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ABSTRACT There are a plethora of invented classifiers in Machine learning literature, however, there
is no optimal classifier in terms of accuracy and time taken to build the trained model, especially with
the tremendous development and growth of Big data. Hence, there is still room for improvement. In this
paper, we propose a new classification method that is based on the well-known magnetic force. Based on
the number of points belonging to a specific class/magnet, the proposed magnetic force (MF) classifier
calculates the magnetic force at each discrete point in the feature space. Unknown examples are classified
using the magnetic forces recorded in the trained model by various magnets/classes. When compared to
existing classifiers, the proposed MF classifier achieves comparable classification accuracy, according to
the experimental results utilizing 28 different datasets. More importantly, we found that the proposed MF
classifier is significantly faster than all other classifiers tested, particularly when applied to Big datasets and
hence could be a viable option for structured Big data classification with some optimization.

INDEX TERMS Artificial intelligence, classification algorithms, data mining, supervised learning, machine
learning.

I. INTRODUCTION
Artificial intelligence and machine learning in particular is a
hot research subarea because of their numerous applications
in various fields and contexts. Examples of applications
include, but are not limited to: Natural Language Pro-
cessing [1]–[6], Computer Vision [7]–[10], Game theory
[11], [12], Speech Recognition [13], Security [14]–[24],
Medical diagnosis [25], [26], Statistical Arbitrage [27],
Network Anomaly Detection [28]–[32], Learning associa-
tions [33], [34], Prediction [35]–[39], Extraction of infor-
mation [40]–[43], Biometrics [44]–[46], Regression [47],
Financial Services [48]–[53] and Classification [54]–[56].
Depending on their perspective on the problem and the
approach utilized, scholars have defined machine learning in
different ways. However, the underlying definition is nearly
identical across the board and revolves around Brett Lantz’s
definition, who stated that Machine learning is the process
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of developing computer algorithms for translating data into
intelligence [57]. Supervised learning is a broad topic of
machine learning that entails learning a data-to-output label
mapping. The most popular subtopic in supervised learning
is the classification of labeled data [58].

During the previous few decades, classifiers have been
intensively studied and analyzed. Classifiers are widely used
in many modern applications as key computer technology.
Many classifiers exist, such as K-Nearest Neighbor (KNN),
Support vector machine (SVM), Naive Bayes (NB), Random
Forest (RF), Decision Tree (DT), and many more. In terms
of accuracy and time consuming building a trained model,
each classifier has advantages and limitations; some are more
effective with specific datasets than others, and hence there
is no optimal classifier that can perfectly classify all types of
data.

The time spent building the trained model, or the test time
if the classifier does not provide a trained model, such as the
KNN and its variants, is one of the primary concerns with
classical classifiers when employed on Big data. Such a long
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time consumed makes the classifier impractical to be used for
Big data classification.

In order to hasten the learning process, particularly when
training Big data, in this paper, we developed a new classifier
based on the idea of Magnetic Force (MF), where we
programmatically imitate the MF’s work, as inspired by the
work of [59]. In this approach, each class is represented by a
specific magnet, the iron filings represent the unknown data
points that need to be classified. The magnetic field around
each magnet/class is formed by the examples belonging to
the same class. To calculate the force of each magnet/class on
each point in the features space, we apply the Inverse Square
Law (ISL). Knowing that the feature space may contain
continuous data makes calculating the MFs in an infinity
space problematic. Therefore, we opt for discretizing the
features space by binning each value in each dimension. Thus,
the MF for each class can be calculated for each bin. After
building the MFmodel, which is simply based on the training
data, any unknown data point (iron filling) will be attracted
to the strongest MF and classified by that particular class.

Formally, we can say: Given a numeric dataset D, with
dimensionality d, with n training examples belonging to
either class A or Class B, if we can discretize these examples
by binning them to b discrete values, then we can generate
two Magnets (MA and MB) and store their forces in M,
which is b × d matrix. Since the MF is disproportionate to
the distance between the magnet and the iron filling, we use
ISL, as the nearest iron filings are attracted to either MA or
MB more than the furthest. we can form two matrices, one
for each magnet/class, or one matrix with two values in each
cell. Similarly, this definition is also applied for multi-class
datasets.

Obviously, the time complexity of the proposed approach
is linear O(n), since it depends mainly on the number of
examples found in a training set. Particularly, when n � d
(number of features) of the training data set. And equally
important, the small size of the trained model= b× d, if d is
relatively small, then the time and space complexity of the
generated model will be O(c), where c is a constant. The
ability to classify Big data at such a low level of time and
space complexity is critical.

II. LITERATURE REVIEW
Although the KNN classifier is extremely slow and lazy
learner [60]–[65], it is still used extensively for Big data
classification, because it skips the training process, and save
its time, which is extremely long for most of the traditional
classifiers. However, it is used with a helper to hasten the
test phase: indexing, clustering, sorting, and reducing the data
among other reprocesses help speed up the classifier when
dealing with Big data.

For example, Hassanat [66] created a new approach to
sorting the examples of training data into a binary search tree
to speed up Big data classification. This has been carried out
by using two methods. The first is referred to as Extreme
Points-based binary search tree (EPBST), which identifies

local points based on their similarity to these global extremes.
And the second referred to as Random-Points-based binary
search tree (RPBST), selects the local points randomly.
Different experiments on medium and large datasets show
reasonable accuracy rates compared to other related methods,
including the pure KNN classifier.

Another approach by the same author [67] was proposed
to classify Big data using the KNN classifier. The KNN
classifier was used in conjunction with inserting training
examples into a binary search tree (BST) to speed up the
search process, having known that a BST can be searched in
logarithmic time. In their work, they examined two methods
to sort the training examples. The first is called NBT, which
calculates the minimum/maximum criterion measured and
rounds it to 0 or 1 for each instance. While the second one,
which is called MNBT, inserts each instance in the BST
depending on its similarity with the minimum and maximum
instances, their experiments show competing accuracy and
fast classification compared to the other methods examined.

In a similar work [68], the author created a similar BST,
which is used by the KNN classifier to classify Big data.
The difference is that this method is based on finding the
diameter of a data set, which is then used to sort the BST for
training dataset examples. This method has a high potential
for classifying Big data and can also be generalized to other
applications, particularly when speed is a key factor. The
outermost pair of examples could be found for each BST
node, and the examples in a particular node are sorted after
which the generated BTS could be searched. The examples
in this paper are used to classify the test example using the
KNN classifier. The results showed themethod’s efficiency in
terms of speed and accuracy compared to the other methods
examined. However, compared to the pure KNN, the accuracy
rates are not ideal, and it needs more improvements.

The diameter of a dataset used in the previous work
was found using methods proposed by A [69]. Where
they implemented four simple algorithms to approximate
the diameter of a multi-dimensional dataset because most
algorithms do not fit well with large values of data dimensions
since time complexity grows significantly in most cases. The
results of the experiments conducted on different machine
learning datasets prove the efficiency of the implemented
algorithms. These methods are helpful to find the diameter of
a Big dataset, whichmight be used bymachine learning appli-
cations. For example, the authors of [70] utilize the diameter
concept to solve the imbalanced data problem by synthesizing
similar minority examples, using an over-sampling technique
based on the furthest neighbour algorithm.

In order to increase the performance of the previous
work [66]–[68] in terms of computation time, space con-
sumption, and accuracy, [71] the main contribution is the
conversion of the resultant BST to a decision tree. This
eliminates the need for the slow KNN and results in a smaller
tree, which is useful for memory usage, speeds up both the
training and testing phases, and improves the classification
accuracy as well. The reported experimental results show
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that the proposed methods are more efficient in terms of
space, speed, and accuracy than [66]–[68] and other methods
compared. Indicating that the proposed methods have a lot of
room for improvement before they can be used in practice.

The authors of [72] proposed a new approach that improves
the instance-based KNN algorithm, their clustering-based
strategy was adopted to reduce the computational cost of
the KNN algorithm. The performance improved by solving
the problem of instances by expanding its size using neural
networks to obtain a suitable representation of the classifi-
cation process. The reported results show better performance
compared to the other methods examined.

Another approach [73] proposes a newMapReduce-based
approach to classify Big data. The map stage finds the
k-nearest neighbors in various data partitions. Following
that, the reduce stage computes the exact neighbors from
the map stage’s list. The proposed approach enables the
KNN classifier to scale to any dataset size by adding more
nodes as needed. Furthermore, like with the original KNN
classifier, this kind of parallel implementation gives the same
classification rate. The reported results utilizing a dataset with
up to 1 million instances reveal that the proposed approach
scales well with Big data.

Another MapReduce-based approach is proposed by [74],
Themain focus of this proposal is on the test set management,
with the goal of maintaining the test set in memory wherever
possible. Otherwise, it is partitioned into the smallest number
of chunks possible, utilizing MapReduce per chunk and
Spark’s caching capabilities to reuse the formerly partitioned
training data. The reported results utilizing a dataset with up
to 11 million examples reveal that the proposed approach
scales well with Big data.

A multivariable random decision tree is proposed by [75],
the purpose of this method is to speed up the classification
process utilizing two partition methods. The first randomly
partitions the data, referred to as (MDT1), while the second
(MDT2) uses Principal Component Analysis (PCA) for
partitioning the data. According to the reported results, both
methods allow for short training time and competing accuracy
on Big datasets.

For speeding up the KNN classifier, [76] proposed two
methods. The first uses random clustering (RC-KNN), and
the second, use landmark spectral clustering (LC-KNN).
the clustering process is based on the well-known K-means
clustering, which is mainly used to split the entire data set
into several smaller parts. This makes applying the KNN to
test input instances much faster than applying it on the entire
dataset. The reported results of both methods LC-KNN, and
RC-KNN showed better performance when tested on Big
datasets.

In [77], the authors conducted a survey-like study that
included the-state-of-the-art techniques and tools used for big
data classification. Also, they analyse various approaches that
have been followed for big data classification. The advan-
tages and disadvantages of each approach were discussed
for different types of machine learning techniques Finally

they provided the readers with a survey of many open-source
libraries that have been used in big data.

It’s also worth highlighting other Big Data classification-
related studies, like [78]–[143].

III. THE MAGNETIC FORCE CLASSIFIER (MF)
In this paper, We propose a supervised machine learning
Magnetic Force classifier (MF) based on the concept of
magnetic force attracting an iron filling. e.g. if we place a
piece of iron between two ormoremagnets, it will be attracted
to one of them, which will exert a greater force on it due to
the magnet force and the distance from the magnet.

For example, assume that we have three magnets (M1, M2,
and M3), an iron filling (F), and a set of arrows representing
magnetic forces and directions of attraction towards each
magnet, as shown in Figure 1. The blue scale color indicates
the presence of varied magnetic strengths in the area; the
fainter the hue, the stronger the magnetic force. The highest
magnetic force found at each point determines the direction
of each arrow, as seen in this diagram. Despite the fact that F
is closer to M2 andM3, it is drawn to M1 in this case because
M1’s force on F is stronger.

We simulate this physical process by representing each
class in a training dataset by amagnet with a specific force for
each point in the feature space. The training process of theMF
classifier ends up generating a trainedmodel that incorporates
all of the magnetic forces for each class for each point in the
feature space. However, because the feature space is typically
defined in terms of real numbers, the model’s size would be
infinite if each feature were not digitized into discrete values.
Binning the training data set allows the MF at each location
for each class/magnet to be determined.

We used ISL to properly reflect the magnetic force as being
inversely proportional to the distance at each point belonging
to each class, with say 1 Tesla added to the force of its
magnet/class at that particular point, but it affects all the other
locations by adding a fraction of force (FF) as follows

FF =
1

(d + 1)2
(1)

where d is the block distance from the current cell.
The output model is a 2D matrix of vectors, where each

vector in each cell contains the magnetic force of each class.
Table 1 shows the MF trained model of a toy example dataset
with two classes/magnets and two features using 10 bins.
As also shown in Figure 2.
As demonstrated in Figure 2, larger values exhibit stronger

MF for Class 2 (MF2), whereas smaller values exhibit
stronger MF for Class 1 (MF1). This means that the
class 1 points in our toy example have tiny values for both
features, whereas the class 2 points have large values for both
features. And this is exactly what happens when we designed
our toy example just for the purpose of illustration, as the
values of the features of the points belonging to class 1 are
in the range of 0 to 5, while those of class 2 are in the range
of 4 to 9. As a result, the MF classifier translates the training
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FIGURE 1. Example of 3 magnetic forces (M1, M2, and M3) attempting to attract an iron filling (F).

TABLE 1. The MF trained model of a toy example dataset with two
features and two classes.

data into magnetic forces for each class based on the training
examples and their features.

During the testing phase, we assume that each tested
example is represented by an iron filling, and we assign the
test example to the class with the maximum total magnetic
force by reading the MF model at the location of the iron
filling for each feature, as follows:

C = arg
n

max
Ci

m∑
k=1

(MFk ) (2)

where C is the predicted class, m is the number of features,
MFk is the magnetic force of feature k , and n is the number
of classes.

FIGURE 2. Toy example: magnatic force for each feature for each class.

For example, assume we have a point P1 = (1, 2),
according to the toy example model shown in Table 1,
MF1 for feature1 = 4.20 and MF1forfeature2 = 6.92, then
C1, which represents the MF of class1 = 11.12. Similarly,
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Algorithm 1 Training phase
Input: Numerical training dataset (train) with C classes,
F features, N instances and B Bins
Output:MF as magnetic power values (3D array) Initialize:
• counter as integer 1D array of size (C)
• A1, MF as integer 3D arrays of size (B, F-1, C)
• A2 as double 2D array of size (B, B)
for feature=0 to F-1 do

for bin=0 to B do
for sample = 0 to n do

if bin == train (sample, feature) then
counter (train(sample, feature)) is incremented by 1

end if
end for

end for
for label=0 to C do

A1 (bin, feature, label) = counter(label)
counter (label)=0

end for
end for
for feature = 0 to F do

for label=0 to C do
for bin1=0 to B do

for bin2=0 to B do

A2(bin2, bin1) =
A1(bin1, feature, label)

((bin2− bin1)+ 1)2

end for
end for
for bin3 = 0 to B do

for feature2 = 0 to F do

MF(bin3, feature, label)

= MF(bin3, feature, label)

+A2(bin3, feature2)

end for
end for

end for

end for

MF2 for feature1 = 0.33, MF2 for feature2 = 0.51, then C2,
which represents the MF of class2 = 0.84. And therefore,
the predicted class should be class1 according to Equation 2.
Both of the training and testing phases are described in
algorithms (1) and (2) respectively.

IV. RESULTS AND DISCUSSION
We chose 28 datasets of various sizes to assess the pro-
posed MF classifier: small, medium, and Big datasets. Our
implementation is based on these numeric datasets, which
were retrieved from the UCI website [144] and the Kaggle
website.1

Table 2 describes the datasets in terms of number of
Instances, number of features, number of classes, and their
class imbalance ratio. These datasets differ in terms of the
number of examples, features, and classes; this diversity is
intended to demonstrate the new classifier’s strengths and
flaws in terms of accuracy and time consumption when
compared to other classifiers.

Because it is difficult to compute an infinite number of
different magnetic forces with the proposed MF classifier,
it is necessary to scale each feature in the dataset to a

1https://www.kaggle.com/

Algorithm 2 Testing phase
Input: Numerical testing dataset (test) with C classes,

F features, N instances
Output: CM as Confusion matrix

Initialize:
• counter as 1D integer array of size (C)
• CM as 2D integer array of size (C,C)
• max and accuracy as doubles
for sample = 0 to N do

for feature in F-1 do
for label in C do

counter(label)

= counter(label)

+MF(test(sample, feature), feature, label)

end for
end for
for label2 in C do

if max< counter (label2) then
max = counter (label2)
key = label2

end if
end for
if key == test(sample,F-1) then

accuracy is incremented by 1
CM(test(sample, F-1), test(sample, F-1)) is incremented by 1

else
CM(test(sample,F-1),key) is incremented by 1
counter=0
max=0

end if

end for

discrete range, then build the number of bins depending on
this range in order to calculate the magnetic force at each
position. Therefore, selecting the right number of bins for
MF is critical. We conducted multiple pilot tests utilizing
the proposed MF classifier with varying number of bins
2, 3, 4 . . . , 15 applied to four (small, medium, and Big)
datasets to determine which number of bins is preferable for
the MF classifier. Table 3 shows the accuracy of MF for each
number of bins.

The number of bins utilized had no effect on Big datasets,
as shown in Table 3. This is due to the class imbalance
problem, as both Big datasets (SUSY and Poker) are class
imbalanced. This is something we’ll discuss over later.
However, we should highlight that for small and medium-
sized datasets (wine andChinese-minst), themore the number
of bins, the higher the accuracy. We should also mention that
the accuracy improves from 9 onward. We chose 9 bins for
the MF classifier in our experiments as the best option at the
present in terms of accuracy and model size, because model
size has a considerable impact on memory consumption and
testing time.

The proposed MF classifier has been tested and compared
to five of the most common classifiers, namely, KNN,
SVM, NB, RF, and DT(J48). The comparison focuses on
the classification accuracy and time consumed in both the
training and testing phases of each classifier. We made these
comparisons on the same computer, which has the following
specifications:
• Intel(R) Core (TM) i7-9750H CPU @ 2.60GHz
• 16.0 GB of RAM
• 64-bit operating System
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TABLE 2. The datasets that were used to assess the MF classifier. CIR is the class imbalance ratio.

TABLE 3. MF accuracy results for each number of bins (2 to 15), when applied on four datasets (small, medium and big).

• Application used: Weka v 3.8.5 64-bit.
Because the performance of the proposed MF is compared

to the aforementioned classifiers using WEKA [145],
which is constructed using JAVA computer language,
we implemented the MF classifier using Java language
too so that the results of the comparisons would be
well-comparable.

We used 5-fold cross-validation to evaluate the MF
classifier in a range of trials, comparing the results to baseline
classifiers and assessing the accuracy and time spent in the
training and testing phases. Table 4 shows the times spent by
all classifiers in both the training and testing phases for all of
the 5-fold training/testing experiments. As can be noted from
these results, theMF classifier required significantly less time
than the other classifiers.

However, the time was comparable with small datasets
because most classifiers are quick on short datasets, but using
baseline classifiers on Big datasets like Poker, SUSY, and
HIGGS took over 4 weeks to build and test their models,

so we halted their experiments and were unable to add their
results to Table. 4.

The evaluated baseline classifiers are inefficient when used
on Big data for two reasons: 1) they take an unreasonable
amount of time to build and test, and 2) they require a lot of
memory, whereas the MF classifier took roughly 10 minutes
to build and test its model (5 times since 5-fold) for the
Biggest dataset (Higgs).

The complexity of the MF classifier is determined by a
number of factors, including the number of samples (n),
features or dimensions (d), classes (c), and bins employed (b).
So the size of the generated MF model = b × d × c,
however, if n � d , which is the case in most datasets,
including the ones used in this study, then d may be treated
as a constant, and hence the space complexity becomes =
O(constant), which is asymptotically = O(1). Similarly, the
time complexity of creating theMFmodel= n×d becomes=
O(n), i.e. linear time, for the same reason. The proposed MF
classier’s efficiency demonstrated by the findings presented
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TABLE 4. Time (ms) consumed by each classifier for training and testing phases.

in Table 4 is due to its minimal complexity in time and
space.

In terms of classification accuracy, Table 5 displays the
accuracy of categorizing 25 datasets (small and medium)
using MF and baseline classifiers, leaving the results of Big
datasets to be compared to current Big data classifiers, as we
were unable to obtain their results owing to time and memory
constraints.

Large magnets have larger magnetic fields, and hence a
larger attraction force on iron fillings in real life. The same
physics applies to the proposed MF classifier, we expect
that examples with large numbers will dominate the MF
learning process on the account of other examples belonging
to minority classes. Because a high number of instances
from the same class have a strong magnetic force, hence
unclassified examples are incorrectly classified to be belong-
ing to the majority class, even though they are closer to
another minority example.

Because the majority of the datasets used in this study are
class imbalanced, in order to investigate the impact of class
imbalance on our MF classifier, we used the MF classifier

on the datasets as-is, then balanced them, and compared
the results before and after the balancing process. For
simplicity, we balanced all datasets by randomly dropping
extra examples from the majority class [146].

As can be observed from the classification accuracy
results in Table 5, and as expected, after balancing, the
accuracy increased for the majority of datasets. However,
after balancing, the accuracy results of some datasets are
close to or less than the accuracy before balancing. This is due
to the data balancing method we utilized; because we used
Random Under-sampling, where instances are discarded at
random, these instances may include important information
for better learning.

The impact of class imbalance on MF may be examined
further by comparing the confusion matrices before and
after balancing the data to better understand how the MF
classifier behaves while classifying balanced and imbalanced
data.

We used four datasets to calculate the confusion matrix
before and after balancing just for simplicity. A closer
examination of the confusion matrices in Figure 3 offers
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TABLE 5. Comparison of MF classification accuracy to baseline classifiers, with MF results obtained solely before and after data balancing.

TABLE 6. Comparison of MF classification accuracy/training time(ms) to big data classifiers.

further information about the MF model’s evaluation; for
instance, before balancing, the majority of the examples
were classified as belonging to the majority class, but
after balancing, the classification results were signifi-
cantly improved, as shown by the confusion matrices in
Figure 3.

Based on this finding, we conclude that the proposed MF
classifier has a fundamental limitation when learning from
class imbalanced data in its current form.

Previous research has employed a variety of methods to
speed up big data classification. We compared the proposed
MF classifier’s efficiency in terms of accuracy and time spent
building and testing the model with the findings of prior
studies, which include EPBST, RPBST [66], FPBST [68],
NBT, MNBT [67], Iterative MapReduce-based approach
for kNN (MR-KNN) [73], Iterative Spark-based design of
the kNN classifier (KNN-IS) [74], Randomly partitioned
multivariate decision tree (MDT1) and the PCA-partitioned
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FIGURE 3. MF Confusion matrices for four dataset, before and after data balancing.

FIGURE 4. Time consumed by the evaluated classifiers on Poker Big dataset.
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FIGURE 5. Time consumed by the evaluated classifiers on SUSY Big dataset.

FIGURE 6. Time consumed by the evaluated classifiers on Higgs Big dataset.

multivariate decision tree (MDT2) [75]. These methods
each published findings on one or more of the three Big
datasets D26, D27, and D28, also known as Poker, SUSY,
and HIGGS.

Using 5-fold cross-validation, we compared the classifica-
tion results achieved by the MF classifier to EPBST, RPBST,
FPBST, NBT, MNBT on the three Big datasets. All of these
methods rely on constructing a BSTmodel during the training
phase, which makes the test example search significantly
faster than sequential search. The other Big data classifiers
are also included in the comparison as shown in Table 6.

It is worth noting that the time consumed in Table 6 is for
training and testing phases for some methods and for training

only for others, depending on the published results; likewise,
the training/testing ratio is not always 5-fold cross-validation;
it is holdout with test to train ratios ranging from 19% to 90%.

As shown in Table 6, the MF classifier consumes signifi-
cantly less time, proving its high speed and efficiency when
applied to Big data. TheMF Accuracy results are comparable
to those of the other Big data classifiers but significantly
outperform them all when used on the SUSY Big dataset.
Figures 4, 5 and 6, depict the significantly less time consumed
by theMF classifier compared to the other Big data classifiers
evaluated on the three Big datasets used.

The time comparison was based on time reported in the
literature, but we genuinely think it is valid because most
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of the previous methods compared used machines with high
specifications andmultiple CPUs, so as to be able to deal with
Big data. For example, EPBST, RPBST, FPBST, NBT, and
MNBT, all used Azure high-performance computing virtual
machine with 16 CPUs and 32 GB RAM, [66], [68], and [67].
While the proposedMF classifier was evaluated on a standard
laptop with the modest specifications listed at the opening of
this section.

V. CONCLUSION
Inspired by the power of nature, and the work of Has-
sanat et. al [59], we propose the MF classifier, which
calculates the magnetic force at each discrete point in the
feature space based on the number of points belonging
to a certain class/magnet. The forces measured by various
magnets/classes- which are recorded in the trained MF
model- are then utilized to classify unknown samples.

We employed 28 small, medium, and big benchmark
datasets to evaluate the proposed classifier, and compared the
classification results and time consumed by the training and
testing phases to a number of popular classifiers and a number
of Big data classifiers.

The experimental findings reveal that when compared to
the other classifiers, the proposed MF classifier achieves
comparable classification accuracy. More importantly,
we found that the proposed classifier is significantly faster
than all of the other classifiers assessed, especially when
applied to Big datasets and hence could be a viable choice
for structured Big data classification.

The proposed classifier, however, has two major limita-
tions, according to the results of the experiments: 1) Deciding
on the optimal number of bins for the MF model, which is
determined by a variety of parameters such as the size of
the output model, classification accuracy, and data type. And
2) The current version of the MF model is sensitive to data
that is skewed by class. Both of these issues will be addressed
in future work.
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