, such as the hardware used, algo-
rithms or the IoT domain. In [38] an initial prototype had
been developed to cover some of the aforementioned aspects.
In addition, the IoT applications defined using this framework
are deployed using their own implementation. Consequently,
they do not use a global IoT architecture such as FIWARE as
a target.

VOLUME 10, 2022 7817

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 12. Case 01. Deployment of the school of technology IoT model (Full version, simplified version available in
Figure 9).

Fog computing is proposed to solve the latency problems
of the services offers by the Cloud. Nevertheless, to realise
the full potential of Fog and IoT paradigms, it is neces-
sary to design resource management techniques that deter-
mine which modules of analytics applications are pushed to
each edge device to minimize the latency and maximse the
throughput [18].

In [18] iFogSim an IoT simulator is proposed that enables
the quantification of the performance of resource manage-
ment policies on an IoT or Fog computing infrastructure in a
repeatable manner. This simulator can measure performance
in four different areas: latency, network congestion, energy
consumption, and cost.
iFogSim allows users to model an IoT environment with

several nodes such as Sensors, Actuators, Fog devices, etc.
with different nodes or environmental properties such as
1) Hardware characteristics: accessible memory, processor,
storage size, uplink, and downlink bandwidths, 2) Network
characteristics: connectivity among devices, latency, network

congestion, etc. 3) Data characteristics: Data flow, type of
data, etc. among other devices or environment properties.
iFogSim is a simulator that, because of the great capacity

of expression that it possesses, can simulate very similar
environments to a real one. In consequence, the users that
employ this tool need to skillfully manage a lot of concepts
about IoT, Networking, Fog and Cloud paradigms, etc. Due
to the above-mentioned aspect, this tool is recommended for
expert users, and may not be the best option to some purposes
or targets such as education, novel users in IoT or engineering,
small IoT environments such as a domotic house, or IoT
environments that do not need to use Fog computing.
MobIoTSim [39] is an Android IoT simulator which aims to

help Cloud application developers to create IoT environments
with several devices without buying real sensors. In this way,
MobIoTSim allows the simulation of IoT environments where
developers can learn, test and demonstrate IoT applications,
which works with IoT Cloud providers such as Bluemix [21]
or Google IoT Platform, in a fast and efficient way.

7818 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

FIGURE 13. Case 02. Agrotech deployment architecture (Full version, simplified version available in Figure 11).

MobIoTSim allows, from anAndroid device, the configura-
tion of several IoT Cloud gateways to allow connection with
the devices. Add, edit or delete devices that sends (MQTT
and JSON) random data in a range defined by the user with a
frequency. In addition, devices can receive data, for instance,
in [39] Bluemix is configured to send warning notifications
to devices if it detects critical values. Besides, MobIoTSim
provides the display of the data published by the simulated
devices.

In [32], the authors make an in-depth analysis of the
state of the art of deployment and orchestration in IoT
environments. Additionally, the authors have developed a
taxonomy of DEPO4IOT to classify, analyse, and compare

the studies. This taxonomy takes into account factors such
as the deployment and orchestration support, design support
and other advanced supports. Our proposal takes into account
the importance of deployment and orchestration of the IoT
environment, including the possibility of deploying them
in Docker containers and orchestrating them using Docker
Swarm, also generating a deployment script from the models
defined by the users, where all the necessary parameters are
automatically configured to carry out a reliable deployment.

The expressiveness of SimulateIoT Domain Specific
Language determines the expressive capacity of SimulateIoT-
Fiware. Therefore, simulation of specific aspects of particular
IoT environments require developing an ad-hoc extension.

VOLUME 10, 2022 7819

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

So, SimulateIoTFiware requires additional changes to model
IoT environments focus on particular aspects such as : a) Thi-
nORAM [20], a lightweight client-side ORAM system that
substantially improves response time and network usage
respect the existing ORAM systems in literature; b) The
approach conducted in [34], a descentralised Blockchain-
based architecture to manage the roles and permissions of
the IoT devices of an IoT environment; c) ProfilIoT [28],
a machine learning approach that, from the traffic generated
by a device on the network, is able to determine whether it is
an IoT device (and what kind of IoT device it is) or not.

Although SimulateIoTFiware requires additional changes
to model an IoT environment with ThinORAM [34] or Pro-
filIoT [28], it has the expressive capability to model the IoT
architecture of FIWARE-based Edge, Fog and Cloud nodes.

To sum up, although there are several approaches focused
on rising the abstraction level from the IoT applications that
can be developed, there is a lack of approaches to carry out
this process using a global IoT infrastructure as the target. The
present proposal is tailored to FIWARE technology, allowing
modelling large IoT projects which can be deployed later on
using this IoT platform.

IX. CONCLUSION
Model-driven development techniques are a suitable way to
tackle the complexity of domains integrating heterogeneous
technologies. Initially, they focus on modelling the domain,
then, by using M2T transformations, the code for specific
technology could be generated. SimulateIoT takes advantage
of this technology to allow the modelling and the generation
of IoT environments.

Moreover, FIWARE has a large catalogue with several
components oriented to the IoTwhich allow the development
of complex IoT architectures. Besides, FIWARE is a popular
open-source project,and as a consequence, FIWARE has great
support and its components are highly tested.

Both technologies (SimulateIoT and FIWARE) have been
integrated. In this way, the resulting tool allows users to
define and validate models conforming to the SimulateIoT
metamodel. Then, an M2T transformation makes it possible
to generate the FIWARE components needed to deploy the
IoT Simulation defined.

Future projects include new concepts taking into account
the FIWARE catalogue. For instance, components such as
Cosmos, which enables an easier BigData analysis, FogFlow,
to support dynamic processing flows over cloud and edges,
or Knowage, which brings a powerful Business Intelligence
platform enabling users to perform business analytics over
traditional sources and big data systems. Other interesting
further work includes the improvement of the SimulateIoT
components which cannot be replaced by FIWARE, for
instance, the Sensors, which could be improved by defining
and generating new kinds of data generation patterns. Finally,
it is expected to explore the code generation to other IoT plat-
forms such as Google Cloud’s IoT Platform [17], Microsoft

Azure IoT suite [23], ThingSpeak IoT Platform [47] or Thing-
worx 8 IoT Platform [48].

APPENDIX A

orion:
image: FIWARE/orion:2.0.0
hostname: orion
container_name: FIWARE-orion
depends_on:

- mongo-db
expose:

- "1026"
ports:

- "8082:1026"
....

iot-agent:
image: FIWARE/iotagent-json
hostname: iot-agent
container_name: FIWARE-iot-agent
depends_on:

- mongo-db
- Mosquitto

expose:
- "4041"

ports:
- "4041:4041"

environment:
- IOTA_CB_HOST=orion
- IOTA_CB_PORT=1026
- IOTA_NORTH_PORT=4041
- IOTA_REGISTRY_TYPE=mongodb
- IOTA_MONGO_HOST=mongo-db
- IOTA_MONGO_PORT=27017
- IOTA_MONGO_DB=iotagent-json
- IOTA_MQTT_HOST=mosquitto
- IOTA_MQTT_PORT=1883
- IOTA_PROVIDER_URL=
http://iot-agent:4041

....
mongo-db:
image: mongo:3.6
hostname: mongo-db
container_name: db-mongo
expose:

- "27017"
ports:

- "27017:27017"
\ldots.

perseo-core:
image: FIWARE/perseo-core
environment:

- PERSEO_FE_URL=http://perseo-fe:9090
- MAX_AGE=6000

depends_on:
- mongo-db

environment:
- PERSEO_FE_URL=http://perseo-fe:9090
- MAX_AGE=6000

....
perseo-fe:
image: FIWARE/perseo
ports:

- 9090:9090
depends_on:

- perseo-core
environment:

- PERSEO_MONGO_ENDPOINT=mongo-db
- PERSEO_CORE_URL=
http://perseo-core:8080
- PERSEO_LOG_LEVEL=debug
- PERSEO_ORION_URL=http://orion:1026/

....

7820 VOLUME 10, 2022

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

Mosquitto:
image: eclipse-mosquitto
hostname: Mosquitto
container_name: Mosquitto
expose:
- "1883"
- "9001"

ports:
- "1883:1883"
- "9001:9001"

....

APPENDIX B
CODE FRAGMENT TO CONFIGURE ORION

curl -iX POST \
’http://localhost:4041/iot/devices’ \
-H ’Content-Type: application/json’ \
-H ’FIWARE-service: openiot’ \
-H ’FIWARE-servicepath: /’ \
-d ’{

"devices": [
{

"device_id": "
Sensor_Heating_Temperature_meter_5",
"entity_name":
"urn:ngsi-ld:Sensor_Heating_Temperature_meter
:5",
"entity_type": "
Sensor_Heating_Temperature_meter",
"protocol": "JSON",
"transport": "MQTT",
"timezone": "Europe/Berlin",
"attributes": [
{ "object_id": "v", "name": "value",
"type": "Integer" }

],
"static_attributes": [
{ "name":"name", "type":
"String", "value": "

Sensor_Heating_Temperature_meter"}
]

}
]

}’

APPENDIX C
CODE FRAGMENT TO CONFIGURE PERSEO

curl -iX POST ’http://localhost:9090/rules’ -H ’
FIWARE-service: openiot’ -H ’FIWARE-
servicepath: /’ -H ’Content-Type: application
/json’ -d ’{

"name": "rule0_sensor_heating_temperature_meter
",

"text":"select *,\"
rule0_sensor_heating_temperature_meter\" as

ruleName from pattern [everyev=iotEvent
(cast(cast(value?,String),float)>25 and
id=\"urn:ngsi-ld:Topic_heatingtemperature:0\")

]",
"action": {

"type": "post",
"template": "{\"value\":\${value}}",
"parameters": {

"url": "
http://mncsecciontecnologia2
:5150/heating_0",
"headers": {

"Content-type":
"application/json"

}
}

}
}’

APPENDIX D
COMPLETE USE CASE DEPLOYMENT ARCHITECTURE
See Figures 11 and 12.

REFERENCES
[1] J. W. Anderson, K. E. Kennedy, L. B. Ngo, A. Luckow, and A. W. Apon,

‘‘Synthetic data generation for the Internet of Things,’’ in Proc. IEEE Int.
Conf. Big Data (Big Data), Oct. 2014, pp. 171–176.

[2] C. Atkinson and T. Kühne, ‘‘Model-driven development: A metamodeling
foundation,’’ IEEE Softw., vol. 20, no. 5, pp. 36–41, Sep. 2003.

[3] J. A. Barriga, P. J. Clemente, E. Sosa-Sanchez, and A. E. Prieto, ‘‘Simu-
lateIoT: Domain specific language to design, code generation and execute
IoT simulation environments,’’ IEEE Access, vol. 9, pp. 92531–92552,
2021.

[4] T. Bass, ‘‘Mythbusters: Event stream processing versus complex event pro-
cessing,’’ in Proc. Inaugural Int. Conf. Distrib. Event-Based Syst. (DEBS),
2007, p. 1.

[5] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
‘‘CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,’’ Softw.,
Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.

[6] F. Ciccozzi and R. Spalazzese, ‘‘Mde4iot: Supporting the Internet of
Things with model-driven engineering,’’ in Proc. Int. Symp. Intell. Distrib.
Comput. Cham, Switzerland: Springer, 2016, pp. 67–76.

[7] (2018). MongoDB Compass. [Online]. Available: https://www.mongodb.
com/products/compass

[8] G. Cugola and A. Margara, ‘‘Processing flows of information: From data
stream to complex event processing,’’ ACM Comput. Surv., vol. 44, no. 3,
pp. 1–62, 2012.

[9] EsperTech. (Nov. 2016). Esper Cep. [Online]. Available:
https://www.espertech.com/esper/

[10] Fiware. (2019). Orion Context Broker. [Online]. Available: https://fiware-
orion.readthedocs.io/en/master/#welcome-to-orion-context-broker

[11] Fiware. (2019). Perseo Architecture. [Online]. Available: https://perseo.
readthedocs.io/en/latest/architecture/architecture/

[12] Fiware. (2019). Perseo Context-Aware Cep. [Online]. Available:
https://perseo.readthedocs.io/en/latest/#perseo-context-aware-cep

[13] FIWARE. (2021). Fiware. [Online]. Available: https://www.fiware.org/
about-us/

[14] Fiware. (2021). Ngsi Protocol. [Online]. Available: https://knowage.
readthedocs.io/en/6.1.1/user/NGSI/README/index.html

[15] E. Fotopoulou, A. Zafeiropoulos, F. Terroso-Sáenz, U. Şimşek,
A. González-Vidal, G. Tsiolis, P. Gouvas, P. Liapis, A. Fensel, and
A. Skarmeta, ‘‘Providing personalized energy management and awareness
services for energy efficiency in smart buildings,’’ Sensors, vol. 17, no. 9,
p. 2054, Sep. 2017.

[16] M. García, ‘‘New businesses around open data, smart cities and fiware,’’
Eur. Public Sector Inf. Platform, Tech. Rep. 4, 2015. [Online]. Available:
https://data.europa.eu/sites/default/files/report/2015_new_businesses_
around_open_data_smart_cities_and_fiware.pdf

[17] Google. (2017). Google Cloud IoT. [Online]. Available:
https://cloud.google.com/solutions/iot/

[18] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘IFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275–1296, 2017.

[19] L. Gutiérrez-Madroñal, I. Medina-Bulo, and J. J. Domínguez-Jiménez,
‘‘IoT–TEG: Test event generator system,’’ J. Syst. Softw., vol. 137,
pp. 784–803, Mar. 2018.

[20] Y. Huang, B. Li, Z. Liu, J. Li, S.-M. Yiu, T. Baker, and B. B. Gupta,
‘‘ThinORAM: Towards practical oblivious data access in fog computing
environment,’’ IEEE Trans. Services Comput., vol. 13, no. 4, pp. 602–612,
Jul. 2020.

[21] IBM. (2014). IBM Cloud. [Online]. Available: https://www.ibm.
com/cloud/bluemix/

[22] J. Han, E. Haihong, G. Le, and J. Du, ‘‘Survey on NoSQL database,’’
in Proc. 6th Int. Conf. Pervasive Comput. Appl. (ICPCA), Oct. 2011,
pp. 363–366.

VOLUME 10, 2022 7821

J. A. Barriga et al.: SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation

[23] S. Klein, IoT Solutions Microsoft’s Azure IoT Suite. New York, NY,
USA: Springer, 2017.

[24] D. S. Kolovos, A. García-Domínguez, L. M. Rose, and R. F. Paige,
‘‘Eugenia: Towards disciplined and automated development of GMF-based
graphical model editors,’’ Softw. Syst. Model., vol. 16, pp. 1–27, Feb. 2015.

[25] J. A. López-Riquelme, N. Pavón-Pulido, H. Navarro-Hellín, F. Soto-Valles,
and R. Torres-Sánchez, ‘‘A software architecture based on FIWARE cloud
for precision agriculture,’’Agricult. WaterManage., vol. 183, pp. 123–135,
Mar. 2017.

[26] Arun Mathew., ‘‘Benchmarking of complex event processing engine-
esper,’’ Dept. Comput. Sci. Eng., Indian Inst. Technol. Bombay,
Maharashtra, India, Tech. Rep. IITB/CSE/2014/April/61, 2014.

[27] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, and S. Guizani,
‘‘Internet-of-Things-based smart cities: Recent advances and challenges,’’
IEEE Commun. Mag., vol. 55, no. 9, pp. 16–24, Sep. 2017.

[28] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa,
N. O. Tippenhauer, and Y. Elovici, ‘‘ProfilIoT: A machine learning
approach for IoT device identification based on network traffic analysis,’’
in Proc. Symp. Appl. Comput., Apr. 2017, pp. 506–509.

[29] Meta Object Facility (MOF) Core Specification Version 2.5.1, Meta Object
Facility, Milford, MA, USA, Nov. 2016.

[30] MongoDB. (2018). Mongodb is a Document Database. [Online]. Avail-
able: https://www.mongodb.com/

[31] Mosquitto. (2018). Eclipse Mosquitto: An Open Source MQTT Broker.
[Online]. Available: https://mosquitto.org/

[32] P. Nguyen, N. Ferry, G. Erdogan, H. Song, S. Lavirotte, J.-Y. Tigli, and
A. Solberg, ‘‘Advances in deployment and orchestration approaches for
IoT—A systematic review,’’ in Proc. IEEE Int. Congr. Internet Things
(ICIOT), Jul. 2019, pp. 53–60.

[33] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, ‘‘FRASAD: A frame-
work for model-driven IoT application development,’’ in Proc. IEEE 2nd
World Forum Internet Things (WF-IoT), Dec. 2015, pp. 387–392.

[34] O. Novo, ‘‘Blockchain meets IoT: An architecture for scalable access
management in IoT,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 1184–1195,
Apr. 2018.

[35] OMG Object Constraint Language (OCL), Version 2.3.1, OMG, Milford,
MA, USA, Jan. 2012.

[36] J. Opara-Martins, R. Sahandi, and F. Tian, ‘‘Critical review of vendor lock-
in and its impact on adoption of cloud computing,’’ in Proc. Int. Conf. Inf.
Soc. (i-Society), Nov. 2014, pp. 92–97.

[37] Oracle. (2019). CEP EPL Language Reference. [Online]. Available:
https://docs.oracle.com/cd/E12839_01/apirefs.1111/e14304/toc.htm

[38] A. Pal, A. Mukherjee, and P. Balamuralidhar, ‘‘Model-driven develop-
ment for Internet of Things: Towards easing the concerns of applica-
tion developers,’’ in Internet Things. User-Centric IoT, R. Giaffreda,
R.-L. Vieriu, E. Pasher, G. Bendersky, A. J. Jara, J. J.P.C. Rodrigues,
E. Dekel, B. Mandler, Eds. Cham, Switzerland: Springer, 2015,
pp. 339–346.

[39] T. Pflanzner, A. Kertesz, B. Spinnewyn, and S. Latre, ‘‘MobIoTSim:
Towards a mobile IoT device simulator,’’ in Proc. IEEE 4th Int.
Conf. Future Internet Things Cloud Workshops (FiCloudW), Aug. 2016,
pp. 21–27.

[40] Acceleo Project. (2016). Acceleo Project. [Online]. Available:
https://www.acceleo.org

[41] D. C. Schmidt, ‘‘Model-driven engineering,’’ IEEE Comput. Soc., vol. 39,
no. 2, p. 25, Feb. 2006.

[42] K. Schwaber and M. Beedle, Agile Software Development With Scrum,
vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[43] B. Selic, ‘‘The pragmatics of model-driven development,’’ IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sep. 2003.

[44] S. Sendall and W. Kozaczynski, ‘‘Model transformation: The heart and
soul of model-driven software development,’’ IEEE Softw., vol. 20, no. 5,
pp. 42–45, Sep. 2003.

[45] E. Siow, T. Tiropanis, and W. Hall, ‘‘Analytics for the Internet of Things:
A survey,’’ ACM Comput. Surv., vol. 51, no. 4, p. 74, 2018.

[46] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Reading, MA, USA: Addison-Wesley,
2009.

[47] ThingSpeak. (2010). Thingspeak for IoT Projects. [Online]. Available:
https://thingspeak.com

[48] ThingWorxs. (2019). Thingworxs IoT Platform. [Online]. Available:
https://www.ptc.com/en/products/iiot/thingworx-platform

[49] A. Z. Abbasi, N. Islam, and Z. A. Shaikh, ‘‘A review of wireless sensors
and networks’ applications in agriculture,’’ Comput. Standards Interfaces,
vol. 36, no. 2, pp. 263–270, Feb. 2014.

[50] N. Wang, N. Zhang, and M. Wang, ‘‘Wireless sensors in agriculture and
food industry-recent development and future perspective,’’ Comput. Elec-
tron. Agricult., vol. 50, no. 1, pp. 1–14, 2006.

[51] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, ‘‘Modeling
languages in industry 4.0: An extended systematic mapping study,’’ Softw.
Syst. Model., vol. 19, no. 1, pp. 67–94, Jan. 2020.

JOSÉ A. BARRIGA received the degree in com-
puter science from the University of Extremadura,
in 2017. He is currently working as a Junior
Researcher with the University of Extremadura.
He has been working for two years in IoT and
simulation IoT environments research areas.

PEDRO J. CLEMENTE received the B.Sc. degree
in computer science from the University of
Extremadura, Spain, in 1998, and the Ph.D.
degree in computer science, in 2007. He is cur-
rently an Associate Professor with the Engi-
neering of Computer and Telematics Systems
Department, University of Extremadura. He has
published numerous peer-reviewed papers in inter-
national journals, workshops, and conferences.
His research interests include component-based

software development, aspect orientation, service-oriented architectures,
business process modeling, and model-driven development. He is involved
in several research projects. He has participated in many workshops and
conferences as speaker and member of the program committees. He has
been the Head of the Engineering of Computer and Telematics Systems
Department, University of Extremadura, since February 2018.

JUAN HERNÁNDEZ received the B.Sc. degree in
mathematics from the University of Extremadura,
Spain, and the Ph.D. degree in computer sci-
ence from the Technical University of Madrid.
He is currently a Full Professor in languages and
systems and the Head of the Quercus Software
Engineering Group, University of Extremadura.
His research interests include service-oriented
computing, cloud computing, and model driven
development. He is involved in several research

projects as responsible and senior researcher related to these subjects. He has
published the results of his research in more than 150 papers in international
journals, conference proceedings and book chapters. He has participated in
many workshops and conferences as a speaker and a member of the program
committee. He is currently the Vice President of SISTEDES, the Spanish
Society of Software Engineering and Software Development Technology,
and the Vice-Chancellor for Digital Transformation with the University of
Extremadura.

MIGUEL A. PÉREZ-TOLEDANO received the
M.Sc. degree in computer science from the Poly-
technic University of Catalonia, in 1993, and
the Ph.D. degree in computer science from the
University of Extremadura, in 2008. He is cur-
rently an Associate Professor with the Engineering
of Computer and Telematics Systems Depart-
ment, University of Extremadura. He belongs to
the Quercus Software Engineering Group. His
research interests include software architecture,

component-based software development, software coordination and adap-
tation, and aspect oriented software development. He has participated as an
organizer of different editions of the workshop and conferences. He was the
Head of the Engineering of Computer and Telematics Systems Department,
University of Extremadura, from September 2009 to February 2018.

7822 VOLUME 10, 2022

