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ABSTRACT This paper proposes a multi-strategy seeker optimization algorithm (MSSOA) for optimization
constrained engineering problems. In this paper, three strategies were adopted to improve the poor searching
capability of the seeker optimization algorithm (SOA). The first strategy was triple black hole system
capture to solve the local optima issue. The second and third strategies were the multi-dimensional random
interference and the precocious interference to balance the exploration and exploitation processes. These
three strategies are proposed to improve respectively the SOA algorithm, and compared with the three
strategies to improve together the SOA algorithm for optimizing 15 benchmark functions; the way these
three strategies work together is called multi-strategy; and the efficiency of the multi-strategy is illustrated
the numerical optimizing results and the convergence curves, population’s positions with iterations and the
search history of the benchmark functions. The proposed multi-strategy method achieved better performance
in optimizing of the benchmark functions compared to other six optimization methods. The numerical and
experimental results analysis were observed with respect to the optimal solution curve, the convergence
curve of the fitness function, the ANOVA tests, the calculation complexity of the algorithm, the running
time of the algorithm routine, the exploration and exploitation capability, the Wilcoxon’s rank-sum test,
the performance profile of algorithm. The results showed that the proposed multi-strategy method was
efficient in the benchmark functions. The proposed multi-strategy method also achieved better performance
in optimizing of the engineering problems and provided better solutions compared to other six optimization
methods.

INDEX TERMS Seeker optimization algorithm, triple black hole system capture, multi-dimensional random

interference, precocious interference, constrained engineering optimization problems.

I. INTRODUCTION

Recently, the heuristic algorithm has received a lot of
attention. Such algorithms create random methods for many
optimization problems. Since the No Free Lunch (NFL)
theorem, no one optimization solution can optimize overall
questions [1]. Therefore, researchers pose new algorithms
or enhance the current algorithms to deal with optimization
problems. The current algorithms are the genetic algorithm
(GA) [2], the particle swarm optimization (PSO) [3], the
simulated annealing (SA) [4], the harmony search (HS) [5],
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the gravitational search algorithm (GSA) [6], the moth-flame
optimization (MFO) [7], the sine cosine algorithm (SCA) [8],
the multi-verse optimizer (MVO) [9], the social network
search (SNS) [10], and the seeker optimization algorithm
(SOA) [11].

However, some optimization algorithms are still not very
successful in optimization problems. The optimization prob-
lems include: being premature, issues with low optimiza-
tion precision, having only a local optimal solution, slow
convergence speed, unbalance the exploration and exploita-
tion processes, and insufficient robustness. To better over-
come optimization precision, prematurity, having only a local
optimal solution, the slow convergence rate, unbalance the
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exploration and exploitation processes, and poor robustness,
some improved algorithms have proven to be feasible opti-
mization algorithms and have been used in practical engi-
neering. For instance, a discrete bat algorithm based on Levy
flights is adopted to solve the Euclidean traveling salesman
problem [12]. The cuckoo optimization algorithm in reverse
logistics is used to design a network for COVID-19 waste
management [13]. A cuckoo optimization algorithm based on
introducing chaos, a levy flight, opposition learning, and dis-
ruption is used to classify the optimal feature subspace [14].
An elite symbiotic organisms search algorithm with mutually
beneficial factors was adopted to optimize the functions [15].
An artificial bee colony (ABC) with dynamic Cauchy muta-
tion is adopted to solve feature selection [16]. Polyno-
mial variation combined genetic adaptive search is applied
to optimize constrained engineering design problems [17].
The PSO based on time-varying coefficients is applied
to optimize the parameters of combustion engines [18].
A new hybrid identification algorithm based on the Aver-
age Multi-Verse Optimizer and Sine Cosine Algorithm is
presented for identifying the continuous-time Hammerstein
system [19].

Therefore, this is a popular trend at present: on the basis
of retaining the advantages of the original algorithm, add
some strategies to suppress or improve the shortcomings
of the algorithm, so that the algorithm is more suitable for
some practical optimization problems. This article takes this
popular approach to research the SOA algorithm.

Dai et al. propose the SOA algorithm in 2006 [20]; the
goal is to mimic the seekers’ behavior and the way they
exchange information and solve practical application opti-
mization problems. In the recent decade, because of the
SOA’s strength in fast convergence of optimization problems,
the SOA algorithm has been used in many fields, such as
in unconstrained optimization problems [21], optimal reac-
tive power dispatch [22], a challenging set of benchmark
problems [23], the design of a digital filter [24], optimizing
parameters of artificial neural networks [25], the optimiz-
ing model and structures of fuel cell [26], the novel human
group optimizer algorithm [27], and several practical appli-
cations [28]. However, in the initial stage of dealing with
optimization problems, SOA converges faster than others;
When all individuals are near the best individual for solving
the optimization problem, the individuals will lose diversity,
fall into the local optima region, affect the optimization accu-
racy of the algorithm, and unbalance the exploration and
exploitation processes.

To improve the SOA algorithm, we choose several
strategies is applied to increase individual diversity, avoid
premature puberty, improve the optimization precision, and
balance the exploration and exploitation processes. These
strategies are the Levy variation strategy, the refraction
reverse learning mechanism strategy, the mutual benefit fac-
tor strategy, the Cauchy variation strategy, the polynomial
variation strategy, the time-varying compression factor strat-
egy, the triple black hole system capture strategy, the multiple
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random interference strategy, and the precocious interference
strategy.

We have tested the improved SOA algorithms by these
above strategies on 15 high dimensional benchmark func-
tions. Only three improvement strategies are listed in this
paper, namely, the triple black hole system capture strategy,
the multiple random interference strategy, and the precocious
interference strategy. The SOA algorithm is improved by
introducing these three strategies separately and naming the
three improved algorithms as the SOA based on triple black
hole system capture (TBHSOA), the SOA algorithm based
on multiple interference (MISOA), the SOA algorithm based
on premature interference (PISOA). These three improved
strategies can increase population diversity, avoid prema-
turity and improve optimization accuracy while ensuring
fast convergence for solving the optimization functions. So,
these three strategies are introduced together into the SOA
to improve the algorithm in this paper; the way these three
strategies work together is called multi-strategy; and the
improved SOA algorithm is named the multi-strategy seeker
optimization algorithm (MSSOA).

The MSSOA involves several individuals by being cap-
tured by three separate black holes. At the same time, the
multiple random interference and the precocious interference
strategies are introduced into the MSSOA. In addition, the
MSSOA, TBHSOA, MISOA, PISOA, and the basic SOA
algorithm are tested and compared on 15 high dimensional
benchmark functions. According to the experimental results,
the convergence speed and the accuracy of MSSOA are higher
than that of the other improved SOA algorithms, and the basic
SOA. Finally, compared with the PSO, SA_GA, GSA, SCA,
MVO, and the SOA, the MSSOA has been implemented and
tested on 15 benchmark functions, 5 constrained problem
examples, and 6 optimization constrained engineering prob-
lems taken from literature. According to the experimental
results, the MSSOA have better optimization results than
other algorithms in benchmark functions and constrained
optimization problems.

The major contributions of this paper are summed up as
follows:

o The triple black hole system capture is proposed in SOA,
which will help the SOA algorithm to escape from the
local optima. The merit of the triple black hole system
capture is that increasing the diversity of the current
individual can help any trapped individuals to jump out
from the local optima region and continue a new search
path.

o The multi-dimensional random interference is per-
formed to improve the low searching capability of SOA
by adding the variable random interference, which is a
proper balance between exploration and exploitation.

o The precocious interference is performed to improve
optimization accuracy of SOA by adding the preco-
cious modes of interference, which is a proper balance
between exploration and exploitation, while ensuring
fast convergence for solving the optimization functions.
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o The MSSOA outperforms the PSO, SA_GA, GSA,
SCA, MVO, and the SOA in many benchmark func-
tions, constrained problem examples, and constrained
engineering optimization problems.

The rest of the article structure is as follows. Part 2 presents
the SOA and the algorithm improvement strategies. Part 3
describes the MSSOA. Part 4 shows the algorithm optimiza-
tion experiments, the results, and the analyses. At last, Part
5 gives some conclusions.

II. BASIC SOA ALGORITHM AND ALGORITHM
IMPROVEMENT STRATEGIES

The SOA algorithm carries out in-depth research on human
search behavior. It considers optimization as a search for an
optimal solution by a search team in search space, taking
search team as population and the site of the searcher as task
method. Using “‘experience gradient” to determine the search
direction, we use uncertain reasoning to resolve the search
step measurement, through the scout direction and search step
size to complete the searchers’ position in the search inter-
space update, to attain the optimization of the solution.

A. KEY UPDATE POINTS FOR SOA ALGORITHM
SOA algorithms have three main updating steps.

1) SEARCH DIRECTION

The forward orientation of a search is defined by the experi-
ence gradient obtained from the individuals’ movement and
the evaluation of other in_d)ividuals’ search historical pg)sition.
The egoistic direction f ;(¢), altruistic direction f ;4(?),
and preemptive direction f ; »(¢) of the ith individual in any
dimension can be obtained.

— N N

S ie(®) = Divest — Xi(t) €))
T ial) = Bivest — 5i(0) )
T ip(0) = E(ty) — %) 3)

The searcher uses the method of a random weighted aver-
age to obtain the search orientation.

— . — — —
fi@=sign(@f ip(®) + V1 f i)+ V2 fial®) @)

where: t1, 1, € {t,t — 1,¢t — 2}, X;(t1) and X;(t2) are the best
advantages of {X;(t — 2), Xi(t — 1), X;(¢)} separately; g; pest 1S
the historical optimal location in the neighborhood where the
ith search factor is located; p; pes is the optimal locality from
the ith search factor to the current locality; iy and v, are
random numbers in [0,1]. w is the weight of inertia.

2) SEARCH STEP SIZE

The SOA algorithm refers to the reasoning of the fuzzy
approximation ability. The SOA algorithm, through the com-
puter language, describes some of the human natural lan-
guages that can simulate human intelligence reasoning search
behavior. If the algorithm expresses a simple fuzzy rule,
it adapts to the best approximation of the objective opti-
mization problems. The greater search step length is more
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important. However, the smaller fitness step length makes the
corresponding smaller. The Gaussian distribution function is
adopted to describe the search step measurement.

a2
wle) =e 22 (5)

where, o and § are parameters of a membership function.

According to equation (5), the probability of the output
variable exceeding [—348, 3§] is less than 0.0111. Therefore,
Mmin = 0.0111. Under normal circumstances, the optimal
position of an individual has pmax = 1.0, and the worst place
is 0.0111. However, to accelerate the convergence speed and
get the optimal individual to have an uncertain step size, [tmax
is set as 0.9 in this paper. Select the following function as the
fuzzy variable with a ““small” target function value:

s — I,'
s—1
wij = rand(;, 1),

(Mmax — Mmin), i=1,2,...,5 (6)
j=12,...,D (7)

Mi = Mmax —

where: u;; is determined by equations (6) and (7), and /; is the
count of the sequence x;(¢) of the current individuals arranged
from high to low by function value. And the function rand
(mi, 1) is the real number in any partition [, 1].

It can be seen from equation (6) that it simulates the
random search behavior of human beings. Step measure-
ment of j-dimensional search interspace is determined by
equation (8):

o = 8;j(1) — /—In(uyy) ®)

where, §;; is a parameter of the Gaussian distribution function,
which is defined by equation (9):

X max) ©)

where, w is the weight of inertia. As the evolutionary algebra
increases, @ decreases linearly from 0.9 to 0.1. ?min and
X maxare respectively the variate of the minimum value and
maximum value of the function.

—
dij = wx * abs( X min —

3) INDIVIDUAL LOCATION UPDATES

After obtaining the scout direction and scout step measure-
ment of the individual, the location update is represented
by (10):

i=1,2,...,s

j=1,2,....,D (10)

xij(r + 1) = x35(1) + ayi(0)fy;(0),

i denotes the ith searcher individual, j denotes the indi-
vidual dimension; f;;(¢) and o;;(t) respectively represent the
searchers’ search direction and search step size at time ¢, x;;()
and x;;(z+1) respectively represent the searchers’ site at time ¢
and (¢t + 1).

B. ALGORITHM IMPROVEMENT STRATEGIES

Four improved SOA algorithms based on three differ-
ent strategies are listed in this paper. The three different
strategies are: triple black hole system capture strategy,
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When

When /:>p;, ms<L<p, When /,<p,,
x(t+1) is xj(t+1) is xy(t+1) is

captured by captured by captured by

—black hole 1 black hole 2 black hole 3

Xi(t)+v(t+1)

<~

QO
xii(t

) x(t+1)

When /<p, x;(t+1) is captured by
triple black hole system.

When I>p, x;(t+1) is updated
in the traditional way.

FIGURE 1. Schematic diagram of seeker position update in a triple black
hole system.

multi-dimensional random interference strategy, and preco-
cious interference strategy. The four improved algorithms
are: the SOA based on triple black hole system capture
(TBHSOA), the SOA algorithm based on multiple interfer-
ence (MISOA), the SOA algorithm based on premature inter-
ference (PISOA), and the multi-strategy seeker optimization
algorithm (MSSOA). The three improvement strategies used
in this article are described below.

1) TRIPLE BLACK HOLE SYSTEM CAPTURE STRATEGY

In the merger process of cosmic galaxies, multiple binary
black hole system will be generated. If the lifetime of the
binary black hole system is long enough, it will merge with
other galaxies and form the triple black hole systems capture.
Three black holes interact with each other, and due to gravity,
the seekers have a certain probability of being captured by
the black hole system [29], [30]. Inspired by this, the seeker
trapping mechanism of the triple black hole system capture
is introduced into the SOA algorithm to get away from local
optima region and enhance the global search ability.

As shown in Figure 1, the constant threshold p € [0,1] is set
as the probability of seeker x; being captured by a triple black
hole system. For each seeker x;, a random number / € [0,1] is
generated in each iteration. If / < p, x; is arrested by a triple
black hole system; otherwise, it is updated in the traditional
way.

If x; is captured by a triple black hole system, triple black
hole regions are formed with gbest(t), (gbest(t) + xmax)/2 and
(gbest(t) + xmin)/2 as the centers and r as the radius of the
black hole producing a random number /; € [0,1]. /1 > pj,
x;; is captured by black hole 1 in the system; [1 € [p2, p1], x;
is captured by black hole 2; the /1 < pa, x;; is captured by
black hole 3, and the position of the captured seeker is:

(gbest(t) + xmin)/2 +rr3, 11 > p1
xij(t + 1)=1q gbest(t) + rr3, P2 <h <p
(gbest(t) + xmax)/2 + rr3, 11 < p2

Y

where: i represents the ith individual, j represents the indi-
vidual dimension; gbest(t) is the global optimal solution of
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generation ¢ in the entire population; Xmax/Xmin 1S the
uppet/lower limit of the seeker search region, the constant
threshold py, p» € [0,1], and p; < p3, r3 is a random number
[—1,1].

Since by calculating the average distance between gbest
and xmin in (11), xmin can be pull out the gbest(¢) from trapped
in local optima. In other words, by introducing this average
between gbest and xpin, x;j(f + 1) can choose different black
holes, and emerge a new individual, then the diversity of
the current individual is increased to avoid falling into local
optimum.

2) MULTI-DIMENSIONAL RANDOM INTERFERENCE
STRATEGY

Small random disturbances caused by small environmen-
tal changes can correct the developmental errors of plants,
which is called developmental channelization. The combi-
nation of plasticity and the developmental channelization
improves the adaptability to the environment and the stability
of plant development [31], [32]. Inspired by this, the multi-
dimensional random interference tactics are introduced to add
the small amplitude change of the scout, and to enhance the
local scout capacity. The constant threshold pp € [0,1] is a
random value k € [0,1] for each dimension of each seeker. If
k < pp, the interference strategy is adopted.

xij(r + 1) = x3(t) + (1 + Yry) (12)

where: ¥ is the interference degree, and r4 is the random
number [—1,1].

In order to understand the multi-dimensional random
interference strategy, a graphical representation is showed
in Figure 2. Here, a two-dimensional individual (d = 2) is
considered. As shown in Figure 2, gbest (red square) is global
best individual; the current individual x;;(¢) (green square)
is trapped in the local optima region (red circle). Based on
the conventional SOA, there is a high possibility of x;;(z)
remaining trapped in local optima. Nevertheless, this problem
can be solved if the multi-dimensional random interference
strategy is introduced in x;;(¢), which is confirmed by x;;(t+1)
(blue square) in Figure 2. In particular, x;;(t + 1) may pull out
x;j(¢) from trapped in local optima to the design local optima
region ((blue circle), and then a new searching path can be
continue explored.

3) PRECOCIOUS INTERFERENCE STRATEGY

When equation (13) is satisfied, the seekers’ position is
reset so that they are randomly distributed around gbest(t),
to potentially jump out of local optimality, namely:

|Fo(t + 1) — Fo(t)| < 0.01- |Fy(t + 1) (13)
xij(t + 1) = (gbest'(t + 1) + gbest(1)) - o (14)

where: F,(t)/Fg(t — 1) are the function values corresponding
to the global optimal of the #/f — 1 generation respectively, and
74 is the random number [—1,1]. gbest’(t + 1) is the current
optimal solution of generation ¢ + 1.
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B Global best individual gbest
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ocal optima region

-

X-axis

FIGURE 2. Graphical representation of the multi-dimensional random
interference strategy.

Local optima region

-x,,(t+ 1)

|
best(t
ghesi(r) Best individual of the

\ | = t generation gbest(f)
x(t+1)l /
\ —_ / Current best individual
y ghest” (++1)

~  gbhest’ (t+1) s Design individual

~N—_ xj(t+1)
-
Ll
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FIGURE 3. Graphical representation of the precocious interference
strategy.

Figure 3 is a graphical representation of the precocious
interference strategy. Here, a two-dimensional individual
(d=2) is considered. As shown in Figure 3, gbest(t) (red
square) is best individual of the t generation; the current best
individual gbest’(t 4 1) (green square) is trapped in the local
optima region (red circle). Based on the conventional SOA,
there is a high possibility of gbest’(t + 1) remaining trapped
in local optima region. Since the current individual x;;(?) is
hovering around the current best individual gbest’(t + 1),
the current individual x;;(¢) will also remain trapped in the
local optima region. Nevertheless, this problem can be solved
if the precocious interference is introduced in x;(z + 1),
which is confirmed by x;;(z + 1) (blue square) in Figure 3.
In particular, x;;(t 4+ 1) may pull out gbest’(t + 1) and x;;(¢)
from trapped in local optima region to the design local optima
region (blue circle), then a new individual can be emerged,
and a new searching path can be continue explored. Here,
to equation (13), since r, is the random number [—1,1], and
the search step size and search direction of the SOA is a
variable, then x;;( +-1) is the random number [Xin, Xmax], and
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the design local optima region (blue circle) can be smaller or
bigger than the local optima region (red circle).

Ill. MSSOA ALGORITHM

The MSSOA involves some individuals in introducing the
triple black hole system capture and interference strategies to
improve the optimization ability of the SOA. Algorithm 1 is
the primary process of the MSSOA.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETUP

The algorithms used in the experiment in this paper were run-
ning under MATLAB R2016a. The computer is configured
as Intel (R) Core (TM) i7-7500U CPU @2.7GHz 2.9 GHz
processor with 8 GB of memory, Windows 10 operating
system.

B. ALGORITHM PERFORMANCE COMPARISON IN
BENCHMARK FUNCTIONS

To ensure that the comparison of these algorithms is fair, the
population number of algorithms is 30, and the evolutionary
algebra is 1000. At the same time, for further ensuring the
fairness of algorithm comparison and reducing the effect of
randomness, the results of the algorithms after 30 indepen-
dent runs were selected for comparison.

Algorithm 1 : MSSOA

Generate an initial population of N individuals XpmssoA,G-
Compute the fitness. Determine the optimal solution Ppegt, G-
While iteration (¢) limit is not satisfied.
Generate the search direction. equation (4)
Generate the search step size. equation (8)
Generate a new position Xmssoa,G- formula (10)
If f (XMsS0A.G) < Poest,G
Phest,G = f (XMSS0A,G)
end if
if rand< P,
Adding the triple black hole system capture
strategy obtain new Xpssoa,G. equation (11)
If f (XMsS0A,G) < Phest,G
Ppest, = f(Xmss0A.G)
end if
Adding the multi-dimensional random
interference obtain new X\ssoa,G. equation (12)
If f (XMss0A,G) =< Poest,G
Prest,G = f(XMss0A,G)
end if
Adding the precocious interference obtain new
XMssoA,G- equations (13) (14)
If £ (XMss0A,G) < Poest,G

Prest, = f(XMSSO0A,G)
end if

end if
end while

1) THE BENCHMARK FUNCTIONS

In this field, it is common to base the capability of algo-
rithms on mathematic functions that are known to be globally
optimal. 15 benchmark functions in the literature are used
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TABLE 1. Description of benchmark function.

Name Test functions Search Minimum
Sphere n -100,100 0
P £, = [ ]
i=1
Schwefel 2.22 n n [-10,10] 0
f,(x)= Z‘x,‘ +H X,
i=1 i=1
Rotated hyperellipsoid n i [-100,100] 0
H00=22
i=1 j=1
Schwefel 2.21 f,(x) = m?‘x{‘xf A<i<n} [-100,100] 0
Rosenbrock n-1 -30,30 0
fi(x)= Z:[IOO(xHl fx,.z)z +(x, = 1)*] [ ]
i=1
Step n [-100,100] 0
f,(x) = > (|x; +0.5))*
i=1
Quartic Ly [-1.28,1.28] 0
f,(x)= Zvcf +randm[0,1)
i=1
SumSquares 1 -10,10 0
d £, (0) = Yix? -10.10]
i=1
SumPower n i [-1.28,1.28] 0
(i+1)
fy(x) = Z X;
i=1
Schwefel n . [-500,500] -
£, (x) =-2 x; sin(y|x; ) 418.9829*Dimension
i=1
Rastrigin n [-5.12,5.12] 0
£ £,,(0) = [ ~10c0s(27x,) +10]
i=1
Ackley 1 1 on [-32,32] 0
f,(x) =20+e—20e? = > x7 —e" Y cos(27x,)
n55 i=1
Griewank 1 & n X [-600,600] 0
fo(x)=——> x'-[ [cos(==) +1
109 = 4500 2 TTeos(Gp)
Penalized1 T ) n-l . [-50,50] 0
Jia(x) = o {10sin® (zy,) + > (v, = D’[1+sin’(zy,,))]
i=1
+(y, = 1%} + > u(x,,10,100,4)
i=1
. k(x,—a)",x,>a
y,:1+Z(xl.+1),u(x[,a,k,m): 0,—a<x,<a
(—x,—a)",x, <—a
Penalized2 [-50,50] 0

i=1

fis(x)= % {sin’*(37zx,) + S(x,. —D’[1+sin*(37x,,,)]

+(x, ~1*[1+sin*(27x,)]} + D u(x,,5,100,4)

i=1
k(x,—a)",x,>a
u(x;,a,k,m)= 0,—a<x,<a

—x, —a)",x, <—a
i i

as the comparative test platform [7], [11], [33]-[35]. The
functions f'1-f9 are the unimodal benchmark functions. The
functions f10-f 15 are the multimodal benchmark functions.
Table 1 shows the functions in the experiment. Variables are
set to 100.

2) ALGORITHMS PERFORMANCE COMPARISON OF THE SOA
ALGORITHM WITH DIFFERENT IMPROVEMENT METHODS

There are various strategies for improving the SOA algo-
rithms, such as the SOA algorithm based on the Levy
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variation, the SOA algorithm based on the refraction reverse
learning mechanism, the SOA algorithm based on the mutu-
ally beneficial factor strategy, the SOA algorithm based on the
Cauchy variation, the SOA algorithm based on the polyno-
mial variation, the SOA algorithm based on the time-varying
compression factor strategy, the SOA algorithm based on
triple black hole system capture, the SOA algorithm based on
multiple interference, the SOA algorithm based on premature
interference, etc. After the experiment and comparison, four
different improved SOA algorithms are selected in this paper.
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The four algorithms are: the SOA based on triple black hole
system capture (TBHSOA), the SOA algorithm based on
multiple interference (MISOA), the SOA algorithm based
on premature interference (PISOA), and the multi-strategy
seeker optimization algorithm (MSSOA).

3) PARAMETER SETTING OF SOA ALGORITHM WITH
DIFFERENT IMPROVEMENT METHODS

This section will introduce the parameter setting of the
improved SOA algorithms used in the experiment in this
paper. Dai et al. have done a lot of research on the parameter
set of the SOA [24], and we did a lot of practice tests and com-
parative studies about the parameters. The same parameters of
the SOA and the improved SOA algorithm are: the maximum
membership degree value is 0.95; the minimum membership
degree value is 0.0111; the maximum inertia weight value is
0.9; the minimum inertia weight value is 0.1; and the empir-
ical value is: 0.2. The specific parameters of the improved
SOA algorithm are shown in Table 2. The next section will use
these improved algorithms for experimental comparison and
choose a relatively optimal improved algorithm to compare
with other advanced intelligent algorithms.

TABLE 2. Parameter settings of SOA algorithm with different
improvement methods.

Algorithm Parameters and Value

TBHSOA The triple black hole system capture probability: 0.8.
MISOA The multiple interference probability: 0.8.

PISOA The premature interference probability: 0.8.
MSSOA The multi-strategy probability: 0.8.

4) IMPROVED ALGORITHMS PERFORMANCE COMPARISON
IN BENCHMARK FUNCTIONS

The SOA is improved in four different ways: using the seeker
optimization algorithm based on triple black hole system
capture (TBHSOA), the SOA algorithm based on multiple
interference (MISOA), the SOA algorithm based on pre-
mature interference (PISOA), and the multi-strategy seeker
optimization algorithm (MSSOA). To test the performance,
each improved algorithm was optimized for the 15 functions
in Table 1. Each algorithm and each function were run inde-
pendently 30 times. The performance of the SOA and the four
improved SOA in 15 function optimizations were compared
by the mean (Mean), standard deviation (Std.), the best fitness
(Best), the program running time (Time), and the best fitness
rank (Rank) of 30 running results. The optimal fitness reflects
the optimization veracity of the algorithm, the average value
and Std. reflect the robustness of the algorithms, and the
running time reflects the time of the program. The results of
the functions f 1-f 15 are displayed in Table 3. The underline
and boldface indicate the better result.

Based on Table 3, for the benchmark functions f1-f15,
the comparison between the four improved SOA algorithms
in this paper and the original SOA algorithms shows that
the optimization result of the MSSOA is the best value.
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The mean (Mean), standard deviation (Std.), best fitness
(Best), and best fitness rank (Rank) of the MSSOA algorithm
were the best after 30 independent runs. The f1-f15 total
program running time (Time) ranks the fifth among all of
the 5 algorithms compared in this paper. To the total running
time, the running time of the MSSOA is longer than other
algorithms. So, the MSSOA algorithm is the one with the best
optimization performance among the improved algorithms
in this paper. The section IV.B.3) will compare the MSSOA
algorithm with the other intelligent optimization algorithms
that are widely used at present.

5) SEARCH HISTORY OF EACH IMPROVED SOA

Figure 4 shows the graph of the optimized function f1,
the initial population’s positions, the convergence curves,
the population’s positions with iterations and search history.
Based on Figure 4, for the benchmark function f1, given
the same evolutionary algebra, the same number of popula-
tions, and the same initial individual position, the comparison
between the four improved SOA algorithms in this paper
and the original SOA algorithm show that the optimization
result of the MSSOA is the best value. The convergence
curves of the MSSOA algorithm were the fastest. From the
population’s positions with iterations and the search history
of the four improved SOA algorithms, along with the original
SOA algorithm show that the MSSOA can close to the optima
is faster and more accurate than that of other improved SOA
algorithms.

Similarly, Figure 5 shows the graph of the optimized func-
tion £10, the initial population’s positions, the convergence
curves, the population’s positions with iterations and the
search history. Based on Figure 5, for the benchmark function
f10, given the same evolutionary algebra, the same number
of populations, and the same initial individual position, the
comparison between the four improved SOA algorithms in
this paper and the original SOA algorithm show that the
optimization result of the MSSOA is the best value. The con-
vergence curves of the MSSOA algorithm were the fastest.
From the population’s positions with iterations and the search
history of the four improved SOA algorithms, along with
the original SOA algorithm show that the MSSOA can close
to the optima is faster and more accurate than that of other
improved SOA algorithms.

6) ALGORITHMS PERFORMANCE COMPARISON OF
DIFFERENT ALGORITHMS IN BENCHMARK FUNCTIONS

To test the performance of the MSSOA, the MSSOA is com-
pared to the PSO, SA-GA, GSA, SCA, MVO, and the SOA,
using 15 benchmark functions [7], [11], [33]-[35] in Table 1,
which have been widely used in the test.

a: PARAMETER SETTING OF DIFFERENT ALGORITHMS

In this section, the parameters set of the PSO [36],
SA_GA [37], GSA [6], SCA [8], MVO [9], SOA [20], and
the MSSOA algorithm are presented. According to the ref-
erences [6], [8], [9], [20], [36], [37], we did a lot of practice
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TABLE 3. Performance comparison of different strategies improvement SOA of 30 independent runs for benchmark functions.

7172

Test Result Algorithms
functions SOA TBHSOA MISOA PISOA MSSOA
Mean  1.0524957 0.2825531 5.2400567¢-08 0 0
Std. 0.2051906 0.3701628 6.3218468¢-08 0 0
]; 10:100) Best 0.6215967 0.0022148 2.5821995¢-09 0 0
Time  45.50061 75.613686 59.635564 66.563613 87.175798
Rank 5 4 3 1 1
Mean  13.002085 0.6511914 0.0014402 1.7425093¢-182  2.012e-184
Std. 2.0008395 0.1045537 0.0010004 0 0
]; ZD gy B 9.4729280 0.4610739 6.1512225¢-05  2.1326872¢-209  4.588e-213
Time 54.16754 69.699251 94.375281 91.567577 87.175798
Rank 5 4 3 2 1
Mean  9.869¢+03 3.4564429¢+03  7.4247780e-07 0 0
Std. 3.472¢+03 3.0793769¢+03  9.1072042¢-07 0 0
]; 30 gy B 3.318¢+03 8.7199457 3.8240885¢-08 0 0
Time  423.27283 644.844800 594.660175 487.237550 732.835497
Rank 5 4 3 1 1
Mean  21.743821 9.2885561 6.0481089¢-05  1.0073412¢-185  2.540e-186
Std. 5.6809434 5.2325965 2.8140037¢-05 0 0
];1):100) Best 2.9045088 0.6034756 2.1288138¢-05  6.8815172¢211  3.878e-216
Time  47.98446 68.785997 64.831962 65.931310 106.133452
Rank 5 4 3 2 1
Mean  7.093¢+02 66.3920291 98.0620155 98.0684285 0.0052165
fs Std. 1.675¢+02 68.7817939 0.02777166 0.02988903 0.0147478
(D=100) Best 2.789+02 147163775 98.0017736 97.9958827 7.268e-05
Time 54.515291 79.939259 70.650258 72.664630 102.749566
Rank 5 2 4 3 1
Mean  1.1365348 1.5926423 0.0128676 0.0115968 0.0081827
{1;=100) Std. 0.1751583 1.5709870 0.0029328 0.0024841 0.0028444
Best 0.7992740 0.0080698 0.0090366 0.0076458 6.152¢-04
Time  47.876927 68.359415 62.122474 65.155501 89.505699
Rank 5 3 4 2 1
Mean  3.4645595 0.0042264 2.7057509¢-04  7.9075623¢-05  7.033e-05
fr Std. 0.9443482 0.0028720 2.2086648¢-04  6.1143005¢-05  4.849e-05
(D=100) Best 2.0472780 8.8641644e-04  7.7950743e-06  7.5917519¢-06  4.709¢-06
Time 90.52067 122.107637 117.053413 116.902097 169.388307
Rank 5 4 3 2 1
Mean  1.391e+02 0.2874750 2.1577791e-06 0 0
fs Std. 33.925547 0.0654072 2.5515526e-06 0 0
(D=100) Best 79.288776 0.1770732 3.2599115¢-08 0 0
Time 55.51168 71.962022 63.516109 65.714151 118.793157
Rank 5 4 3 1 1
Mean  1.471e-05 6.9268201e-10  2.5515595¢-12 0 0
Std. 1.279¢-05 1.1513070e-09  4.7865420e-12 0 0
fo Best 6.318e-07 278443943¢-12  4.0866578¢-15 0 0
D=100)  pire 102.88770 135.670100 125.788498 120.054059 223453628
Rank 5 4 3 1 1
Mean  -2.324e+4 -4.1860098e+04  -2.4719241e+04  -2.6740043e+04  -4.185¢+4
Std. 3.396e+03 1.6712302e+02  4.2241689e+03  4.5932627¢+03  1.998¢+02
{1;’: o) B -3.1737782et04  _4.1898286e+04  -3.6722877c+04  -3.9445108¢+04  -4.1898289e+04
Time 60.474337 83.551939 77.701606 81.954330 117516091
Rank 5 2 4 3 1
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TABLE 3. (Continued.) Performance comparison of different strategies improvement SOA of 30 independent runs for benchmark functions.

Mean  4.147e+02 8.3896687 9.3858180e-06 0 0
Std. 47.133648 18.669241 9.178772¢-06 0 0
le)l—mo Best 3.230e+02 0213578 4.3939895¢-07 0 0
( ) Time 59.59937 85.975021 62.415032 57.637555 88.386537
Rank 5 4 3 1 1
Mean  2.4523846 0.1090458 6.6760265¢-05  8.8817842¢-16  8.882¢-16
12 Std. 0.3106584 0.0868174 44294773¢05 0 0
(D=100 Bet 1.9634230 0.0158898 32208117¢-06  8.8817842e-16  8.882¢-16
Time 64.89326 79.786223 68.112087 63.628471 122.176144
Rank 5 4 3 1 2
Mean  0.5354222 0.65109164 1.1369729¢:09 0 0
13 Std. 0.3343660 2.0970686 1.0097485¢-09 0 0
(0=100) Best 0.0806019 0.0017955 7.6736506e-11 0 0
Time 63.67314 87.968551 73.914279 65.874340 90.052169
Rank 5 4 3 1 1
Mean  20.231984 3.2901206 0.0339106 0.0361956 1.362¢-04
fl4 Std. 8.8688013 5.7005994 0.0121061 0.0094315 3.249¢-05
Do100) Bt 8.9451797 1.8127161e-04  0.0065775 0.0017787 8.049¢-05
Time 165.94752 211.450166 206.868663 194.971999 310.154355
Rank 5 2 4 3 1
Mean  1.301e+02 40.0168746 9.8130257 9.8956288 0.0072373
f1s Std. 62.979168 66.5622861 0.4538710 0.0020314 0.0054797
D-100) Best 17998261 0.0088686 7.4099512 9.8927602 5.371e-06
Time 166.65126 240.353899 223.978961 182.987716 302.614372
Rank 3 2 4 5 1
Average Rank 4.86666667 34 333333333 1.93333333 1.06666667
Overall Rank 5 4 3 2 1

TABLE 4. The parameters set of different algorithms.

Algorithm Parameters and Value

PSO [36]

Constant inertia: 0.9~0.4, two acceleration coefficients:
1.4962.

Select  probability:0.6,  crossover  probability:0.7,
mutation scale factor:0.05, initial temperature:100,
temperature reduction parameter:0.98.

The gravitational constant: G0=100, alfa=20.

The random numbers: r1=0~2, 12=0~2n, r3=0~2,
r4=0~1.

The wormhole existence probability: WEP_Max =I,
WEP_Min=0.2, travelling distance rate: TDR=0~1, the
random numbers: r1=0~1, r2=0~1, r3=0~1.

The maximum membership degree value:0.95, the
minimum membership degree value:0.0111, the
maximum inertia weight value:0.9, the minimum inertia
weight value:0.1, the empirical value:5 (Same as the
Section 111.B.2)).

The maximum membership degree value:0.95, the
minimum membership degree value:0.0111, the
maximum inertia weight value:0.9, the minimum inertia
weight value:0.1, the empirical value:0.2, the multi-
strategy probability: 0.8 (Same as the Section II1.B.2)).

SA_GA [37]

GSA [6]
SCA [8]

MVO [21]

SOA [20]

MSSOA

tests and comparative studies for the parameters set. Table 4 is
the parameters set of different algorithms.

b: RESULTS COMPARISON OF DIFFERENT ALGORITHMS IN
BENCHMARK FUNCTIONS

The mean values, standard deviation, best fitness, best fitness
rank between the algorithms of 30 all alone runs, and the data
of the functions’ f1-f15 optimization results are shown in

VOLUME 10, 2022

Table 5. The underline and boldface indicate that the optimal
outcome is better.

Based on Table 5, for the best value of the benchmark func-
tions, the MSSOA is better than the others. For the standard
deviation, the MSSOA is better than the others. For the mean,
the MSSOA is also better than the others. According to the
optimal fitness value mean rank and all rank results from
Table 5, the MSSOA has a strong optimization ability to the
benchmark functions.

¢: THE PRECISION OF ALGORITHMS ANALYSIS

Figure 6 is a comparison of the optimal value of each function
optimized by different algorithms and the theoretical opti-
mal value when seven algorithms optimize the benchmark
functions f1-f 15 (D = 100) respectively. To ensure that the
comparison of these algorithms is fair, the population number
of algorithms is 30, and the evolutionary algebra is 1000. The
results of the seven algorithms after 30 independent runs are
selected for comparison. As seen from Figure 6, the optimal
solution curves of each function obtained by the MSSOA
algorithm are in maximum agreement with the theoretical
optimal solution curves, and the accuracy of the MSSOA is
better.

d: THE CONVERGENCE OF ALGORITHMS ANALYSIS

Figure 7 shows the fitness curves of the best values for
the benchmark functions f1-f15 (D =100). As seen from
Figure 7, the convergence of MSSOA is faster, and the accu-
racy of the MSSOA is better. The other hand is that the fitness
convergence curve of MSSOA algorithm has a steep slope,
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FIGURE 4. The graph of the function f1, initial population’s positions, convergence curves, population’s positions with iterations and search history.

and it means that the MSSOA has a fast convergence rate, e: THE ROBUSTNESS OF ALGORITHMS ANALYSIS
and this shows that the MSSOA can exploit the search space Figure 8 is the analysis of variance (ANOVA) test for the
of the problems in a very convenient behavior. This manner benchmark functions f1-f15 (D = 100). To ensure that the

can show that the exploration and exploitation abilities of comparison of these algorithms is fair, the population number
MSSOA algorithm is very well. of algorithms is 30, and the evolutionary algebra is 1000. The
7174
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FIGURE 5. The graph of the function 10, initial population’s positions, convergence curves, population’s positions with iterations and search history.

best value results of the seven algorithms after 30 independent
runs are selected for comparison. As seen from Figure 8, the
ANOVA of MSSOA algorithm for is the benchmark functions

f1-f15 (D = 100) is very well, and this shows that the
MSSOA algorithm is very robust.
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f: THE COMPLEXITY OF ALGORITHMS ANALYSIS

The calculation complexity of the algorithms’ analysis is
based on the principle of Big-O representation [38]. The
overall calculational complexity of the PSO, SA-GA, GSA,
SCA, MVO, SOA, and the MSSOA is in the following

7175



IEEE Access

S. Duan et al.: Multi-Strategy Seeker Optimization Algorithm for Optimization Constrained Engineering Problems

7176

Best Value

Best Value

Best Value

0 5 10 15

0 5 10 15

«10% Optimal value comparison of algorithms for benchmark function

r D

L n

Test function f1-f15

«10% Optimal value comparison of algorithms for benchmark function

Test function f1-f15

104 Optimal value comparison of algorithms for benchmark function

0 5 10 15
Test function f1-f15

Best Value

Best Value

Best Value

0.5

%107 Optimal value comparison of algorithms for benchmark function

Test function f1-f15

%107 Optimal value comparison of algorithms for benchmark function

0 5 10 15

Test function f1-f15

«104 Optimal value comparison of algorithms for benchmark function

' '

0 5 10 15

Test function f1-f15

Best Value
N}

5 «10* Optimal value comparison of algorithm for benchmark functions

-4.5 .
0 5

10 15

Test function f1-f15

FIGURE 6. The comparison graph of the optimal solution curve of each function (f1-f15, D = 100) obtained by different

algorithms and the optimal solution curve of theoretical value.
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FIGURE 8. ANOVA tests for benchmark functions f1-f15 (D = 100).

formulas (15)-(28). n indicates the total individual count, d
represents the dimension count, t represents the maximum
count of algebras, ¢ represents the cost of the function eval-
uation, p represents the number of offspring, m represents
the number of mutated/interference populations. « represents
the coefficient that shows the percentage of the number of
offspring and the mutated population to the total individual
count [39].
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The PSO complexity:
O(PSO) = O(Problem definition) 4+ O(Initialization)

4+ O(¢(Function evaluation))

+ O(t(Memory saving))

+ O(t(Position update)) = O(1) 4+ O(nd)
+ O(tcn) 4 O(tn)

4+ O(tnd) = O(1 + nd + tcn + tn
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+ tnd) ~= O(tcn + tnd) (15)
So, O(PSO) = O(tcn + tnd). (16)

The SA-GA complexity:

O(SA — GA) = O(Problem definition) 4+ O(Initialization)
+ O(T(Function evaluation))
+ O(T(Temperature reduction))
+ O(t(Temperature update))
+ O(T(function evaluation))
+ O(T(Selection)) 4+ O(T(Crossover))
+ O(T(Mutation))
= O(1) 4+ O(nd) 4+ O(Tcn)
4 O(Tnd) 4+ O(Tnd)
+ O(Tcen) + O(p) + O(Tpd)
+ O(Tmd) ~= O(1 4+ nd + Tcn + Tnd
+ Tnd + Ten + p + Tpd + Tmd) a7
p + m = « - n; therefore,
T = t- a.We considera = 1Thus
T = tand p + m = n.So, O(SA — GA)
= O(tcn + 2tnd + t(m + p)d)
= O(2tcn + 3tnd). (18)

The GSA complexity:

O(GSA) = O(Problem definition) + O(Initialization)

+ O(t(Function evaluation))
+ O(t(Memory saving))
+ O(t(Gravitational forces))
+ O(t(Velocity)) + O(t(Accelerations))
+ O(t(Position update))

= O(1) + O(nd) + O(tcn) + O(tn)
+ O(tnd) + O(tnd) + O(tnd) + O(tnd)

= O(1 +nd + tcn + tn + tnd + tnd + tnd

+ tnd) ~= O(tcn + 4tnd) (19)
So, O(GSA) = O(ten + 4tnd). (20)
The SCA complexity:

O(SCA) = O(Problem definition) 4+ O(Initialization)
+ O(t(function evaluation))
+ O(t(Memory saving))
+ O(t(Position update))
= O(1) 4+ O(nd) + O(tcn) + O(tn) 4+ O(tnd)
= O(1 4+ nd + tcn + tn + tnd) ~

= O(tcn + tnd) 21
So, O(SCA) = O(tcn + tnd).(22) (22)
The MVO complexity:

O(MVO) = O(Problem definition) + O(Initialization)
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+ O(t(function evaluation))

+ O(t(Memory saving))

+ O(t(Position update))
= O(1) 4+ O(nd) 4 O(tcn) + O(tn) + O(tnd)
= O(1 4+ nd + tcn + tn + tnd) ~
= O(tcn + tnd) (23)

So, O(MVO) = O(tcn + tnd). (24)
The SOA complexity:

O(SOA) = O(Problem definition) + O(Initialization)
+ O(t(function evaluation))
+ O(t(Memory saving))
+ O(t(Search direction))
+ O(t(Search step size))
+ O(t(Position update))
= O(1) 4+ O(nd) 4 O(tcn) + O(tn) + O(tnd)
4+ O(tnd) + O(tnd)
= O(1 4+ nd + tcn + tn + 3tnd) ~
= O(tcn + 3tnd) (25)
So, O(SOA) = O(ten + 3tnd). (26)

The MSSOA complexity:

O(MSSOA) = O(Problem definition)
+ O(Initialization)
+ O(t(function evaluation))
+ O(t(Memory saving))
+ O(t(Search direction))
+ O(t(Search step size))
+ O(t(triple black hole system capture)
+ O(t(multi-dimensional random
X interference)
+ O(t(precocious interference)
+ O(t(Position update))
= O(1) 4+ O(nd) 4 O(tcn) + O(tn)
+ O(tnd) + O(tnd)
+ O(tmd) + O(tmd) + O(tmd) + O(tnd)
= O(1 4+ nd + tcn

+ tn + tnd + tnd 4 tmd
+ tmd + tmd + tnd) ~
= O(tcn3tmd + 3tnd) 27
S0, OMSSOA) = O(tcn + 3tmd + 3tnd). (28)

As shown in the complexity analysis of the above seven algo-
rithms, although the calculational complexity of the MSSOA
algorithm analysis is more complicated than the PSO, MVO,
SCA, and SOA, the complexity of the MSSOA algorithm is
also a polynomial. Therefore, the MSSOA is considered to be
an effective algorithm.
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TABLE 5. Performance comparison of algorithms for benchmark functions.

Test Result Algorithms
functions PSO SA-GA GSA SCA MVO SOA MSSOA
Mean 0.0031 3.018e+04 6.21E+02 6.42E+03 40.269355 1.0524957 0
fi Std. 6.31E-04 6.691e+03 2.71E+02 5.62E+03 6.8812839 0.2051906 0
(D=100) Best 0.0022 1.708e+04 2.50E+02 96.29169 27.3763 0.6216 0
Rank 2 7 6 5 4 3 1
Mean 0.2192801 118.6375 7.1387617 1.3795842 7.34E+20 13.002085 2.012¢-184
f2 Std. 0.0260935 13.168469 3.2135126 1.4335667 3.92E+21 2.0008395 0
(D=100) Best 0.1732089 92.513924 2.0654838 0.0310204 5.43E+02 9.4729280 4.588e-213
Rank 3 7 4 2 6 5 1
Mean 2.27E+03 3.77e+05 8.80E+03 1.84E+05 4.24E+04 9.87E+03 0
fs Std. 1.30E+03 8.95e+04 1.84E+03 3.48E+04 6.09E+03 3.47E+03 0
(D=100) Best 8.43E+02 2.55e+05 6.26E+03 1.24E+05 3.11E+04 3.32E+03 0
Rank 2 7 4 6 5 3 1
Mean 1.4624169 89.626880 15.671857 85.539422 49.557442 21.743821 2.540e-186
fa Std. 0.2035038 3.454423 1.5605923 3.5980134 6.2884298 5.6809434 0
(D=100) Best 1.0929345 83.496264 10.958917 77.909721 37.299715 2.9045088 3.878e-216
Rank 2 7 4 6 5 3 1
Mean 2.515e+02 5.783e+07 1.784e+04 6.427¢+07 2.440e+03 7.093e+02 0.00521650
fs Std. 59.018749 2.620e+07 1.578e+04 4.671et07 1.959¢+03 1.675e+02 0.01474780
(D=100) Best 1.236e+02 1.925e+07 1.987¢+03 7.162¢+06 7.755e+02 2.789¢+02 7.268e-05
Rank 2 7 5 6 4 3 1
Mean 0.0119147 3.074e+04 6.995¢+02 6.131e+03 40.0892130 1.1365348 0.00818272
fs Std. 0.0020782 8.323e+03 3.890e+02 4.651e+03 5.9162672 0.1751583 0.00284437
(D=100) Best 0.008661 1.356e+04 2.169e+02 6.729¢+02 28.9167207 0.799274 6.152¢-04
Rank 2 7 5 6 4 3 1
Mean 0.2211229 77.487242 2.3136998 73.024146 0.3355664 3.4645595 0.00818272
f7 Std. 0.0419681 49.238470 1.1506156 46.772681 0.0733789 0.9443482 4.849¢-05
(D=100) Best 0.1180966 19.170953 0.8371509 11.108763 0.2176315 2.0472780 4.709¢-06
Rank 2 7 4 6 3 5 1
Mean 0.0624146 1.29e+04 1.32E+02 1.52E+03 1.05E+02 1.39E+02 0
8 Std. 0.0164020 3.57e+03 74.414138 1.16E+03 43.821833 33.925549 0
(D=100) Best 0.0291246 7.55e+03 31.981022 2.47E+02 34.296414 79.288776 0
Rank 2 7 3 6 4 5 1
Mean 2.08E-26 1.78e+03 3.67E-12 35.077327 1.21E-06 1.47E-05 0
fo Std. 3.99E-26 9.54e+03 7.66E-12 80.100469 5.23E-07 1.28E-05 0
(D=100) Best 2.07E-29 0.002883 4.23E-16 0.0268174 4.55E-07 6.32E-07 0
Rank 2 6 3 7 4 5 1
Mean -4.746e+3 -2.475e+04 -4.729¢+3 -7.256e+3 -2.408¢e+4 -2.324e+4 -4.185e+4
f1o Std. 6.889¢+02 8.845e+02 8.702e+02 6.962¢+02 1.533e+03 3.396¢+03 1.998e+02
(D=100) Best -6.440e+3 -2.659¢+04 -7.354e+3 -9.457¢+3 -2.658¢e+4 -3.174e+4 -4.190e+04
Rank 7 3 6 5 4 2 1
Mean 33.896488 425.8326 1.36E+02 2.06E+02 6.41E+02 4.15E+02 0
fu Std. 6.2350851 48.908770 18.532649 92.249647 69.443553 47.133647 0
(D=100) Best 23.655297 3.34 E+02 88.161003 67.314606 5.01E+02 3.30E+02 0
Rank 2 6 4 3 7 5 1
Mean 0.0220555 15.3479726 3.1378392 18.309269 6.5910720 2.4523845 8.882e-16
f12 Std. 0.0032932 0.7816167 0.6404753 4.7183569 6.0322718 0.3106583 0
(D=100) Best 0.0161767 13.7962876 2.0521342 6.872015 3.2031355 1.9634230 8.882e-16
Rank 2 7 4 6 5 3 1
Mean 9.1115292 274.5795 98.761595 53.145123 1.3775687 0.5354221 0
fis Std. 1.8646352 66.687333 11.527169 38.195663 0.0626040 0.3343659 0
(D=100) Best 6.1937260 137.5120 81.688324 1.7219609 1.2241138 0.0806019 0
Rank 5 7 6 4 3 2 1
Mean 0.0167129 4.418e+07 4.5497727 1.582e+08 11.6567511 20.2319839 1.362¢-04
fia Std. 0.0241246 5.110e+07 1.21396147 1.352¢+08 4.2010589 8.8688013 3.249e-05
(D=100) Best 4.838e-05 3.883e+06 2.1673113 6.757e+06 6.7785747 8.9451797 8.049¢-05
Rank 2 6 3 7 4 5 1
Mean 0.0010358 1.435¢+08 1.309e+02 2.674¢+08 1.209¢+02 1.301e+02 0.0072373
fis Std. 0.002800 1.008¢e+08 64.254054 1.527e+08 30.717732 62.9791683 0.0054797
(D=100) Best 1.898e-04 2.309e+07 76.4103682 3.106e+07 51.2656139 1.7998261 5.371e-06
Rank 2 6 5 7 4 3 1
Average Rank 2.6 6.4666667 44 5.4666667 44 3.6666667 1
Overall Rank 2 7 4 6 4 3 1
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TABLE 6. Run time comparison of 30 independent runs for benchmark functions f1-f15 (D = 100).

Run time of algorithms

Test functions

(D= 100) PSO SA_GA GSA SCA MVO SOA MSSOA

fi 19.2614 542.3931 150.8607  15.6790 37.1642 45.5006 87.175798
f2 22358433 521.8564 154253122 16.774635  22.505080  54.167535  88.718713
fs 131065635 3509.5453  276.851090 157.841395 150.595822 423272832  732.835497
4 21427574 642475529 154476221 17.295688  40.792862  47.984464  106.133452
fs 19.859456  651.808449  188.478202 18.794625  41.892321 54515291  102.749566
o 20.542143  480.833828  153.064086 17.318195  39.282568  47.876927  89.505699
fa 34792130 890.981756  168.550287 30.316487  51.654684  90.520669  169.388307
fs 23367437  481.638596  153.526963 17.055855  39.908609  55.511679  118.793157
fo 35.632177  975.1530 173.578067 32.396346  45.258449  102.887695  223.453628
Fio 26354619 562.020557  158.499353 20396761  22.749008  60.474337  117.516091
fun 21.033824  648.6857 184.680588  22.147268  41.646913  59.599374  88.386537
fi2 23.395074 624441362 173.135274 21299206  43.723453  64.893256  122.176144
fis 29.505900  615.5540 169.814804  23.426107  46.092607  63.673136  90.052169
fia 60.288823  1654.958657 193.881593 52.751386  74.326149  165.947519  310.154355
fis 59.640283 1629496415 196.205228  53.109655  75.622178  166.651257 302.614372
The total time ~ 548.5249  14431.84 2649.856  516.6026 7732149 1503477  2749.653
Overall Rank 2 7 5 1 3 4 6

g: RUN TIME COMPARISON OF ALGORITHMS IN
BENCHMARK FUNCTIONS

We recorded the running time of each algorithm for each
function under the same conditions: population number 30,
evolution algebra 1000, and 30 independent runs of the above
15 benchmark functions f1-f15 (D=100). Then, the run-
ning time of the 15 functions is added to obtain the sum
of the 30 independent running times of each algorithm for
the 15 functions listed in this paper, and the ranking of the
total time, as shown in Table 6. As seen from Table 6, the
SCA algorithm has the more minor program running time,
followed by the PSO algorithm, which has less program
running time. The MSSOA algorithm ranks sixth, which has a
relatively longer program running time. At the bottom of the
list is the SA_GA algorithm, which takes the most running
time.

To learn more traits about the program running time of the
seven algorithms in the 15 functions, a bar chart in Figure 9
was made for the total time of each algorithm after 30 inde-
pendent runs. From Figure 9 to the running time, the SCA is
the least; the SA_GA is the most; the MSSOA is less than
the SA_GA; the MSSOA is less than one in six of SA_GA,
and the MSSOA is nearly four times of the SCA, which is
relatively large.

h: EXPLORATION AND EXPLOITATION IN BENCHMARK
FUNCTIONS

According to the literature [40]-[42], the formula (29)-(32)
represents the exploration and exploitation capability of

7182

The total time of 30 independent runs for benchmark functions

15000

10000 -

The total time (s)

5000

PSO SA-GA GSA SCA MVO

Algorithms
FIGURE 9. The total time of 30 independent runs of 7 algorithms on
15 benchmark functions.

SOA  MSSOA

an algorithm.

) 1 & . - j
Div; = - Zl median (x/> —x/ (29)
i—
|2
Div = ) ZDivj (30)
i=1
Xpl% = x 100 (€1
Vmax
Div — Di
Xpt% = 1Dy = Divmax] 4 (32)

Divmax

where, median x/ is the median of dimension j in whole
swarm. x{ is the dimension j of the swam individual i. n is
the size of swarm. Div; is the average for all the individuals.
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TABLE 7. p-values of the Wilcoxon rank-sum test.

Test functions p test values of various algorithms

(D=100) PSO SA GA GSA SCA MVO SOA MSSOA
fi 12118e-12  1.2118e-12  12118e-12  12118e-12  12118e-12  12118e-12 N/A
fa 3.0199-11  3.0199-11 3.0199%-11 3.0199e-11  3.0199e-11  3.0199e-11  N/A
fs 12118¢-12  1.2118¢-12  1.2118¢-12  12118¢-12  12118e-12  12118e-12 N/A
fa 3.0199-11  3.0199-11 3.0199%-11 3.0199e-11  3.0199e-11  3.0199%¢-11 N/A
fs 3.0199-11  3.0199-11 3.0199%-11 3.0199e-11  3.0199e-11  3.0199%e-11 N/A
fo 3.0199-11  3.0199-11 3.0199%-11 3.0199e-11  3.0199e-11  3.0199%e-11 N/A
fa 3.0199-11  3.0199-11 3.0199%-11 3.0199e-11  3.0199e-11  3.0199%e-11 N/A
fs 12118¢-12  1.2118¢-12  1.2118¢-12  12118¢-12  12118e-12  12118e-12 N/A
fo 1.7203e-12  1.7203e-12  1.7203e-12  1.7203e-12  1.7203e-12  1.7203e-12  N/A
Fro 3.1602e-12  3.1602¢-12  3.1602¢-12  3.1602e-12  3.1602e-12  3.1602e-12  N/A
fin 12118e-12  1.2118e-12  1.2118e-12  12118e-12  12118e-12  12118e-12  N/A
fi2 1.2118e-12  1.2118e-12  1.2118e-12  12118e-12  12118e-12  12118e-12  N/A
fis 12118e-12  1.2118e-12  1.2118e-12  12118e-12  12118e-12  12118e-12  N/A
fra 3.0199-11  3.0199%-11  3.0199%-11 3.0199¢-11  3.0199¢-11  3.0199¢-11 N/A
fis 3.0199-11  3.0199%-11 3.0199%-11 3.0199¢-11  3.0199¢-11  3.0199¢-11  N/A

Div is the diversity of swarm in an iteration and Divp,yx iS
the maximum diversity in all iterations. Xpl% and Xpt% are
the exploration and exploitation percentages for an iteration,
respectively.

Figure 10 shows the exploration and exploitation abili-
ties of the MSSOA as the number of iterations increases in
the benchmark functions f5, f7, f8, 9, fI0, f11, f14, f15.
As observed from the plotted curves shown in Figure 10, the
MSSOA maintain good balance between the exploration and
exploitation ratios as the number of iterations increases.

i: STATISTICAL TESTING OF ALGORITHMS IN BENCHMARK
FUNCTIONS

Using the Wilcoxon’s rank-sum test [43] can discover the
important differentia between the two algorithms. This test
gives the value p < 0.05.

The mean values are test in the Wilcoxon’s rank-sum.
To ensure that the comparison of these algorithms is fair,
the population number of algorithms is 30, and the evolu-
tionary algebra is 1000. The mean results of the seven algo-
rithms after 30 independent runs are selected for comparison.
Table 7 is the results of statistical testing. N/A represents the
best algorithm. From Table 7, the MSSOA results are statis-
tically significant in optimization high dimension benchmark
functions.

J: PERFORMANCE PROFILES OF ALGORITHMS IN
BENCHMARK FUNCTIONS

The average fitness was selected as the capability index. The
algorithmic capability is expressed in performance profiles,

VOLUME 10, 2022

which is calculated by the formulas (33)(34).

(33)
(34)

= pf.g/min{us o : g € G}
size{f € F :rr g < t}/n¢

Tf.g
pg(f)

where, g represents an algorithm; G is the algorithms set;
f means a function; F represents the function set; ng rep-
resents the count of algorithms in the experiment; ny is the
number of functions in the experiment; s o is the average
fitness after the algorithm g solving function f; ry ¢ is the
capability ratio; pg is the algorithmic capability; T is a factor
of the best probability [44].

Figure 11 shows the capability ratios of the average
value for the seven algorithms on the benchmark functions
f1-f15 (D = 100). The consequences are revealed by a log
scale 2. As shown in Figure 11, the MSSOA has the highest
probability. When 7 = 1, the MSSOA is about 0.667, which
is better than that of the others. When t = 3 the MSSOA is
the winner on the given test functions is about 1, the PSO is
0.667, SA_GA is 0.067, GSA is 0.067, SCA is 0.067, MVO
is 0.2, and the SOA is 0.2. When 7 = 11 the MSSOA is the
winner on the given test functions is about 1, the PSO is 0.73,
SA_GAis0.067, GSA is 0.267, SCA is 0.133, MVO is 0.267,
and the SOA is 0.267. Regarding the performance curve, the
MSSOA is the best; the MSSOA can achieve 100% when t
> 3. Thus, the property of the MSSOA is better than that of
the other algorithms.

C. ALGORITHM PERFORMANCE COMPARISON IN
CONSTRAINED OPTIMIZATION PROBLEMS

We are using 5 constrained problem examples and 6 con-
strained engineering design problems to test the capability
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FIGURE 10. The exploration and exploitation abilities of the MSSOA in benchmark functions.

of the MSSOA further. These problems are very popular Regarding the penalty function, in this paper, the constraint
in the literature. The penalty function is used to calculate problem is defined as formula (35):

the constrained problem. The parameters set for all of the

heuristic algorithms still adopts the parameter setting form Minimize f(x), % € R¢

Table 4 of Section IV.B.3). Subjectto gi(x) <0, i=1,2,...,p
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FIGURE 11. Performance profile of 7 algorithms on 15 benchmark
functions.

hi(x)=0,j=1,2,...,q 35)

where g; represents the inequality constraints, h; represents
the equality constraints, and R? represents the ¢ dimensional
real numbers. Using the heuristic algorithm to find the best
X = {x1,x2, ..., Xg} minimizes f (X).

When using the penalty function to deal with the con-
strained problems in the heuristic algorithm. A large penalty
value proportional to the values of the violated con-
straints is added to the objective function. Therefore, the
optimization of the constrained problems is defined as
formula (36):

F(0), xeS
p P
Minimize F(x) = @+ M; ; 8i(x) (36)
q
+ ) h&), ¢S
i=1

where S represents the search space. When individuals violate
a constraint, they are assigned a big fitness value.

1) CONSTRAINED PROBLEM EXAMPLES

We are using 5 constrained problem examples to test the capa-
bility of the MSSOA. The formulations of these problems are
available in Appendix A.

a: CONSTRAINED PROBLEM 1
For the constrained problem, the MSSOA compared to the
PSO, SA_GA, GSA, SCA, MVO, and the SOA. The mean
values, standard deviation, worst fitness, best fitness, and the
run time between the algorithms of 30 all alone runs, and the
data of the constrained problem 1 optimization results are
shown in Table 8. The underline and boldface indicate that
the optimal outcome is better.

Based on Table 8, for the best value of the constrained
problem, the MSSOA is better than the others. For the worst
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TABLE 8. Performance comparison of algorithms for the constrained
problem 1.

Optimal values for variables

Algorithm

Mean Std. Worst Best Time
PSO 0.75001 1.843e¢-05 0.75008  0.74999783 16.82
SA-GA 0.79428 0.05981 0.98903  0.75003 653.5
GSA 0.87413 0.07407 1 0.75235541 23.72
SCA 0.75083 5.160e-04  0.75244  0.75005837 8.482
MVO 0.750004 6.772¢-06 0.75002 0.74999776 9.378
SOA 0.750007  8.225e-06  0.75003  0.749997543  64.00
MSSOA 0.750007  9.637¢-06  0.75003  0.749997542 1158

TABLE 9. Comparison results for constrained problem 1.

Algorithm Optimal values for variables OpFimum Rank
X X2 weight
MBA [42] -0.706958 0.499790 0.750000 5
PSO 0.706734627542  0.499478081331  (.74999782901508 3
SA-GA 0.702965083028  0.494164907940  0.75003154829935 6
GSA 0.679880262201  0.461373744130  0.75235541444374 8
SCA 0.711413165129 0.506087378323 0.75005836936988 7
MVO -0.70677036617  0.499529976302  0.74999776008488 4
SOA -0.70721653313 0.500159804058 0.74999754323344 2
MSSOA 0.705824137042  0.498173561503  0.74999754237257 1

TABLE 10. Performance comparison of algorithms for the constrained
problem 2.

Optimal values for variables

Algorithm Mean Std. Worst Best Time
PSO 13.59111  3.799e-04  13.5921016  13.590742  15.20
SA-GA 2422872  22.625406  89.4492809  13.599119 562.7
GSA 18.13747  8.7743096  60.4248018  13.662536 24.44
SCA 68.32585  72.913954  1.625e+02 13.608482  7.001
MVO 13.59195  0.0012790  13.595743 13.590751  9.543
SOA 13.59133  6.184e-04  13.593641 13.590731  50.85
MSSOA 13.59114  3.166e-04 13.591883 13.590723 1513

value, the standard deviation, and the mean, except the MVO
and the SOA, the MSSOA is better than the PSO, SA-GA,
GSA, and the SCA. For the time, the SCA is the shortest; the
MSSOA is only shorter than the SA-GA.

The MSSOA compared to MBA [45], PSO, SA_GA, GSA,
SCA, MVO, and SOA, and provided the best-obtained val-
ues for variables and the best-obtained values in Table 9.
According to Table 9, the MSSOA algorithm is better
than the MBA, PSO, SA_GA, GSA, SCA, MVO, and the
SOA.

b: CONSTRAINED PROBLEM 2
For the constrained problem, the MSSOA compared to PSO,
SA_GA, GSA, SCA, MVO, and SOA. The mean values,
standard deviation, worst fitness, best fitness, and the run time
between the algorithms of 30 all alone runs, and the data of
the constrained problem 2 optimization results are shown in
Table 10. The underline and boldface indicate that the optimal
outcome is better.

Based on Table 10, for the best value of the constrained
problem, the MSSOA is better than the others. For the worst
value, the MSSOA is better than the others. For the standard
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TABLE 11. Comparison results for constrained problem 2.

Algorithm Optimal values for variables OpFimum Rank
X1 X2 weight
MBA [45] 2.246833 2.381997 13.590842 5
HS [46] 2.246840 2.382136 13.590845 6
PSO 2.24679362 2.38112814 13.59074151 3
SA-GA 2.24762961 2.39765431 13.59911899 7
GSA 2.24365506 2.34999866 13.66253631 9
SCA 2.24635687 2.38393098 13.60848206 8
MVO 2.24687306 2.38263657 13.59075144 4
SOA 2.24659360 2.37795776 13.59073090 2
MSSOA 2.24677100 2.38115228 13.59072342 1

TABLE 12. Performance comparison of algorithms for the constrained
problem 3.

Optimal values for variables

TABLE 13. Comparison results for constrained problem 3. “N.A” stands
for not available.

Algorithm Optimal values for variables Op.ﬁmum Rank
X; X5 weight
ABC [45] N.A N.A —0.095825 6
MBA [45] N.A N.A —0.095825 6
PSO 1.22798168 4.24538499  -0.0958250406 1
SA-GA 1.22797135 4.24537337  -0.0958250414 3
GSA 1.20702106 4.15205317  -0.0775611591 9
SCA 1.22853872 4.24800720  -0.0958101010 8
MVO 1.22796786 424542282 -0.0958250367 5
SOA 1.22803036 4.24525088  -0.0958250397 4
MSSOA 1.22809352 4.24564249  -0.0958250408 2

TABLE 14. Performance comparison of algorithms for the constrained
problem 4.

Algorithm Mean Std. Worst Best Time . Optimal values for variables

PSO -0.0958248  3.351c-07  -0.095823  -0.095825  16.65 Algorithm =0 Std. Worst Best Time
SA-GA -0.0623719  0.0340304 -0.025768  -0.095825 561.5 PSO -6.969¢+3  0.0764693 -6.968e+3  -6.969e+3  20.30
GSA 1.1413e+05  2.854et+05  1.562¢+06 -0.077561  24.76 SA-GA -1.760e+3  2.1187e+4  1.1023e+5 -6.865¢+3 8772
SCA -0.0948443  9.383e-04  -0.091295  -0.095810  8.62 GSA -6.776e+3  4.7591e+2  -4.620e+3  -6.968¢+3  35.52
MVO -0.0958247 3.664e-07  -0.095823  -0.095825 9.20 SCA 3.1731e+4  1.0453e+4  3.4517e+4  -6.737e+3  9.53
SOA -0.09582491  1.495¢-07  -0.095824  -0.095825  57.89 MVO -6.938¢+3  33.997171 -6.824e+3  -6.966e+3  13.38
MSSOA  -0.09582492  9.900e-08  -0.095825  -0.095825  270.6 SOA 6.682e+3  1.0271e+3  -1.266e+3  -6.967e+3  54.79

MSSOA  -6.967e+3  2.1694785 -6.957e+3  -6.969¢+3  161.01

deviation, the MSSOA is also better than the others. For
the mean, the PSO is the best; the MSSOA is better than
the SA-GA, GSA, SCA, MVO, and the SOA. For the time,
the SCA is the shortest; the MSSOA is only shorter than that
of the SA-GA.

The MSSOA compared to MBA [45], HS [46], PSO,
SA_GA, GSA, SCA, MVO, and SOA, and provided the
best-obtained values for variables and the best-obtained val-
ues in Table 11. According to Table 11, the MSSOA algorithm
is better than the HS, MBA, PSO, SA_GA, GSA, SCA, MVO,
and the SOA.

¢: CONSTRAINED PROBLEM 3

For the constrained problem, the MSSOA compared to PSO,
SA_GA, GSA, SCA, MVO, and SOA. The mean values,
standard deviation, worst fitness, best fitness, and the run time
between the algorithms of 30 all alone runs, and the data of
the constrained problem 3 optimization results are shown in
Table 12. The underline and boldface indicate that the optimal
outcome is better.

Based on Table 12, for the best value of the constrained
problem, the MSSOA is better than the GSA and the SCA;
except the GSA and the SCA, the MSSOA is not much
of a difference between the optimal value of the MSSOA
algorithm and that of the others. For the worst value, the
MSSOA is better than the others. For the standard deviation,
the MSSOA is also better than the others. For the mean, the
MSSOA is also better than the others. For the time, the SCA
is the shortest; the MSSOA is only shorter than that of the
SA-GA.

The MSSOA compared to ABC [45], MBA [45], PSO,
SA_GA, GSA, SCA, MVO, and SOA, and provided the
best-obtained values for variables and the best-obtained
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values in Table 13. In Table 13, the MSSOA algorithm proves
to be better than the ABC, MBA, PSO, GSA, SCA, MVO, and
the SOA. Although the optimum of the MSSOA is worse than
that of the PSO, there is not much of a difference between
the optimal value of the MSSOA algorithm and that of the
SA-GA and PSO algorithm.

d: CONSTRAINED PROBLEM 4

For the constrained problem, the MSSOA compared to PSO,
SA_GA, GSA, SCA, MVO, and SOA. The mean values,
standard deviation, worst fitness, best fitness, and the run time
between the algorithms of 30 all alone runs, and the data of
the constrained problem 4 optimization results are shown in
Table 14. The underline and boldface indicate that the optimal
outcome is better.

Based on Table 14, for the best value of the constrained
problem, there is not much of a difference between the opti-
mal value of the MSSOA algorithm and that of the PSO
algorithm. For the worst value, the standard deviation, and
the mean, the MSSOA is worse than the PSO; the MSSOA is
better than the others except the PSO. For the time, the SCA
is the shortest; the MSSOA is only shorter than that of the
SA-GA.

The MSSOA is compared to the ABC [45], MBA [45],
PSO, SA_GA, GSA, SCA, MVO, and SOA, and provides
the best-obtained values for variables and the best-obtained
values in Table 15. According to Table 15, the MSSOA
algorithm is better than the ABC, MBA, SA_GA, GSA, SCA,
MVO, and the SOA. Although the optimum of the MSSOA is
worse than the PSO, there is not much of a difference between
the optimal value of the MSSOA algorithm and that of the
PSO algorithm.
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TABLE 15. Comparison results for constrained problem 4. “N.A” stands
for not available.

Algorithm Optimal values for variables Op_timum Rank
X1 X2 weight
ABC [45] N.A N.A -6961.814 6
MBA [45] N.A N.A -6961.813875 7
PSO 14.08919351  0.83093718  -6.968587¢+03 1
SA-GA 14.06645200  0.78442061  -6.86487¢+03 8
GSA 14.08940978  0.83119240  -6.96807¢+03 3
SCA 14.16266815  0.97398070  -6.73678e+03 9
MVO 14.08928314  0.83151360  -6.96645¢+03 5
SOA 14.11657823  0.89089956  -6.96723e+03 4
MSSOA 14.09144709  0.83565663  -6.968585e+03 2

TABLE 16. Performance comparison of algorithms for the constrained
problem 5.

Optimal values for variables

Algorithm

Mean Std. Worst Best Time
PSO -0.99655 0.002037 -0.98892 -0.99932  41.45
SA-GA -0.19653 0.178712 -0.00153 -0.56083  1302.5
GSA -0.222051  0.389941 -2.723e-05 -0.99285  63.07
SCA -0.071263  0.165932 0 -0.53873  27.03
MVO -0.998647 9.3632e-04  -0.99569 -0.99989  33.26
SOA -0.998463  8.02951 -0.99666 -0.99936 1249
MSSOA -0.999310 4.8379¢-04  -0.998257  -1.00004 300.8

e: CONSTRAINED PROBLEM 5

For the constrained problem, the mean values, standard devi-
ation, worst fitness, best fitness, and the run time between the
algorithms of 30 all alone runs, and the data of the constrained
problem 5 optimization results are shown in Table 16. The
underline and boldface indicate that the optimal outcome is
better.

Based on Table 16, for the best value of the constrained
problem, the MSSOA is better than the others. For the worst
value, the MSSOA is better than the others except the PSO.
For the standard deviation, the MSSOA is better than the
others except the MVO. For the mean, the MSSOA is the
best. For the time, the SCA is the shortest; the MSSOA is
only shorter than that of the SA-GA.

The MSSOA is compared to the MBA [45], ABC [46],
PSO, SA_GA, GSA, SCA, MVO, and the SOA, and provides
the best-obtained values for variables and the best-obtained
values in Table 17. According to Table 17, the MSSOA
algorithm is better than the MBA, PSO, SA_GA, GSA, SCA,
MVO, and the SOA. There is not much of a difference
between the optimal value of the MSSOA algorithm and that
of the ABC algorithm.

2) PRACTICAL CONSTRAINED ENGINEERING PROBLEMS
We are using 6 constrained engineering problems to test the
capability of the MSSOA further. The formulations of these
problems are available in Appendix B.

a: WELDED BEAM DESIGN PROBLEM

This is a least fabrication cost problem, which has four param-
eters and seven constraints. The parameters of the structural
system are shown in Figure 12 [9].
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FIGURE 12. Design parameters of the welded beam design problem.
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FIGURE 13. Pressure vessel design problem.

For the problem in this paper, the MSSOA is compared to
the PSO, SA_GA, GSA, SCA,MVO, and the SOA. The mean
values, standard deviation, worst fitness, best fitness, and the
run time between the algorithms of 30 all alone runs, and the
data of the welded beam design problem optimization results
are shown in Table 18. The underline and boldface indicate
that the optimal outcome is better.

Based on Table 18, for the best value of the constrained
problem, the MSSOA is better than the others algorithm. For
the worst value, the standard deviation, and the mean, the
MSSOA is also better than the others. For the time, the SCA
is the shortest; the MSSOA is only shorter than that of the
SA-GA.

Some of the works come from these kinds of literature:
GSA [6], MFO [7], MVO [9], CPSO [47], and HS [48]. And
the MSSOA is compared to the PSO, SA_GA, GSA, SCA,
MVO, and the SOA, and provides the best-obtained values
for variables and the best-obtained values in Table 19.

In Table 19, the results of MSSOA algorithm are better than
the GSA, MFO, MVO, CPSO, and the HS in other kinds of
literature. The results of MSSOA are also better than the PSO,
SA_GA, GSA, SCA, MVO, and the SOA.

b: PRESSURE VESSEL DESIGN PROBLEM
This is also the least fabrication cost problem of four param-
eters and four constraints. The parameters of the structural
system are shown in Figure 13 [9].

For the problem in this paper, the MSSOA is compared to
the PSO, SA_GA, GSA, SCA, MVO, and the SOA. The mean
values, standard deviation, worst fitness, best fitness, and the
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TABLE 17. Comparison results for constrained problem 5, “N.A” stands for not available.

Algorithm Optimal values for variables Optimum weight  Rank
X7 X2 X3 X4 X5 X6 X7 X8 X9 X109
MBA[45] N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A -0.9998 5
ABC[46] N.A N.A N.A N.A N.A N.A N.A N.A N.A N.A -1 1
PSO 0.31701 0.31878 0.31517 0.31416 0.31487 0.31436 0.31510 0.31442 0.32260 0.31571  -0.9993 7
SA-GA 0.28101 0.36264 0.32543  0.20339 0.24639 0.29019 0.43072 0.34228 0.39289 0.20078  -0.5608 9
GSA 0.31168 0.31549 0.32409 0.31275 0.31831 0.31277 0.32446 0.29530 0.32217 0.32418 -0.9929 8
SCA 0.32290 0.23659 0.34231 0.30454 0.38043 0.27937 0.42222 0.18004 0.25397 0.32969 -0.5387 10
MVO 0.31547 031567 0.31642 0.31740 0.31720 0.31416 0.31661 0.31546 0.31885 0.31507 -0.9999 4
SOA 031861 0.31810 0.31281 0.32214 0.31960 0.31128 0.31554 0.31306 0.31351 0.31753  -0.9994 6
MSSOA 0.31586 0.31569 0.31495 0.31623 0.31588 0.31599 0.31746 0.31695 0.31749 0.31575 -1.00004 2
TABLE 18. Performance comparison of algorithms for the welded beam design problem.
Algorithms
Result
PSO SA-GA GSA SCA MVO SOA MSSOA
Mean 1.788157235746  2.755187402106  3.088532351176  1.839667997861  1.719443638856  1.701777355905  1.698400133899
Std. 0.103424982300 0.617943995354  0.497165740387  0.045305420774  0.021705183473  0.006210252944  0.002127438839
Worst  2.046413310679  4.003256393174  3.925665010955  1.929612704440  1.777793458511  1.721858419034  1.706257255757
Best 1.697564416220  1.745541336597  2.022338397989  1.771438206326  1.697401277111  1.696109278951  1.695936222372
Time 16.258530 660.530622 28.804379 8.418633 10.941200 69.129909 183.911207
TABLE 19. Comparison results of the welded beam design problem.
Algorithm _ Optimal values for variables Optimal cost Rank
h / t b
GSA [6] 0.182129 3.856979 10.0000 0.202376 1.87995 10
MFO [7] 0.2057 3.4703 9.0364 0.2057 1.72452 5
MVO [9] 0.205463 3.473193 9.044502 0.205695 1.72645 6
CPSO [47] 0.202369 3.544214 9.048210 0.205723 1.72802 7
HS [48] 0.2442 6.2231 8.2915 0.2443 2.3807 12
PSO 0.205143375132900  3.260999556438029  9.050891106782855  0.205686317248074 1.697564416220149 4
SA-GA 0.184769549442834  3.707539689062885  8.913293291156665 0.211463867785461  1.745541336597454 8
GSA 0.188691249382521  4.518431717869246  9.083806192624566  0.227928590077372  2.022338397989212 11
SCA 0.206264473596472  3.491396540750882  8.881354620750962  0.215064864696517  1.771438206326408 9
MVO 0.205008451832884  3.274310401271678  9.035573526674412  0.205798767764750  1.697401277111472 3
SOA 0.201987971216458  3.327944107096977  9.037256929932264  0.205750385361675 1.696109278951345 2
MSSOA 0.205476896038301  3.262045628652172  9.041791068471218  0.205704435075519  1.695936222371749 1

run time between the algorithms of 30 all alone runs, and
the data of the pressure vessel design problem optimization
results are shown in Table 20. The underline and boldface
indicate that the optimal outcome is better.

Based on Table 20, for the best value of the constrained
problem, the MSSOA is better than the PSO, SA-GA, GSA,
SCA, MVO, and the SOA. For the worst value, the standard
deviation, and the mean, the MSSOA is better than the others.
For the time, the SCA is the shortest; the MSSOA is only
shorter than that of the SA-GA.

Some of the works come from the literature: MFO [7],
ES [49], DE [50], ACO [51], and GA [52]. And the MSSOA
is compared to the PSO, SA_GA, GSA, SCA, MVO, and the
SOA, and provides the best-obtained values for variables and
the best-obtained values in Table 21.

For the problem, the MSSOA algorithm is better than the
MFO, ES, DE, ACO, and the GA algorithms in other kinds of
literature. The MSSOA is also better than the PSO, SA_GA,
GSA, SCA, MVO, and the SOA.
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c: CANTILEVER BEAM DESIGN PROBLEM

This is a problem that is determined by 5 parameters
and is only applied to the scope of the variables of con-
straints. The parameters of the structural system are shown in
Figure 14 [7].

For the problem in this paper, the MSSOA is compared
to the PSO, SA_GA, GSA, SCA, MVO, and the SOA.
The mean values, standard deviation, worst fitness, best fit-
ness, and the run time between the algorithms of 30 all
alone runs, and the data of the cantilever beam design
problem optimization results are shown in Table 22. The
underline and boldface indicate that the optimal outcome is
better.

Based on Table 22, for the best value of the constrained
problem, the MSSOA is better than the PSO, SA-GA, GSA,
SCA, MVO and the SOA. For the worst value, the standard
deviation, and the mean, the MSSOA is better than the others.
For the time, the SCA is the shortest; the MSSOA is only
shorter than that of the SA-GA.
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TABLE 20. Performance comparison of algorithms for the pressure vessel design problem.

Result _ Algorithms
PSO SA-GA GSA SCA MVO SOA MSSOA
Mean  1.42839441¢+04  6.93682335¢+03  6.49222884e+03  4.25987350e+04  6.41381975¢+03  5.99980731e+03  5.82746316e+03
Std. 1.85910050e+04  3.38090560e+02  3.88660018e+02  2.63296156e+04  4.43351485e+02  3.20646873e+02  2.18668682e+02
Worst ~ 8.93441840e+04  7.19285121e+03  7.40712578e+03  7.54857662e+04  7.14161898e+03  6.81153704e+03  6.65135067e+03
Best 6.61263274¢+03  5.90783779¢+03  6.02589090e+03  5.82113657¢+03  5.75119625¢+03  5.73534518e+03  5.73510204e+03
Time 16.486317 688.353289 26.375727 10.706477 12.903910 81.821338 219.366853
TABLE 21. Comparison results for the pressure vessel design problem.
Algorithm Optimal values for variables Optimal cost Rank
Ty Ty R L
MFO [7] 0.8125 0.4375 42.098445 176.636596 6059.7143 8
ES [49] 0.8125 0.4375 42.098087 176.640518 6059.7456 10
DE [50] 0.8125 0.4375 42.098411 176.637690 6059.7340 9
ACO [51] 0.8125 0.4375 42.103624 176.572656 6059.0888 7
GA [52] 0.8125 0.4375 42.097398 176.654050 6059.9463 11
PSO 0.8855303751578 0.4524306944924 47.3710175872595 139.4774510560814  6612.632735153998 12
SA-GA 0.8286437203582 0.4076337806232 44.5808343023210 148.1276798336512 5907.837786470595 5
GSA 0.8413964541417 0.4134042204535 45.2230377372840 144.8944326676142 6025.890901037682 6
SCA 0.7676969577481 0.3576083643660 40.6299488066177 196.3985187764563 5821.136566031909 4
MVO 0.7454084468015 0.3669001422895 40.6040426419039 196.1357865457513 5751.196248760631 3
SOA 1.042698229610387  0.502612582123923  55.209890788137130  61.748997269949271  5735.345181442674 2
MSSOA 0.7420518229763 0.3715914566788 40.3329487051406 199.8628982503359 5735.102040019222 1
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FIGURE 14. Cantilever beam design problem.

Some of the works come from these kinds of literature:
MFO [7], CS [53], GCA [54], MMA [54], and SOS [55]. And
the MSSOA is compared to the PSO, SA_GA, GSA, SCA,
MVO, and the SOA, and provides the best-obtained values
for variables and the best-obtained values in Table 23.

In Table 23, the MSSOA algorithm proves to be better than
the MFO, CS, GCA, MMA, and the SOS algorithms in other
kinds of literature. The MSSOA is also better than the PSO,
SA_GA, GSA, SCA, MVO, and the SOA.

d: TUBULAR COLUMN DESIGN

This is also a minimum cost problem of two parameters and
six constraints. The parameters of the structural system are
shown in Figure 15 [56].

For the problem in this paper, the MSSOA is compared to
the PSO, SA_GA, GSA, SCA, MVO, and the SOA. The mean
values, standard deviation, worst fitness, best fitness, and the
run time between the algorithms of 30 all alone runs, and
the data of the tubular column design problem optimization
results are shown in Table 24. The underline and boldface
indicate that the optimal outcome is better.
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Based on Table 24, for the best value of the constrained
problem, the MVO is the best; the MSSOA is better than
that of other algorithms. For the worst value and the standard

FIGURE 15. Tubular column design problem.
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TABLE 22. Performance comparison of algorithms for the cantilever beam design problem.

Algorithms
Result

PSO SA-GA GSA SCA MVO SOA MSSOA
Mean  1.340044656035  1.64899842786  1.34024454022  1.3910341586 1.34059792791  1.33998704816  1.33997715057
Std. 8.79249987e-05  0.27193805858  3.5214752¢-04  0.0172732002 3.75586210e-04  2.10772933e-05  1.9652352¢-05
Worst  1.34034669200  2.26096076762  1.34173921342 1429682073511  1.34130109731  1.34005939342  1.3400548758
Best 1.33996051444 1.35443574643  1.33995803663  1.361411514762  1.34001137692  1.33995352050  1.3399522567
Time 19.322597 598.869855 28.586624 9.175697 12.077241 52.943335 164.983097

TABLE 23. Comparison results for the cantilever beam design problem.
Algorithm _ Optimal values for variables Optimum weight ~ Rank
X7 X2 X3 X4 X5

MFO [7] 59848717732 53167269243  4.4973325858  3.5136164677  2.1616202934  1.339988086 6

CS [53] 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 7

GCA [54] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8

MMA [54] 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8

SOS [55] 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 4

PSO 6.0053406124  5.3177844495  4.4879695880  3.5090481883  2.1535708454  1.339960514 5

SA-GA 6.2396310580  5.7001619772  4.6524696443  3.2778615899  1.8354638207  1.354435746 11

GSA 6.0083043234  5.3157704728  4.5033485026  3.4939663933  2.1522404325  1.339958037 3

SCA 6.3738759865  4.9903030313  4.3841035306  3.3449830328  2.7242266426 1.361411515 12

MVO 6.0169985301  5.3216277767 4.4830302436  3.5165667788  2.1354271906  1.340011377 10

SOA 6.0110848387  5.2989655437  4.4903004818  3.5245272179  2.1489317851  1.339953520 2

MSSOA 6.0170977409  5.2965179429  4.4949907330  3.4942666705  2.1710731191  1.339952257 1

TABLE 24. Performance comparison of algorithms for the tubular column design problem.

Algorithms
Result

PSO SA-GA GSA SCA MVO SOA MSSOA
Mean  26.48817581983  27.50685171232  27.25847209185  26.61047972329  26.48795645950  26.48851288085 26.48744720697
Std. 0.001266135080  0.906067717414  1.036218793187  0.066795689421  0.001204566021 0.001570913109 0.001633617916
Worst  26.49111192810  29.90764214511  31.77298392287  26.80758004649  26.49096384150 26.492298210474 26.49531524954
Best 2648643791207  26.54702124371  26.59900262493  26.50433585534  26.48627239710 26.486647729114  26.48631993554
Time 16.634990 593.690108 23.016568 7.732375 11.092001 77.181567 120.929135

deviation, the MSSOA is better than the SA-GA, GSA, and
the SCA, and the MSSOA is worse than PSO, MVO, and the
SOA. For the mean value, the MSSOA is the MVO is the best.
For the time, the SCA is the shortest; the MSSOA is only
shorter than that of the SA-GA.

Some of these works come from the kinds of literature:
CS [57], ISA [58], FA [59], ASO [60], SNS [56]. And the
MSSOA is compared to the PSO, SA_GA, GSA, SCA, MVO,
and the SOA, and provides the best-obtained values for vari-
ables and the best obtained values in Table 25.

In Table 25, the MSSOA algorithm proves to be better
than the CS, ISA, FA, ASO, and the SNS algorithms in other
kinds of literature. Except for the MVO, the MSSOA is also
better than the PSO, SA-GA, GSA, SCA, and the SOA. The
result of the MSSOA has reached the theoretical best solution,
although the optimum of the MSSOA is worse than that of the
MVO.

e: PISTON LEVER PROBLEM

This is a locating the piston components problem, which has
four variables and four constraints. Figure 16 is the schematic
diagram [56].
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TABLE 25. Comparison results of the tubular column design problem.

Algorithm _ Optimal values for variables Optimal cost Rank
x:(d) x2(t)

CS [57] 5.45139 0.29196 26.53217 10
ISA [58] 545115623 0.29196547 26.5313 8
FA [59] N/A N/A 26.4994969 5
ASO [60] N/A N/A 26.53137828 9
SNS [56]  26.5313 26.5313 26.4994969 5
PSO 5.45241248 0.29161380 26.48643791 3
SA-GA 5.48259506 0.28999485 26.54702124 11
GSA 5.46443535 0.29261817 26.59900262 12
SCA 5.45179801 0.29199765 26.50433586 7
MVO 5.45225365 0.29161486 26.48627240 1
SOA 5.45386190 0.29153427 26.48664773 4
MSSOA 5.45219456 0.29162428 26.48631994 2

For the problem in this paper, the MSSOA is compared
to the PSO, SA_GA, GSA, SCA, MVO, and the SOA. The
mean values, standard deviation, worst fitness, best fitness,
and the run time between the algorithms of 30 all alone runs,
and the data of the piston lever problem optimization results
are shown in Table 26. The underline and boldface indicate
that the optimal outcome is better.

Based on Table 26, for the best value of the constrained
problem, the MSSOA is best. For the worst value, the
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TABLE 26. Performance comparison of algorithms for the piston lever problem.

Algorithms
Result
PSO SA-GA GSA SCA MVO SOA MSSOA

Mean  1.8924714e+04  3.8395338¢+02  8.0900632¢+04 9.190761525 1.5870761e+02  8.99463714 1.1855562¢+02

Std. 7.1700790e+04  7.0949773e+02  1.6243533e+05 0.347684151 1.2582486e+02  2.1857150 1.2356288e+02

Worst  2.8416627e¢+05  3.1853816e+03  7.0125150e+05 9.922422079 2.9937715e¢+02  18.75755139  4.0213748e+02

Best 10.24259065 8.41373929 3.29028058e+02  8.52096198 8.47942385 8.41347665 8.4134112

Time 16.627484 613.857016 25.635308 8.816001 11.093057 66.245904 113.090778

TABLE 27. Comparison results of the piston lever problem.
Algorithm _ Optimal values for variables Optimal value Rank
x,(H) x2(B) x3(D) X4(X)

DE [61] 1294 243 119.80 4.75 159 9
GA [61] 250.0 3.96 60.03 591 161 11
HPSO [61] 135.5 2.48 116.62 4.75 161 11
CS [57] 0.050 2.043 120.000 4.085 8.427 5
SNS [56] 0.050 2.042 120.000 4.083 8.412698349 1
PSO 0.0500000000000 2.2004458009526 4.3429316143480 110.6668235984532  10.24259065154840 8
SA-GA 0.0500000000000 2.0417619164866 4.0830416789885 119.9999715756912  8.413739285922011 4
GSA 215.9646294854686  344.6817103997157  03.2179597335794  60.1907279614403 329.0280579311141 12
SCA 0.0589732446248 2.0456822965266 4.0848813955281 120.0000000000000  8.520961983238227 7
MVO 0.0500000000000 2.0502088605801 4.0908333358488 119.9640112340799  8.479423852552021 6
SOA 0.7649083155587 2.0351385415011 4.0554693386457 120.0000000000000  8.413476646923973 3
MSSOA 0.0500000000000 2.0433232146874 4.0832945913726 120.0000000000000  8.413411204004042 2

FIGURE 16. Piston lever problem.

MSSOA is better than the PSO, SA-GA, and the GSA, and
the MSSOA is worse than the SCA, MVO and the SOA. For
the standard deviation and the mean, the MSSOA is better
than the PSO, SA-GA, GSA, and the MVO, and the MSSOA
is worse than the SCA and the SOA. For the time, the SCA
is the shortest; the MSSOA is only shorter than that of the
SA-GA.

Some of these works come from the kinds of literature:
DE [61], GA [61], HPSO [61], CS [57], SNS [56]. And
the MSSOA is compared to the PSO, SA_GA, GSA, SCA,
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MVO, and the SOA, and provides the best-obtained values
for variables and the best obtained values in Table 27.

In Table 27, except for the SNS, the MSSOA algorithm
proves to be better than the DE, GA, HPSO, and the CS
algorithm in other kinds of literature. The MSSOA is also
better than the PSO, SA-GA, SCA, GSA, MVO, and the SOA.
The result of the MSSOA has reached the theoretical best
solution, although the optimum of the MSSOA is worse than
that of the SNS algorithm.

f: REINFORCED CONCRETE BEAM DESIGN PROBLEM

This is an optimization problem of designing a reinforced
concrete beam, which has three variables and two constraints.
Figure 17 is the schematic diagram [56].

For the problem in this paper, the MSSOA is compared
to the PSO, SA_GA, GSA, SCA, MVO, and the SOA. The
mean values, standard deviation, worst fitness, best fitness,
and the run time between the algorithms of 30 all alone runs,
and the data of the reinforced concrete beam design problem
optimization results are shown in Table 28. The underline and
boldface indicate that the optimal outcome is better.

Based on Table 28, for the best value of the constrained
problem, the PSO and the SA-GA are the best; the MSSOA is
same the SOA; and the MSSOA is better than the SCA, GSA,
and the MVO. For the worst value, the standard deviation, and
the mean, the MSSOA is better than the SA-GA, GSA, SCA,
and the GSA, and the MSSOA is worse than the PSO and the
SOA. For the time, the SCA is the shortest; the MSSOA is
only shorter than that of the SA-GA.

Some of these works come from the kinds of literature:
GHN-EP [61], FA [62], CS [57], ASO [60], SNS [56]. And
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FIGURE 17. Reinforced concrete beam design problem.
TABLE 28. Performance comparison of algorithms for the reinforced concrete beam design problem.
Algorithms
Result
PSO SA-GA GSA SCA MVO SOA MSSOA
Mean  359.20330245  362.93372827 364.15942375 3.6169104797 361.21732296  359.20330848  359.20331897
Std. 9.7088183e-13  3.309756009202  3.15927997028  1.261266108362  1.563144445 8.9104475¢-06  3.4545089¢-05
Worst  359.20330245  378.8853225476  372.68688107 362.6203630796  362.6336325 359.20334720  359.20348620
Best 359.20330245  359.20330245 359.62412635 359.23116167 359.20335774  359.20330246  359.20330246
Time 16.194841 717.071326 24.905824 7.269785 11.001462 65.146201 122.401593
TABLE 29. Comparison results of the reinforced concrete beam design problem.
Algorithm Optimal values for variables Optimal value  Rank
x(4s) x2(b) x3(h)

GHN-EP [61] 6.32 34 8.637180 362.00648 12

FA [62] 6.32 34 8.5000 359.2080 6

CS [57] 6.32 34 8.5000 359.2080 6

ASO [60] 6.32 34 8.5000 359.2080 6

SNS [56] 6.32 34 8.5000 359.2080 6

PSO 0.21973978 0.48774465 8.49953948 359.20330245 1

SA-GA 0.22271591 0.49673391 8.49953948 359.20330245 1

GSA 0.27021862 0.46197772 8.52039835 359.62412635 11

SCA 0.23315802 0.50078494 8.49841820 359.23116167 10

MVO 0.22893546 0.48404040 8.49958944 359.20335774 5

SOA 0.21878243 0.50307295 8.49954126 359.20330246 3

MSSOA 0.24071606 0.53598239 8.49954508 359.20330246 3

the MSSOA is compared to the PSO, SA_GA, GSA, SCA,
MVO, and the SOA, and provides the best-obtained values
for variables and the best obtained values in Table 29.

In Table 29, the MSSOA algorithm proves to be better than
the GHN-EP, FA, CS, ASO, and the SNS algorithm in other
kinds of literature. Except for the PSO, SA_GA, and the SOA,
the MSSOA is also better than the GSA, SCA, and the MVO.
The result of the MSSOA has reached the theoretical best
solution, although the optimum of the MSSOA is worse than
that of the PSO and the SA_GA algorithm.

V. CONCLUSION
A MSSOA algorithm is presented, with a triple black hole
system capture and interference methods. According to the
three phases to test and analyze the MSSOA from different
perspectives. The three phases include improvement of SOA
algorithms, optimization of 15 benchmark functions, opti-
mization of 5 constraint problem examples and optimization
of 6 constraint engineering problems respectively.

In the first phase, the SOA is improved in four different
ways: the TBHSOA, MISOA, PISOA, and the MSSOA. Each
improved algorithm was optimized for the 15 functions. In the
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phase, we consider the ranking values of 30 all alone running
between MSSOA mean values, standard deviation values,
best fitness values, and best fitness values rank, convergence
curves of function f 1 and f 10, and the population’s positions
with iterations and search history of function f1 and f10.
From the comparative study, the results of MSSOA are better
than the other improved SOA algorithms.

In the second phase, 15 benchmark functions optimization
problems are used to test the MSSOA further. The MSSOA
is compared to the PSO, SA-GA, GSA, SCA, MVO, and the
SOA for verification. In the benchmark functions optimiza-
tion problems, the precision, the complexity, the Wilcoxon’s
rank-sum test, the run time, the exploration and exploitation
abilities, and the results of the performance ratios of the
average solution of the MSSOA are researched. From the
comparative analyzing, the performance of MSSOA is better
than the other algorithms.

In the last phase, 5 constrained problem examples and
6 engineering optimization problems further tested the
MSSOA. The MSSOA was compared to various algorithms.
The results demonstrate that the MSSOA can achieve very
competitive performance.
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The further improving and application of MSSOA should g (X)) =x] —x4 <0,
be incorporated into future studies. The improved SOA algo- ga(®) = 1.10471x7
rithm and the heuristic algorithms base on those improved + 0.0481 Lisxs(14 +x2) — 5 < 0
strategies can not only be applied to engineering optimiza- ' -7

tion problems, but also to path planning problems, pattern g5(¥) = 0.125 —x; <0,
recognition, intelligent control and other fields. In addition 26(X) = 8(X) — Smax < 0,
to these improvement strategies mentioned in the paper, other g,(}) = P — P.(¥) <0,

improvement methods such as binary coding, complex coding
and hybrid other algorithms should also be introduced to
further improve the algorithm.

Variable range 0.1 <x; <2, 0.1 <xp <10,
0.1 <x3<10, 01<x4<?2

where
APPENDIX A

I — Constrained problem 1

(X) = \/(t’)z + 21”1”% + ()2,

L. 2 132

Mmllmlzef(x)_x] —|—()622 -, L P . MP [
Subject to i(x) = x; — xi = 0, T = N v=7, M= ( +?),

Variablerange — 1 <x; <1,i=1, 2,

2
Xy X1t X3
II — Constrained problem 2 R = 4 ( ) )2,
Minimize £(x) = (x2 +x; — 11)? + (x +x2—72, x2
. fx) (2 1 ) (21 ) ) , J =2 \/lexz _2+(X1+X3)2 ,
Subject to g;(x) = 4.84 — (x; — 0.05)" — (x2 —2.5)" > 0, 4 2
g(0) = xf + (x2 — 2.5)* ~4.84 > 0, L _6PL 6P
Variablerange 0 < x; <6, i=1,2. o) = x4x§’ ) = Exax3 ’
. 2.6
IIT — Constrained problem 3 ) 4.013E % x3 [E
. 3 . PX)=——77T"7"(1-——=,/—,
. sin” (27 x1) sin(27 x2) L2 2L Y 4G
Maximum f(x) = 3
xl ()Cl + x2) . 6 .
. 2 L <0 P =60001b,L = 14in, E = 30 x 10° psi, G = 12 x
Subject to g (x) = x7 —x2 +1 =0, 105 psi, Tmax = 136000 psi, omax = 30000 psi, Sax = 0.25 in.
B =1—x1+ (-4 =<0, 11 — Pressure vessel design problem

Variabl 0<x; <10, i=1,2. N
anable tange v = Xi = ! Consider x = [x1,x2,x3] = [T, Th, R, L],

IV — Constrained problem 4 Minimize f(¥) = 0.6224x1x3x4 + 1.778 1x2x3

Minimize f(x) = (x; — 10)* + (x, — 20)°, +3.1661x7xy + 19.84x7x3,

Subject to g1(x) = —(x] — 5)% — (x2 — 5)> + 100 < 0, Subject to g;(X) = —x; + 0.0193x3 < 0,

2(x) = (x] — 6)*> + (x — 5)* — 82.81 < 0, 2,(¥) = —x3 + 0.00954x3 < 0,

Variable range 13 < x; < 100, 0 < x, < 100. 03(7) = —mxlxy — ‘_‘mg 4 1296000 < 0.

V—Constrained problem 5 g4(X) = x4 — 240 < 0,
n Variable range 0 <x1 <99, 0<x; <99,
Minimize f(x) = =(/n)" -+ ] % 10 < x3 <200, 10 < x4 < 200.

i=1
n

III — Cantilever design problem
Subject to h(x) = Y a7 =1, gnp

i=1 Consider ¥ = [x1, x2, X3, X4, X5],
Variable range 0 < xj < I, i=1,2,....n. Minimize f (%) = 0.0624(x1 + x2 + x3 + x4 + x5),
. - 61 37 19 7 1
APPENDIX B Subject to g(x) = Stz t+t3+t5+5- 1<0,
I — Welded beam design problem B B

Variable range 0.01 < x1, x2, x3, x4, x5 < 100.
Consider X = [x1, x2, x3, x4] = [h, [, t, b],

Minimize f(¥) = 1.10471x7x; 4+ 0.04811x3x4(14 + x2),
Subject to g;(X) = T(X) — Tmax < 0, Consider ¥ = [x1, x2] = [d, t]
g2()_c') =0(X) — omax <O, Minimize f(X) = 9.8 x;x2 + 2x1

IV — Tubular column design problem
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Subject to g1(X) = —-1<0
TX1X20y
) 8pL? 1<0
X) =
£ 73 Exy x2 (x7 +x3) -
- 2.0
@) =——-1=<0
X1
- X1
g4(x) = a~ 1<0
- 0.2
gs(x)=—-1=<0
x
g6(x) = % -1<0
Variable range 2 < x; <14, 0.2 <x; <0.8

where o, = 500 kgf /cm?, E = 0.85 x 10° kgf /cm?.
V —Piston lever problem

Consider ¥ = [x1, x2, x3,x4] = [H, B, D, X]
- 1

Minimize f(X) = ng (L, — L))

Subject to g1(X) = QLcosd —R x F <0,

gz()?) =0 (L —x4) —Mpax <0,
g(X)=12Ur—L)—L; <0,

o X3
g4(x) = R <0,

where:
R— |—x4 (x4 sin 6 4+ x1) + x1 (X2 — x4 cos )|
2 2 ’
/(s — x2)° + X7
rrPx%
=

Ly = /(x4 - x)? +x7,

L, = \/(x4 sin 6 +x1)2 + (xp — x4 CcOS 9)2,
6 =45°, Q= 100001bs, L = 240in,
Mpax = 1.8 x 10°1bsin, P = 1500psi,

Variable range 0.05 < x1, x2, x4 < 500, 0.05 < x3 < 120.
VI —Reinforced concrete beam design problem

Consider ¥ = [x1, x2, x3] = [Aq, b, h]
Minimize f(X) = 2.9 x; + 0.6 xpx3
Subject to g1(F) = 22 — 4 <0,
x3
2
2,(¥) = 180+ 7.375-L —x1x <0,
X3
Variable range x; € {6, 6.16, 6.32, 6.6,
7,7.11,7.2,7.8,7.9, 8, 8.4},
X2 €128,29,30,...,40}, 5<ux; < 10.
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