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ABSTRACT Storage of electrical energy is one of the most important technical problems in terms of today’s
technology. The increasing number of high-capacity high-power applications, especially electric vehicles
and grid scale energy storage, points to the fact that we will be faced with a large number of batteries that
will need to be recycled and separated in the near future. Additionally multi-chemistry battery management
systems that enables the collective use of superior features of different batteries with different chemical
composition. Here, battery chemical composition determination emerges as a technical problem. In this
study, an alternative method to the currently used methods for categorizing batteries according to their
chemistry is discussed. As the foundation, batteries with four different chemical composition including
Lithium Nickel Cobalt Aluminium Oxide, Lithium Iron Phosphate, Nickel Metal Hydride, and Lithium
Titanate Oxide aged with a battery testing hardware. Fifth, is Lithium Sulphur battery which is simulated.
Brand new and aged batteries are used in experimental setup that is consist of a programmable electronic
DC load and a software developed to run the algorithm on it. According to the algorithm, batteries are
connected to two different loads one by one and voltage-current data are stored. Collected data are pre-
processed by framing them and framed data are processed with a separation function. Eventually, the
determination problem is converted to a classification problem. In order to solve this, artificial neural network
and classification tree algorithms are applied. Because the artificial neural network algorithm is applied in
previous studies and the high computational cost of it is presented; classification tree algorithm is concluded
to be more applicable especially on low-power microcontroller applications. Consequently, 100% accuracy
for battery chemical composition determination is achieved and results are presented comparatively.

INDEX TERMS Batteries, battery management system, classification algorithms, electric vehicle, machine

learning, optimisation, recycling.

I. INTRODUCTION

Electric Vehicle (EV) technologies and the innovations it
brings are one of the leading issues that touch our lives today
and a sustainable EV technology seems to become critical
tool in next decades to overcome the environmental problems
like global heating. Journey of developing EV technology can
be taken as far as to discovery of magnetism. On this journey,
the biggest obstacle to the realization of this technology was
the energy-storage problem. It could only be realized by the
achievement of proper and sufficient electrical energy storage
capability. Despite the fact that studies on this subject began
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in the mid-18th century, the voltaic battery developed by
Alessandro Volta at the end of the century, was the first sig-
nificant development [1]. As a continuation of Volta’s work
French physicist Gaston Planté developed the first recharge-
able battery in mid-19th century [2]-[4]. These achievements
steps are followed by many scientist accomplish development
of lithium batteries which lets the start of EV era [5]-[19].
EVs are consist of modules such as electric motor, motor
controller, inverter etc. that performs different tasks. Within
these modules, battery is the most crucial one because it
provides the energy needed. Batteries are in need of a proper
management in order to run safe and efficient. This system
is called battery management system (BMS). There is no
consensus on the definition however in the literature, BMS

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

6496 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 10, 2022


https://orcid.org/0000-0002-7747-7777
https://orcid.org/0000-0002-7682-7771
https://orcid.org/0000-0001-7045-4022

i. C. Dikmen, T. Karadag: Electrical Method for Battery Chemical Composition Determination

IEEE Access

is defined as a system that measures potential problems with
an electric vehicle’s battery, as well as mandatory equipment
to monitor, control and balance the battery pack [20], [21].
From today’s technical perspective, BMS can be defined as
an integrated hardware and software body that enables the
battery to operate within a specified safe/optimal operating
envelope (in terms of parameters such as current, voltage,
temperature, state of charge (SoC), state of health (SoH), state
of energy (SoE), remaining useful life (RUL) etc.) and at the
same time logging, processing and sending data via wireless
connection to a cloud server, and/or sharing it with other
connected devices and vehicles.

In order to do these complicated tasks, the BMS func-
tions are also becoming complex and vary. At this point,
one would expect to find a universal BMS but on contrary,
in most cases the BMS software and hardware depend on
the battery type/chemistry for which it is designed. However,
BMS hardware, software, and functions differ depending on
the application.

In this study, a battery chemistry determination function is
developed as the successor of the authors’ related past stud-
ies [22]-[28]. Battery chemical composition determination
(BCCD) is practically difficult task for real-time applications
on the other hand; it is a necessary function for specific
applications such as recycling/second-life application of EV
batteries and multi-chemistry BMSs.

When the battery packs on an electric vehicle do not meet
the required performance criteria, and when they reach the
end of their useful life, using them in areas other than auto-
motive is defined as the second-life. Recycling EV batteries
is a critical issue from economic and environment point of
view because of environmental harm and the limited reserves
of elements used in batteries. In the recycling process and in
the sale of recycled products, it is necessary to classify and
sort batteries according to their chemical composition [29].
The difficulty in determining the battery chemistry is mostly
due to the lack of proper labelling, standard design, or clear
marking on the package [30]. Currently, there are methods
such as X-ray radiographic scanning, computer vision, artifi-
cial intelligence, and blockchain to sort and classify batteries
according to their type [30]-[33].

Multi-chemistry BMSs enable to use superior properties of
different battery chemistries in conjunction to make battery
systems more efficient [34]-[38]. In such kind of application,
BCCD function is found to be necessary. By this way, the
BMS can automatically figure out the chemical composition
of the connected battery so it can manage with the proper
parameters.

In this study, proposed BCCD can also provide application
flexibility to users and manufacturers who want to switch to
a different type of battery chemistry. For all battery-powered
devices or vehicles, it offers the opportunity to design without
being dependent on battery chemistry. The crucial feature of
the proposed method is that it allows applications to support
battery chemistries that are likely to be released in the future.
The biggest challenge in the process of BCCD is doing it
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on-board. Because BMSs measure raw voltage/current data
and these data overlap due to different chemical composition
and state of the battery (such as SoC, SoH, SoE, RUL).
To eliminate this problem, a separation function based on sta-
tistical significance is developed. With this developed func-
tion, it is concluded that the overlapping values can be suc-
cessfully separated, resulting a categorization algorithm can
determine the chemical composition of battery with 100%
accuracy.

Il. METHODOLOGY

Since the scope of the study includes both battery manage-
ment systems and second life and/or recycling processes of
batteries, the data of healthy batteries and batteries aged at
different rates are discussed together.

The first four batteries used are Lithium Nickel Cobalt Alu-
minium Oxide (NCA), Lithium Iron Phosphate (LFP), Nickel
Metal Hydride (NiMh), and Lithium Titanate Oxide (LTO)
batteries, which are currently commercialized and widely
used. Owing to the increasing number of patents and commer-
cialization potential in recent years, the fifth battery chem-
istry has been determined to be lithium sulphide (LiS) [39].
The data of NCA, LFP, NiMh and LTO batteries are obtained
from the experimental setup that is prepared for this study in
in a laboratory setting; the data of LiS batteries are obtained
from a simulation prepared in MATLAB/SIMULINK.

All the batteries are aged with 1 C until their capacity
is fade to 80% which is widely accepted as the usable life
limit of lithium batteries especially for high power applica-
tions. Aging process took four months in total and Neware
BTS4000 battery testing system. This system is rated for 5V
and 12A.

A. DATA ACQUISITION

1) EXPERIMENTAL SETUP

Prodigit 3350F programmable electronic DC load is used
for collecting current-voltage data for two different loads.
This electronic load is rated for 1200W, 60V and 120A.
DC load is controlled by a software, which is developed under
LabVIEW. Five hundred thousand data samples are collected
from battery cells with five different chemistries. The process
took around twenty-three weeks in total. Minimum discharge
and maximum charge voltages for the batteries are presented
in Table 1.

Two different loads, whose values are determined by the
software interface, are switched from one to the other during
a specified period. Meanwhile, the current and voltage values
are recorded at a frequency of 1 Hz. To stabilize the measured
values at each load, the load is maintained for 10 seconds and
then switched to the other load. The reason for such a design is
to obtain current-voltage pairs for different loads under stress
without allowing the battery to relax.

2) SIMULATION
Lithium-Sulphur ECN Model [40] is run using the same
algorithm as that used for the experimental setup. Here in
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TABLE 1. Data statistics.

i, ig, Vg, Vg,
00000 PRRPES 00000 PRR09 PRPPRROEOES RPRPEPRERPIOESS

Group Min 1*Q Median 3 Q Max
Voltage 2,7985 3,1546 3,2026 3,2309 3,6069
Current 0,2930 0,3320 0,4610 0,6460 0,6980
Voltage 2,0364 2,0963 2,1020 2,1080 2,4245

LFP

Lis Current 02061 02236 02994 03987  0,4822
Voltage ~ 1,3946  2,3194 23875 24737  2,8955
LTO Current 01550 02510 03210 04840  0,5720
Voltage 24966 34121 362325  3.8518 42417
NCA  Current 02640 03770 05160  0,7270  0,8490
Voltage  0,8683 12447 12612 12845 13913

NiMh

Current 0,1160 0,1370 0,1950 0,2620 0,2870

order to simulate the aging effect internal resistor values in
the model are increased in a randomly order. Additionally,
simulation temperature is set to 25 °C and initial SoC is taken
as 100%.

B. PRE-PROCESSING

In its raw form, it is not always possible to determine the bat-
tery chemistry from the current and voltage data alone, owing
to overlapping. Therefore, the data must be pre-processed.
For this purpose, data are put into frames and a separation
function is developed to separate the overlapping values.

1) FRAMING

The data obtained are converted into data frames; the cur-
rent values of the first and second load (10 data points for
10 seconds, 1 Hz sampling frequency), and then the volt-
age values are combined side by side to form data frames,
as shown in Figure 1. By this way, electrical information
related to battery chemistry is combined to obtain results that
are more accurate.

2) SEPARATION FUNCTION

The main goal of the separation function is to transform
overlapping data frames into disjoint sets so that the classi-
fication problem can be solved with full accuracy by using
a machine-learning algorithm. To achieve this, first it is

oo
e

FIGURE 1. LiS battery simulation.
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FIGURE 2. Data frame.

necessary to determine which parts of the data are statistically
more significant. The data are summarized with minimum,
1%t quartile, median, 3rd quartile and maximum statistics in
Table 1. The conformity of the numerical variables to the
normal distribution on the basis of the group is examined
using the Shapiro-Wilk test. The Kruskal-Wallis H test is
used to determine whether there is a statistically significant
difference between the groups. After the Kruskal-Wallis H
test, pairwise group comparisons are made using the Conover
test [41].

According to the results obtained, it is concluded that
the voltage values are statistically more significant. In this
context, a function has been derived that will enable the
separation of current values by amplifying the voltage in
the data frames as in (1). By other means, the separation
function separates the current values by using statistically
more significant voltage values.

f:x,-’j — Yij» in,j € R and Vy,;j eR
nSnmx’ f(x)z(x—i-e)xn
f@=1 cte)xnxp D
n> , fo)=————
2 B
Here,

n: Row number

Nmax: Maximum number data in a frame
e: Offset

n: Upscaling factor

p: Significance factor

B: Downscaling factor

yik = fs (xj.x) 2
Y = f, (X) 3)

where j is the sample count in a frame, & is the total frame
count, X is representing the collected data, and Y is represent-
ing the processed data. These data form a matrix consisting
of data frames in columns. Because the number of samples
in a frame is 40, frames of 40 units consisting of current
and voltage data can be written as columns, as in (4). This
formation is used in the application of the separation function.

i1 i1,2 iLk—1 Ik
o1 D2 k-1 2k
V39,1 V392 V39.k—1 V39.k
| V40,1 V40,2 V40k—1  V40k |
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Y40,1 .-+ Y40,k
3) PARAMETER OPTIMISATION
After obtaining the separation function in matrix form, the
primary issue for its application is to determine the param-
eters used in the function. Because the voltage parts of the
overlapping data are found to be statistically significant, p
has to take a value other than one. For appropriate and realistic
parameter selection, an optimisation algorithm is used.

In this case, the “Firefly Optimisation’” metaheuristic opti-
misation algorithm is chosen, which is first proposed by
Xin-She Yang [42], [43]. As it is widely stated in the
literature, metaheuristic algorithms like particle swarm opti-
misation (PSO) or its variants can be used in such kind of
parameter determination problem because of its applicabil-
ity [44]. In this study, the cost function presented in (6) is
used in the firefly optimisation algorithm to determine the
parameters of the separation function. Here, the data of five
types, namely batteries with five different chemistries, are

used separately. For this, it is designated as Type 1, Type 2,
Type 3, Type 4, and Type 5 LiS.

k
1
n = E ZYn,k (5)
i=1
40 5
Jeost = |:106 - Z <\/("LTypel (1) = Rrype2 (l))
i=1

- \/(ILType4 (D) = Krypes (i))z

2

— (Brsper ) — Berypes (i))z) } ©)

C. CLASSIFICATION

Owing to the data processed with the separation function,
the problem of determining the battery chemistry has been
transformed into a classification problem. Many algorithms
have been proposed to solve this problem. In this study, artifi-
cial neural networks (ANNs) and decision tree algorithms are
used among machine learning algorithms. Because ANN is
widely used for on-board (on-chip) applications which is run
on a microcontroller. Considering the computational cost of
ANN for the solution of BCCD problem is presented in detail
in previous studies [22]. According to the results, ANN has
great computational cost for on-chip applications. The reason
why decision tree algorithm is chosen in this study is its
low computational cost and on-chip applicability. Obtained
results are presented comparatively.

For the design of the ANN, the number of hidden neurons
and output neurons are fixed at 10 and 5, respectively. Input
neuron numbers are 40 as data count in a frame. In addition,
the classification tree algorithm, among machine learning
algorithms, is used for the same purpose. The term classi-
fication tree is first used by Breiman et al. in 1984 [45].
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Classification trees predict answers to questions posed to
the data, also known as decision trees. Therefore, decisions
in the tree are tracked from the beginning (root) node to
a leaf node containing the response to predict a response.
Classification trees give boolean responses such as ’true’ or
"false’. According to these responses, they either branch to
other leaf nodes or arrive at a conclusion that includes the
data in a category.

Figure 3 presents the workflow of the study. The pre-
processing and classification sections are fully conducted in
MATLAB 2021b. The simulation part of the data acquisition
section is conducted in SIMULINK 2021b. The experimental
study part of the data acquisition section is conducted with a
programmable electronic DC load controlled via LabVIEW
software.

IIl. RESULTS AND DISCUSSIONS

The data collected from the experimental and simulation
studies are presented in Figure 4 in the form of current-
voltage pairs. Here, more than 500000 measurements are seen
that the data of batteries with different chemistries and aged
at different rates from 25 to 2500 cycles overlap with each
other in certain areas. In particular, the data of NCA and LFP
batteries and LTO and LiS batteries overlap. Because the data
are collected for two different loads, a pattern separated by
two sharp linear lines can be seen.

When the data is used in current-voltage pairs, the artificial
neural network design consists of 2 input neurons, 10 hidden
neurons and 5 output neurons configuration. With this config-
uration, the results presented in Figure Sa are obtained. Here,
the distribution of the datasets is as follows; training 70%,
verification 15% and testing 15%. Similar results, presented
in Figure 5b, are obtained using the decision tree algorithm.
When Figure 5a and 5b are examined together, a result
confirming the overlap in Figure 4 is observed. Here, it is
seen that, for NCA and LFP batteries, with artificial neural
network algorithm 6406 data and with the decision tree algo-
rithm, 6851 data points are incorrectly predicted. For LTO and
NCA, 619 data with the artificial neural network algorithm
and 474 data with the decision tree algorithm are incorrectly
predicted. Likewise, for LTO and LiS batteries, 1950 data
with the artificial neural network algorithm and 5769 data
with the decision tree algorithm are predicted incorrectly.
At this point, it is observed that the artificial neural network
algorithm yields results that are more accurate for NCA-
LFP and LTO-LiS pairs. While the artificial neural network
algorithm made 9064 wrong predictions, the decision tree
algorithm made 13212 wrong predictions in total. With ANN
configuration, no matter how much fine tuning the network
parameters are made, the result cannot be improved; due to
overlapping data.

By bringing small pieces of information, reflecting the
electrical and chemical properties of the battery together,
precise results can be obtained. To achieve this, the data
are framed as presented in Figure 1, as the first step of the
pre-processing.
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FIGURE 3. Workflow of the study.
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FIGURE 5. Neural network and decision tree confusion matrix for binary
couples.

NN Algorithm with Raw Framed Data DT Algorithm with Raw Framed Data

LFP 235 LFP 143

8] 2056 2 to| 1 2061 6
% ]
s K]
O s 1638 © s 1638
Y 3
2 2
& £
NCA| 88 8 1935 Nea| 229 14 1950

NiMh 4

.

LFP 1o Lis NCA  NiMh LFP LTo Lis NCA  NiMh
Predicted Class Predicted Class

(a) (®)

FIGURE 6. Neural network and decision tree confusion matrix for data
frames.

When framed data are used, the results obtained by the
artificial neural network algorithm are presented in Figure 6a,
here, the distribution of the datasets is as follows; training
70%, verification 15% and testing 15%. Obtained results by
the decision tree algorithm are presented in Figure 6b. The
artificial neural network algorithm made 100 and the decision
tree algorithm made 393 incorrect predictions in total.

In both cases where the data are used in pairs and frames,
the results obtained from the artificial neural network and
decision tree algorithms show that battery chemistries cannot
be determined with 100% accuracy. However, when the data
are evaluated as frames, it is observed that the algorithms
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made relatively more accurate predictions. In order to
improve the prediction accuracy, pre-processing the framed
data with a separation function is proposed.

Firefly optimisation algorithm is used to determine the
optimal values of the offset, significance, upscaling, and
downscaling factor parameters in the separation function (1).
The optimisation algorithm is applied with the cost function
given in (6), which is chosen to maximize the difference
between the mean values of the data sets. The parameters cal-
culated according to the optimisation results are n = 38.03,
p = 5.051, B = 1.3523, and ¢ = 50.502. The graph of the
data processed using the separation function is presented in
Figure 7. After pre-processing, it is easy to predict the battery
type with classification algorithm because of disjoint values.
Figure 7 shows that the overlapping data of LTO-LiS and
NCA-LFP batteries are clearly separated. This demonstrates
the effectiveness of the separation function.
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143 - 7]
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FIGURE 7. The effect of separation function.

To determine the battery chemistry with 100% accuracy,
which is the aim of the study, it can only be achieved by pre-
processing the data by both framing and separation function.
With the pre-processed data, both the artificial neural network
and decision tree algorithm are applied separately. With both,
the battery chemistry can be determined with 100% accuracy.
The results are shown in Figure 8.

DT Algorithm with Processed Framed Data

NN Algorithm with Processed Framed Data

e LFe
1o 2068 Lo 2068
O us o s 1638
NCA NCA 2193
M Nivn
LFP L0 LS  NCA Mt LFP L0 LS  NCA  Nih
Predicted Class Predicted Class
(@) (b)

FIGURE 8. ANN algorithm and decision tree algorithm results after
pre-processing data frames with the separation function.
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L

FIGURE 9. Decision tree algorithm.

Graphic description of the decision tree algorithm, which
can detect battery chemistry with 100% accuracy and less
computational cost, is presented in Figure 9. The pseudo code
of the algorithm is as follows.

x1: fy (Voltage)
x2: fs (Current)

node 1 if x1<737.29 then NiMh elseif x1>=737.29 then
node 3
node 3 if x2<142.609 then node 4 elseif x2>=142.609 then
node 5
node 4 if x1<757.004 then LTO elseif x1>=757.004 then
LFP
node 5 if x1<752.418 then LiS elseif x1>=752.418 then
NCA

As it can be seen from the pseudo code of the decision
tree algorithm, this algorithm can be easily implemented
on any hardware, even with integrated circuits with low
processing power. The manner in which the decision tree
algorithm categorizes the data processed with the separation
function is presented in Figure 10. Figure 10a shows the
effect of the separation function. Owing to pre-processing, it
is seen that current-voltage pairs with the same voltage value
have different f; (Current) values, although they have the
same f; (Voltage). Thus, classification areas of the batterys’
chemical composition can be clearly predicted, as shown in
Figure 10b.

Here } representing;

55 700 & 740 45 TS0 1S5 760 765 70 ITS
(Voliage] e Lo s Ls e HoA s nm

(@) ()

FIGURE 10. Pre-processed data and how it is classified by decision tree
algorithm.

BCCD is especially designed for a new generation function
for BMSs or for different commercial applications; one of the
important factors is computational cost. For this reason, the

6502

method is designed to be run on electronic hardware with
a simple microcontroller. It is concluded that categorizing
the data processed with the separation function using the
decision tree algorithm is much more applicable because of
its low computational cost despite the fact that it has 100%
success on BCCD. The proposed method is applied to a multi-
chemistry BMS which is patent pending [27]. Additionally,
the method also applied to a system that determines the chem-
ical composition of battery and calculates state of health. This
system is also patent pending [28].

IV. CONCLUSION
Meeting the increasing energy need for electrical systems
in parallel with the developing technology, storing electri-
cal energy in sufficient density is a problem that has been
going on for decades and waiting to be solved. Great steps
toward solving this problem are taken in the 20" century. The
development of lithium-based batteries has made high-power
applications such as electric vehicles and grid-scale batter-
ies. Due to increasing environmental awareness, legislative
changes, incentives, and critical decisions made in line with
the policies of countries to reduce carbon emissions, the
trend toward electric vehicles has increased significantly.
In addition, renewable energy systems, green energy, and
large-scale storage systems used in grids have also increased
the demand for batteries. However, this increase has revealed
the problem of using end-of-life batteries in other applica-
tions or processing them in recycling centres. The separation
of batteries according to their chemistry in these processes
is a technical problem. To solve this problem, costly, error-
prone, difficult to implement, and time-consuming methods
such as computer vision, block chain, artificial intelligence,
and X-rays are used. In addition, studies are conducted in the
field of multi-chemistry battery management systems, which
enable the joint use of the superior properties of different
battery chemistries in order to make battery systems more
efficient. Moreover, battery management systems must have
next-generation features to support future battery chemistries.
Determining the battery chemistry is a technical challenge.
A robust determination method is developed in this regard,
presented in this study, applied to a new generation battery
management system developed under a Project supported by
Scientific and Technological Research Council of Turkey and
Inonu University research fund. Additionally, patent appli-
cations have also been made [24], [25]. In this method, the
battery chemistry is determined by measuring the current and
voltage parameters of the battery for only 20 s. It differs
from existing methods in terms of using only basic electrical
parameters and ease of application. The main factors that
make this possible are framing the collected data and pre-
processing it with the proposed separation function. Because
of pre-processing, the current values corresponding to the
same voltage value of batteries with different chemistries
are separated from each other. In this way, the problem of
battery chemistry determination has become a categoriza-
tion problem. Artificial neural networks and decision tree

VOLUME 10, 2022



i. C. Dikmen, T. Karadag: Electrical Method for Battery Chemical Composition Determination

IEEE Access

algorithms are applied to solve this problem. In terms of
computational cost, the decision tree algorithm is consider-
ably more advantageous than the artificial neural network
algorithm. It is concluded that it would be more appropriate
to use this method with the decision tree algorithm in terms of
both computational cost and ease of implementation so that
it can be used even in complex or high cost applications with
low computational power. As a result, thanks to this novel
approach, 100% success is achieved by using basic electrical
parameters for five most preferred commercial battery types.

Itis foreseen that adding the proposed method-based deter-
mination function to battery management systems will pro-
vide flexibility so that both end user and BMS manufacturers
can design without being dependent on battery chemistry.
Considering the rapidly increasing use of electric vehicles
worldwide, it will be possible to choose traction batteries that
have completed their useful life, regardless of battery chem-
istry. In general, it allows the use of all existing battery types
in the design and production of all battery-powered systems,
and the use of new battery chemistries that will be released to
the market by determining them. In addition, a low-cost, easy-
to-apply, and fast alternative solution works with basic elec-
trical parameters so that batteries can be separated according
to their chemistry during the recycling process.
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