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ABSTRACT The use of ethanol as fuel in Brazil stimulated the competition between distribution companies
and resellers, which aggravated the practice of adulteration of fuels, aiming for illicit gains and tax evasion.
The most common practice of adulteration in fuel alcohol is the addition of water. The classic techniques for
measuring the water content in ethanol offer good precision and good detailing as to the presence of water.
However, they present disadvantages such as the need for sample collection, long analysis time, in addition to
the need for specialized laboratory and labor. This work aims to propose digital signal processing techniques
to analyze and quantify the presence of water in ethanol fuel using a combination of Principal Component
Analysis (PCA), and Singular Spectrum Analysis (SSA) applied on ultrasonic signals. This method resulted
in the proposal of a new score, which relates to the ethanol/water ratio information present in the mixture.
The results were promising when relating the proposed score to the presence of moisture in ethanol to a
greater or lesser degree. Experiments performed prove the technique’s feasibility and pave the way for a
new method for real-time monitoring.

INDEX TERMS Acoustic signature, ethanol, principal component analysis (PCA), singular spectrum
analysis (SSA), singular value decomposition (SVD), ultrasound.

I. INTRODUCTION
Ethanol is an alcoholic substance widely used as a fuel or
additive to gasoline in the fuel industry. Due to its high
solubility in water, the fast and effective determination of the
water content in ethanol is essential to guarantee the quality of
the product. The alcohol content below the allowable makes
combustion more difficult due to the greater amount of water
present in the fuel. Levels above the established increase the
volatility of the fuel and can cause problems in the function-
ing of engines. As ethanol is added to water, the interactions
between the molecules lead to changes in the molecular
structure of the compounds [1]. As a result, there is a variation
in the final sample volume. Due to volume dependence, some
physical-chemical parameters, including the speed of sound
in the sample and the density, show a nonlinear behavior
depending on the ethanol concentration in the mixture [2].
The classic technique, like Karl Fischer’s titration, is used
for measuring the water content in ethanol [3], offering good
precision and good detailing as to the presence of water.
However, they present disadvantages, such as the need for
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sample collection, long analysis time, in addition to the need
for specialized laboratory and labor.

Ultrasound technology has been used to evaluate the com-
position of materials, such as insulating oil [4], [5], fuel
oil [6], [7], foods, among others. There is a relationship
between the ultrasonic velocity and the composition of the
mixtures at a given temperature [8]. Since the change in
ultrasonic velocity with temperature differs from substance to
substance, measuring the ultrasonic velocity in a mixture at
two temperatures would supply information about the volume
fraction of the ingredients.

This work intends to find ways to discover the adulter-
ation in ethanol fuel through the acoustic signature in the
single-source ultrasound signal, with the measurement at
only one temperature, and in a non-invasive way to allow
online applications. The main objective of this work is to
find a mechanism to characterize and classify the percent-
age of water present in ethanol fuel using digital signal
processing techniques. The parameters used as the acoustic
signature of the mixture are obtained by combining digital
signal processing techniques applied to the signal captured
from an ultrasonic pulse that passed through the sample to
be classified. The method used in the development of this
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focuses on applying a set of mathematical techniques in ultra-
sonic signals to obtain these parameters. These parameters
will be used to classify the proportions of moisture in ethanol-
water blends.

This work proposes a new methodology to reveal param-
eters in the acoustic signature of a mixture, based on the
digital manipulation of data from ultrasonic transducers asso-
ciated with a combination of mathematical techniques, such
as Singular Value Decomposition (SVD), Singular Spec-
trum Analysis (SSA) and Principal Component Analysis
(PCA), successfully used to estimate the water ratio in the
ethanol-water mixture.

The paper is organized as follows: the related works used
as a basis for its development are presented in Section II.
In Section III, the mathematical concepts of SVD, PCA, and
SSA are briefly presented and the proposed methodologies.
In section IV, the proposed methodologies are applied in
conducting experiments to generate data to prove the hypoth-
esis of this work. A brief discussion of the results obtained
in the experiments is also presented. Finally, the relevant
conclusions are made in Section V.

II. RELATED WORKS
Veloso [9] proposed the PCA analysis through scores on
acoustic signals from partial discharges in power transform-
ers to find patterns of contamination in insulating oil through
parameters obtained with the Discrete Wavelet Transform.
A system using the same techniques in ultrasonic signals
that can evaluate the contamination by moisture in insulating
oil of power transformers was developed by Noronha [4].
Ultrasonic techniques were also applied in the fuel industry
by Teixeira et al. [6] for the online monitoring of the degree
of water contamination in heavy fuel oil, using the FFT of
ultrasonic pulses captured by the sensor, after passing through
the liquid having the mixture, as input data for the PCA.
A principle like this is used to find a pattern in the acoustic
signature of ultrasonic signals collected in water-ethanol fuel
mixtures at different degrees of contamination. Thus, is used
a combination of Fourier Transform and SSA parameters
applied in the PCA.

Studies related to the analysis of ethanol-water mix-
tures have also been reported using ultrasound techniques.
Vatandas and Koc [8] performed the identification of the
type of alcohol and the volume concentration in binary
water-ethanol/methanol mixtures using ultrasonic velocity
measurements. D’Arrigo and Paparelli [10] analyzed ultra-
sonic velocity measurements in aqueous ethanol solutions
from −40◦C to +30◦C over the entire range of composition
of the mixture (0%-100% v/v), and in the range of frequency
of 10-70 MHz. As a result, they proposed a model to explain
the volumetric properties of ethanol mixtures at low tempera-
tures and low solute concentration ranges. Possetti et al. [11]
proposed a heterogeneous measurement system to determine
the concentration of ethanol-based solutions on optical fibers
and ultrasonic sensors to solve the ambiguous problem in
the measures presented by the water-ethanol mixture. The

application of a transducer to check the quality of biofuels,
combining optical fibers and ultrasound, was proposed by
Kawano [1]. The works cited show that the ethanol-water
mixture presents an ambiguous behavior about its physic-
ochemical properties and proposes hybrid mechanisms to
solve this nonlinearity. This work seeks to find a mechanism
to resolve this ambiguity and nonlinearity in measurements
using the acoustic signature revealed by digital signal pro-
cessing techniques.

Maddirala and Shaik [12] introduced the SSA technique
combined with Independent Component Analysis (ICA) to
separate sources from single-channel EEG signals, propos-
ing a new way of grouping for reconstructed SSA signals.
Kuang et al. [13] proposed an efficient and adaptive denoising
method based on the multistage SSA.Multistage SSA applies
basic SSA with small window length recursively to the noisy
signal. As an adaptive stop criterion, they used a correlation
measure. Moreover, the method exploits the use of SVD on
small matrices, making it more efficient. These studies show
that new forms of grouping in SSA and even elementary
grouping can be exploited to separate sources into signals in
an optimized way.

Fu et al. [14], [15] successfully used a combination of tech-
niques of PCA and SSA for feature extraction and data clas-
sification in hyperspectral imaging, proving to be a method
with better performance when a small set of training is
available. Compared to other state-of-the-art techniques, they
still obtained a higher classification and accuracy in their
proposed method, proving that the combination of these tech-
niques has great potential to be explored.

III. PROPOSED METHODOLOGY
The proposed method is based on the combination of
SSA-PCA techniques to derive an expression that relates the
acoustic signature to the ethanol-water ratio.

A. MATHEMATICAL PRELIMINARIES
The SVD is the mathematical tool used in the PCA and
SSA techniques, which are part of the signal analysis method
exploited to reveal the acoustic signature. Properties related
to the presence of water in the ultrasonic signal applied to the
ethanol-water mixture are discussed below.

1) SVD
The Singular Value Decomposition (SVD) of a matrix is a
core matrix decomposition method in linear algebra. It is
referred to as the ‘‘fundamental theorem of linear alge-
bra’’ [16] because it can be applied to all matrices, not just
square matrices, and always exists. The SVD of a matrix A,
with rank r , is a linear transformation 8: V→W, where V
∈ Rn and W ∈ Rm, and can be interpreted as to its decom-
position into three operations. In general, SVD performs a
change of basis viaVT followed by a scale and an increase (or
reduction) in dimensionality through the matrix of singular
values 6. Finally, it performs a second base change via U.
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In addition, the bases are orthonormal, the best type of base
possible.

The SVD Theorem [16] can be written in the form:

A = U6V T (1a)

A =
[
u1 u2 · · · um

]


σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
...

... · · ·
...
...

...
...

0 0 · · · σr 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0



×


vT1
vT2
...

vTn

 (1b)

A =
[
u1 u2 · · · ur

]


σ1vT1
σ2vT2
...

σrvTr
0
...

0


(1c)

A = σ1u1vT1 + σ2u2v
T
2 + · · · + σrurv

T
r =

∑r

i=1
σiuivTi

(1d)

where: σi is a scalar, ui is a m-dimensional column vector,
and vi is a n-dimensional column vector, each σiuivTi is an
m × n matrix, and the SVD equation decomposes matrix A
into r matrices with the same shape (m× n).

2) SSA
Singular Spectrum Analysis (SSA) is a method for
decomposing time series and can be used efficiently to
decompose signals to categorize their oscillation signatures
over time [17]. It is a time series analysis technique that
incorporates the elements of classical time series analysis,
multivariate statistics, multivariate geometry, dynamic sys-
tems, and signal processing. This method helps analyze data
with complex seasonal patterns and non-stationary trends,
mainly where single-channel measurement is available. The
SSA technique is a non-parametric method. One of its advan-
tages is that it can be used without any assumptions, such as
stationarity and normality of data [18].

This technique has been used successfully in different areas
of time series analysis, such as biological signals such as
EEG and ECG ([12], [19]–[23]), climatic and hydrological
data [24], acoustic signals [25]–[28], economic and financial
data and application on radars [29]. It consists of two com-
plementary stages: decomposition and reconstruction. Each
stage can be divided into two steps, as illustrated in Fig. 1,
and these stages are discussed below.

a: DECOMPOSITION
The decomposition stage includes an embedding operation
followed by an SVD.

Consider a time series with real value Y = YN =

(y1, . . . , yN) of length N . Suppose that N > 2 and Y is a non-
zero series; that is, there is at least one i such that yi 6= 0. Let
L (1 < L < N ) be an integer called window length and K =
N−L + 1.

FIGURE 1. Representation of the singular spectrum analysis
algorithm (SSA).

The one-dimensional time series Y is mapped into a mul-
tidimensional series by sliding a window of length L over the
observed data YN of sizeN . A matrix is produced by stacking
the signal segments that may have overlapping L-1. This
procedure is called embedding and results in the trajectory
matrix

X = [x1, . . . , xk ] = (xij)
L,K
i,j=1

=


y1 y2 · · · · · · yK
y2 y3 · · · · · · yK+1
...

... · · · · · ·
...

yL yL+1 · · · · · · yN

 (2)

with dimensions of L by K.
The embedding can be considered a mapping that trans-

fers a one-dimensional time series YN = (y1, . . . , yN) to
the multidimensional series x1, . . . , xK with vectors xi =
(yi, . . . , yi+L−1)

T
∈ RL. The xi vectors are called L-lagged

vectors (or, simply, lagged vectors). The result of this step
is the trajectory matrix X (2), which is a Hankel matrix,
which means that all the elements along the diagonal, i+ j=
constant, they are equal.

The second step, the singular value decomposition step
(SVD), decomposes the trajectory matrix X into its orthonor-
mal bases and represents it as a sum of elementary bi
orthogonal matrices of rank = 1. Denote λ1, . . . , λL as the
eigenvalues of CX = XXT in decreasing the order of mag-
nitude (λ1 ≥ . . .λL ≥ 0) and u1, . . . ,uL the corresponding
eigenvectors forming an orthonormal system i.e.,<ui, uj>=
0 for i 6= j (the orthogonality property) and ||ui|| = 1 (the
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unit norm property). <ui, uj > is the internal product of
the vectors ui and uj and ||ui|| is the norm of the vector ui.
Since d = rank (X) = max (i, where λi > 0), and denoting
vi = XT ui

/√
λi, then the SVD of the trajectory matrix X

can be written as:

X = X1 + · · · + Xd (3a)∑d

i=1
X i =

∑d

i=1

√
λiuivTi =

∑d

i=1
uiuTi X (3b)

where: Xi =
√
λiuivTi = uiuTi X(i = 1, . . . , d). Matrices

Xi have rank 1, so they are elementary matrices, ui and vi
represent the left eigenvectors and right eigenvectors of the
trajectory matrix X. In SSA literature, these eigenvectors are
commonly called ‘‘empirical orthogonal functions’’ (EOF)
and ‘‘principal components’’ (PC), respectively. The term uj
uTj forms a subspace for the jth component present inX. Map-
ping X in that subspace results in the trajectory matrix of the
jth component in X. In other words, uj is the base vector to
extract the jth component present in the time series Y [16].
The collection (

√
λi, ui, vi) is called the eigentriple of the

matrix X,
√
λi (i = 1, . . . , d) are the singular values of the

matrix X, and the set
{√
λi

}d
i=1

is called the spectrum
of matrix X. If all eigenvalues have multiplicity one, then the
expansion (3a) is uniquely defined.

The SVD of X is based on the spectral decomposition
of the covariance matrix CX ∈ RLxL . It should be noted
that the CX matrix is symmetric, positive definite, or positive
semidefinite. Consequently, it has a complete set of eigen-
vectors and can be diagonalized in the form U6UT, where
6 is the diagonal matrix L × L of the eigenvalues and U =
(u1, . . . ,uL) is an orthogonal matrix of eigenvectors of the
CX matrix. The name ‘‘singular spectrum analysis’’ comes
from this property of the SVD technique and is a vital part.
The whole process focuses on obtaining and analyzing this
spectrum of singular values to find and differentiate between
signal and noise in each time series.

b: RECONSTRUCTION
The reconstruction stage includes grouping and diagonal
average operations to recreate the one-dimensional time
series. Once the expansion (3b) is obtained, the grouping
procedure partitions the set of indices {1, . . . , d} into m
disjoint subsets I1, . . . , Im. Let I = {i1, . . . , ip}. Then, the
resulting matrix XI corresponding to group I is defined as
XI = Xi1 + · · · + Xip. The resulting matrices are calculated
for groups I = I1, . . . , Im and the expansion (3b) leads to
decomposition

X = X l1 + · · · + X lm (4)

The grouping step corresponds to dividing the elementary
matrices into several groups and the sum of the matrices
within each group. For a given group I, the contribution
of component XI is measured by the participation of the

corresponding eigenvalues:∑
i∈I
λi

/∑d

i=1
λi (5)

Several grouping criteria for the SSA technique are found
in the literature, primarily based on the size of the eigenval-
ues of the covariance matrix Cx [18], [22]. Maddirala and
Shaik [12] proposed an alternative form of grouping based on
the frequency components of the eigenvectors of the covari-
ance matrix Cx. This paper explores a grouping criterion
that, in addition to considering the size of the eigenvalues,
also considers the frequency information contained in the
eigenvectors, combining the two methods of grouping the
literature. Elementary grouping is also used.

After proceeding with the desired groupings, the next step
for the signal reconstruction is calculating the diagonal aver-
age because the matrices obtained may not be in the form of
a Hankel matrix. The diagonal average transforms a generic
matrix into a Hankel matrix that can later be converted into a
time series.

If zij is an element of a matrixZ of dimensions L ×K , then
the kth term of the resulting series is obtained by the mean of
zij over all i, j such that i+ j= k+ 1. This corresponds to the
average of the matrix elements on the antidiagonal i + j = k
+ 1: for k = 1 results z1 = z1,1/ 1, for k = 2, z2 = (z1,2 +
z2,1) / 2, for k = 3, z3 = (z1,3+ z2,2 + z3,1) / 3 and so on.
Let L∗ = min (L, K), K∗ = max (L, K) and N = L + K − 1.
Let z∗ij = zij also be L < K and z∗ij = zji otherwise. Making
the diagonal average, the matrix Z is transferred to the series
z(1), . . . , z(N) using the formula:

z (n)=



1
k

k∑
m=1

z∗m,k−m+1 for 1≤k<L∗

1
L∗

L∗∑
m=1

z∗m,k−m+1 for L∗≤k≤K∗

1
N − k + 1

N−L+1∑
m=k−K∗+1

z∗m,k−m+1 for K∗<k≤N

(6)

Applying the diagonal average to the matrices obtained
through the SVD supplies reconstructed signals correspond-
ing to the realized groupings. Therefore, the initial series
x1, . . . , xN is decomposed into a sum of m reconstructed
series using the SSA technique. The reconstructed series
produced by the elementary cluster is called the reconstructed
elementary series.

3) PCA
Principal Component Analysis (PCA) is one of the most used
tools in modern data analysis in several areas [9]. It supplies
a method of finding patterns in data and expressing them to
highlight their similarities and differences [7].

Given a set of data X, an mxnmatrix with a zero-mean and
standardized, where m is the number of different parameters
and n corresponds to the number of measurements for each
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parameter. The principal components of X are the eigenvec-
tors of its covariance matrix CX . When calculating the SVD
of X, the columns of matrix V hold the eigenvectors of CX .
Therefore, the columns of V are the principal components
of X.

PCA seeks a linear combination of the original variables
that produces orthogonal axes forming a new meaningful
basis that can re-express the associated data set, filter noise,
and reveal hidden information. It assumes that the data to be
analyzed have a high signal-to-noise ratio (SNR). Principal
components with more significant associated variances are
exciting information, while those with lower variances repre-
sent noise or undesired information [6], [34], [35].

A detailed description of how the Principal Component
Analysis technique can be deduced and how it can be applied
is found in Shlens [35]. It is possible to deduce the concept of
PCA intuitively and then, through mathematical rigor, derive
its algebraic solution by EVD and SVD.

B. PROPOSED SSA-PCA TECHNIQUES
The earlier section shows that the PCA uses the singular
vectors on the right of SVD, vi, and the SSA uses the singular
vectors on the left ui. As both form the orthonormal basis of
A, this work explores techniques based on the projection of
the X signal in both bases and compares them.

A combination of parameters from the PCA of the Fourier
Transform and the SSA is used in this paper to search for
patterns that can be used to classify the level of water con-
tamination in ethanol.

1) INTERPRETATION OF THE PRINCIPAL COMPONENTS
As the eigenvectors of a covariance matrix have the char-
acteristic of being orthogonal to each other, it implies data
independence. It is seen that the principal components are
orthogonal vectors in which the original data can be pro-
jected, and such projection reveals independent information
present in the data. The interpretation of the principal com-
ponents can be eased by defining scores as the projection of
the original data in the eigenvectors of the covariance matrix,
i.e., in the principal components. Each data set will generate
components that must be analyzed to get to any interpretation.
The search for patterns is done by associating each of the
principal components to each of the scores, and it done using
a bar graphs.

2) APPLICATION OF THE PCA TECHNIQUE TO THE
RECONSTRUCTED ELEMENTARY
SIGNALS OF THE SSA
The SSA technique decomposes a time series into elementary
signals called reconstructed signals (RCi). To find patterns in
the ultrasonic data collected, the SSA technique was used to
decompose the pulse into its elementary spectral components
associated with the singular vectors on the left (Columns of
the Umatrix, ui). The Fourier Transform was applied to each
reconstructed signal to get the parameters for PCA.

The block diagram of this approach is shown below
in Fig. 2.

This method decomposes the digital signal corresponding
to the ultrasonic pulses using SSA and the Fourier Transform.
All frequency bins are considered the input parameters of
the PCA. In this way, it is found which principal component
has a linear behavior and can separate the acoustic signa-
tures obtained from mixtures with different concentrations of
ethanol-water.

FIGURE 2. Methodology of application of the PCA analysis on the
parameters of the FFT of the reconstructed signals.

3) PROJECTION OF THE ORIGINAL SIGNAL ON THE
BASE FORMED BY THE RECONSTRUCTED
SIGNALS USING THE SSA
The SSA technique can decompose a time series X repre-
senting a single channel signal into a sum of L reconstructed
elementary signals. Each reconstructed elementary signal
(RCi) is a component of the original signal X revealed by
the SVD incorporated into the SSA [16], [18], [30]. As each
component is obtained by projecting the original signal onto
the left orthogonal vectors (ui) of the SVD, they are linearly
independent [30]. This paper proposes a new scoring model
based on input data projection on the base formed by recon-
structed elementary signals by the SSA technique. In analogy
to the score based on the principal components, a score based
on the reconstructed elementary signals (RCi) obtained in the
reconstruction of the time series due to the application of the
SSA technique is submitted. Each obtained component is put
in a column of the RC matrix. After being orthogonalized by
the Gram Schmidt process, each project the original signal
and obtains the scoreRC parameter. In matrix form, this pro-
posed new score, called scoreRC, can be written as:

scoreRC = RC ′ ∗ X (7)

where the RC matrix has its columns composed by the
reconstructed elementary signals of the SSA, after being
orthogonalized by the Gram Schmidt process, and X is the
time series holding the ultrasonic pulse captured by the
acquisition system after crossing the mixture and aggregating
information about the medium.

The proposed scoreRC solves the problem of nonlinearity,
observed in the PCA score for certain training sets, noticed
during the performed experiments.

The block diagram of this approach is shown below
in Fig.3.
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FIGURE 3. Methodology for obtaining standards in the scoreRC, through
the analysis of its behavior.

IV. EXPERIMENTS AND RESULTS
Based on the methodologies described in the previous sec-
tions, several experiments were performed with ultrasonic
signals obtained from the ethanol-water mixture in various
concentrations.

A. EXPERIMENTAL SETUP
This section presents the system’s characteristics used to
obtain the ultrasonic signals used in this work and essen-
tial information about the collected signals. The test bench
description can be found in Noronha [4]. A schematic draw-
ing is shown in Fig. 4.

Two ultrasonic transducers of the single crystal type
S9208-AF84, from Physical Acoustic Corporation, are used.
They work in pulsed mode, instrumenting a cuvette, one
for transmitting and the other for receiving the signal. Both
are positioned facing the liquid of the mixture. Each pulse
applied to the transmitter is collected by the receiver after
going through the liquid phase mixture. The resulting analog
signal is converted to digital using a National Instruments
system, with eight independent and simultaneous channels,
variable sampling up to 2.5MSamples/s, and 14-bit resolution
at −10V to +10V. Two channels were used, one for the
acoustic signal and another for the trigger timing.

FIGURE 4. Simplified diagram of the experimental setup.

A series of mixtures with proportions, as shown in Table 1,
were prepared from an initial volume of ethanol.

TABLE 1. Proportions of the mixtures.

A volume is placed in the stirrer. It is then drained to the
measuring cuvette until it is filled. The first measurement
is made. In each measurement, ten signals are collected.
The cuvette is then emptied, and a new flow is made from
the initial volume until filling the cuvette again. Another
measurement is made. This is repeated until the fifth mea-
surement. After that, a new volume with the new proportion
to be measured is done by adding a certain amount of water
to give the desired proportion, and the whole process is
repeated.

The collected signals are composed of 100,000 points sam-
pled at 2.5 MHz, having a certain number of acoustic pulses
(Fig. 5 (a)). Thus, the first step in treating these signals is to
extract each pulse. An algorithm based on the detection of
the signal envelope is applied, and it results in signals like the
one in Fig. 5 (b), where 4096 points are needed to record the
part of the interest of each ultrasonic pulse. Under these con-
ditions, the frequency resolution of the Fourier Transform is
610.35 Hz. Fig. 5(c) illustrates part of the frequency spectrum
of a normalized ultrasonic pulse. For the energy contained in
the pulse to be unitary, they are normalized by multiplying
each sample of the signal by the inverse of the square root of
its energy value.

Applying the SSA technique to the pulse shown in
Fig. 5 (b), the reconstructed elementary signals (RCi) are
obtained, and the first six are shown in Fig. 6.

Each pulse is considered an experiment performed to be
applied in the two techniques proposed in this work. The
first technique decomposes the digital signal correspond-
ing to the ultrasonic pulses using SSA and the Fourier
Transform. All frequency bins are considered the input
parameters of the PCA. In a second approach, the SSA will
generate the reconstructed elementary signals correspond-
ing to the ultrasonic pulse, which, represented in matrix
form, are used to obtain a score for the % of water in the
mixture.

B. SAMPLE CLASSIFICATION
The classification of the samples is shown by apply-
ing the PCA technique on samples resulting signals from
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FIGURE 5. (a) Acoustic signal in the time domain, (b) Pulse extracted from
the acoustic signal in the time domain, and (c) In the frequency domain
by the FFT, for an ethanol-water mixture with a proportion of 50% each.

FIGURE 6. Reconstructed elementary signals (RC1 to RC6), applying the
SSA technique.

ethanol-water blends with quite different levels of water.
The signals that are obtained from mixtures A and M in
Table 1 are used in this experiment. For each of the two con-
tamination levels, 100 pulses are analyzed. The parameters
obtained by applying the Fourier Transform on the pulses are
considered column vectors and placed in the matrix for the
PCA analysis. The reconstructed elementary signals (RCi)
are placed in columns of the matrix to generate the proposed
scoreRC.

Applying themethodology described in III.B.2, a clear sep-
aration between the first 100 pulses from mixture A and the
subsequent 100 pulses from mixture M is obtained, as shown
in Fig. 7.

This same classification using the scoreRC defined in (7)
is obtained as shown in Fig. 8, where different levels are
evident between the 100 pulses corresponding to each level of
contamination, in this case, about the first elementary signal
reconstructed with the SSA technique.

FIGURE 7. Scores of the first principal component (FFT).

From these results, the same techniques are applied to
ultrasonic signals obtained from different proportions of the
ethanol-water mixture described in Table 1, and their results
are discussed below.

FIGURE 8. ScoreRC of the first reconstructed elementary signal.

C. ESTIMATION OF THE PROPORTION OF WATER IN THE
ETHANOL-WATER MIXTURE
Experiments are conducted with different proportions in the
mixture to analyze different ranges ofmoisture contamination
in ethanol. The first experiment for a narrow range of mois-
ture contamination ranging from 0 to 5% of 1 in 1% is repre-
sented by mixtures A to F in Table 1. The second experiment
in mixtures with water proportions ranging from 0 to 35%
every 5% and a third combining the signals used in the
two initial experiments. Each of them is detailed in the next
sections.
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1) ADDITION OF WATER FROM 0 TO 5% IN 1% STEPS
As input data for the proposed methods, 50 ultrasonic pulses
of each level of water contamination in ethanol is used,
corresponding to six different ethanol-water proportions with
the addition of 0%, 1%, 2%, 3%, 4%, and 5% water for the
volume of ethanol, referring to mixtures A to F in Table 1.

The complete score analysis on PC#1 arising from the FFT
parameters of ultrasonic pulses has shown a direct relation-
ship between the percentage of water in the ethanol-water
mixture, as shown in Fig. 9.

Pulses 1 to 50 come from the ethanol volume sample
without added water, corresponding to Mixture A. The level
obtained with the pulses from 51 to 100 comes from the
score of the pulses captured in the ethanol-water mixture
with the addition of 1% of water in the volume of ethanol
(Mixture B). Pulses 101 to 150 come fromMixture C samples
with 2% water added to the volume of ethanol. In experi-
ments from 151 to 200, signals from Mixture D are used,
which stands for an addition of 3% water in the volume of
ethanol. From 200 to 250 (Mixture E) and from 251 to 300
(Mixture F), the levels refer to the additions of 4 and 5% of
water in the volume of ethanol, respectively.

FIGURE 9. Score of the 1st principal component for each of the
contamination levels (FFT).

The results for the scoreRC, represented in Fig. 10, show
that the separations between the levels can be seen unequiv-
ocally for the third and fourth elementary signals. The fourth
elementary signal is the one that would present the best
results, as it shows the most significant difference of value
between the levels obtained for each group in Table 1, used in
this experiment, allowing a better approximation in the linear
regression.

The scoreRC related to the first and second elementary
signals have ambiguity in the threshold values, as shown
in Fig. 10.

2) ADDITION OF WATER FROM 0 TO 35% IN 5% STEPS
In this experiment, 50 ultrasonic pulses of each level of water
contamination in ethanol, corresponding to eight different
ethanol-water proportions with the addition of 0%, 5%, 10%,
15%, 20%, 25%, 30%, and 35 % water in the volume of
ethanol. The pulses are obtained by applying the ultrasonic
signal at each level, represented by Mixtures A and F-L
in Table 1.

The complete analysis of the score on PC#1 of the param-
eters resulting from the FFT of the ultrasonic pulses proved

FIGURE 10. ScoreRC of the first five elementary signals reconstructed
from the SSA.

a direct relationship between the percentage of water in the
ethanol-water mixture, as can be seen in Fig. 11.

Pulses 1 to 50 come from the ethanol sample without
adding water (Mixture A). The level obtained with pulses
from 51 to 100 comes from the score of the pulses captured
in Mixture F with the addition of 5% water to the volume of
ethanol. The visible levels of 101 to 150, 151 to 200, 201 to
250, 251 to 300, 301 to 350, and 351 to 400 are, respectively,
derived from the addition of 10%, 15%, 20%, 25%, 30%, and
35% water in the volume of ethanol, represented by mixtures
of G to L.

The analysis in the scoreRC shows that the separations
between the levels can be seen unambiguously for the second
elementary signal, where a single value represents each pro-
portion of water addition in the ethanol-watermixture, as seen
in Fig. 12.

FIGURE 11. Score of the 1st principal component for each of the
contamination levels (FFT).

3) ADDITION OF WATER FROM 0 TO 5% IN STEPS OF 1%
AND FROM 5 TO 35% IN STEPS OF 5%
In this experiment, 50 pulses from each of Mixtures A to L
in Table 1 were used, being the 12 proportions of water that
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FIGURE 12. ScoreRC of the first five elementary signals reconstructed
from the SSA.

were used in the mixture with ethanol, which corresponds to
the addition of 0%, 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%,
25%, 30%, and 35%ofwater in the volume of ethanol. Fig. 13
illustrates the values of the score of the parameters coming
from the FFT of the ultrasonic pulses in PC#1. It is possible
to observe different proportions of water in the ethanol-water
mixture related to levels of the same value, presenting an
ambiguity for mixtures A and C, making it impossible to
classify with this technique.

In Fig. 14, pulses 1 to 50 come from the ethanol sample
without adding water (Mixture A). The level obtained with
pulses from 51 to 100 comes from the scoreRC for pulses
captured in Mixture B, which has a proportion of 1% of water
addition in the volume of ethanol. The subsequent levels were
obtained using the pulses obtained from mixtures C to L,
which represent, respectively, the proportions of 2%, 3%, 4%,
5%, 10%, 15%, 20%, 25%, 30%, and 35% of addition of
water in the volume of ethanol.

FIGURE 13. Score of the 1st principal component for each contamination
level (FFT).

Unlike what occurred in the FFT PCA analysis seen in
Fig. 13, using the analysis of scoreRC, the threshold for
the proportions of water in the ethanol-water mixture of

the second elementary signal present uniqueness in values,
enabling the classification of pulses in this hybrid set of
proportions of water in the ethanol-water mixture.

D. SAMPLE CLASSIFICATION
Observing Fig. 7 to 14 presented in the earlier section, it is
possible to prove the feasibility of applying the proposed
techniques to classify the proportions of water in ethanol fuel,
both in a narrow range of contamination (0% to 5%, steps of
1%) and in a broader range (0% to 35%, steps of 5%). For
both ranges, the average values of the score obtained with
the PCA of each of the groups can be used. As each group is
related to a ratio of water to ethanol, using linear regression,
one can obtain an equation where the x-axis corresponds to
the value of the score. The y-axis is the ethanol-water ratio.

FIGURE 14. ScoreRC of the first five elementary signals reconstructed
from the SSA.

It is possible to use the results presented in Fig. 14 to
obtain a general expression combining the narrow and broad
ranges. The average values of the scoreRCs of the second
reconstructed elementary signal using Singular Spectrum
Analysis (SSA) can be related to each contamination group.
Likewise, each group is related to a proportion of water in
ethanol, so one can also obtain an equation that relates the
value of the scoreRC found with the ethanol-water ratio,
allowing the classification of a particular sample.

The average scoreRC value for each group can thus be
associated with the corresponding ethanol/water ratio value,
as presented in Table 2. Thus, it is possible to obtain a relation
between these values.

A third-order linear regression, shown in Fig. 15, results in
the formula

y = −3.77398x3 + 4.77176x2 − 5.94885x + 7.45136 (8)
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TABLE 2. Water addition (%) versus average ScoreRC value.

FIGURE 15. Water estimation according to scoreRC values for the second
elementary signal reconstructed from the SSA, obtained after laboratory
experiments.

where y corresponds to the water addition, given in %, and
x corresponds to the scoreRC for the second reconstructed
elementary signal.

The % of water present in the ethanol-water mixture can
be estimated using (8).

With these results, it was possible to obtain a non-
invasive method using digital signal processing techniques.
The method is based on the analysis of ultrasonic signals
that crossed the ethanol-water mixture in different propor-
tions and undergone changes in its characteristics due to the
presence of water in it. So, this method provides a basis for
classification by the acoustic signature.

V. CONCLUSION
This work aims to contribute to monitoring the quality
of ethanol fuel related to moisture contamination through
non-invasive techniques that allow online monitoring. The
initial objective of verifying the possibility of detection
through the analysis of ultrasonic signals that came into
contact with the mixture in the liquid phase and had its
characteristics altered by the presence of water was achieved.

To identify and quantify the water levels in the ethanol-
water mixture, a combination of the Principal Component
Analysis (PCA) and Singular Spectrum Analysis (SSA) tech-
niques were used. This method resulted in the proposal of

a new score linked to the ethanol/water ratio information
present in the mixture, which was used to classify the pulses
of mixtures with different degrees of concentration.

The proposed methodologies aimed to determine which
parameters were more sensitive to water in the mixture, mak-
ing it possible to relate these acoustic signatures and obtain
expressions that supply the ethanol/water ratio estimation.

Experimental results show that the proposed methodolo-
gies could indicate the moisture level in ethanol samples. The
results obtained with the SSA algorithm led to an expression
that links the scoreRC and the ethanol/water ratio, given in%,
allowing the classification of a particular sample.

Mathematical transformations were also applied to the
signals to obtain parameters for the analysis. The tests per-
formed with the Fourier Transform proved to generate acous-
tic signatures for the classification of contaminated samples
in steps of 1% and 5% in isolation. The results obtained with
the PCA technique related the scores and the ethanol-water
ratio. These same results were obtained by applying the SSA
technique and, using the scoreRC proposed in this paper, i.e.,
the projection of the ultrasonic signal in the reconstructed
elementary signals from the SSA.

A significant result was that when combining data from
samples contaminated with steps of 1% with data from sam-
ples contaminated with steps of 5%, it was still possible to
find parameters that could associate the proposed scoreRC
with the ethanol/water ratio, in this case, the analysis of
the PCA score of the Fourier Transform acoustic signature
presents ambiguities in the results, not allowing its use to
generate an expression that directly relates the score to the
ethanol-water ratio.

An application of this method, in practice, would consist
of equipment similar to the one used in the experiments, but
more compact, whichwould be coupled to the fuel supply line
of a machine/engine and take measurements during fueling.
The sensors would be previously calibrated in the laboratory
using the same method described in this article. The mea-
surement results would allow evaluating whether the fuel is
acceptable and even inferring its yield/efficiency. Another use
could be portable equipment for on-site verification of fuel
quality by collecting samples in tanks, presenting the result
instantly.

Finally, the proposed techniques also provide alternative
methodologies for analyzing other contaminants and other
mixtures.
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