IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 16, 2021, accepted January 6, 2022, date of publication January 12, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142329

Theoretical Basis and Implementation
Mechanism of the Programming Platform
for Ternary Optical Computer

SHUANG LI"“12, ZHEHE WANG 3, SHUXIN WANG?, AND DONGDONG AN'-2

! College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 200234, China

2Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai 200234, China
3College of Computer Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China

#School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China

Corresponding author: Shuang Li (lishuang @shnu.edu.cn)
This work was supported in part by the National Science Foundation of China under Grant 61866006, Grant 61775139, Grant 61772164,

and Grant 62072126; in part by the Shanghai Sailing Program under Grant 21YF1415100 and Grant 21YF1432900; and in part by the
University-Level General Research Project of Shanghai Normal University under Grant SK202121.

ABSTRACT This paper presents a method for building a programming platform for ternary optical
computer(TOC). Firstly, the reasons why the existing programming platform can not be directly applied
to the ternary optical computer are analyzed. Then, the theoretical basis and core technologies for building
the programming platform of the ternary optical computer are given, including: building a model—simple
structured data type computer to express the application characteristics of the ternary optical computer,
building an operation-data file containing data and computational requirements, expanding the operation-
data file transfer instructions. According to our proposed theory, the implementation mechanism of the TOC
programming platform is constructed. Finally, the effectiveness of the programming platform is verified by
experiments. The programming platform simplifies the application of the TOC and bridges the gap between
the user and the TOC.

INDEX TERMS Ternary optical computer, programming platform, operation-data file, ternary optical

processor.

I. INTRODUCTION

As electronic computers have matured since their inception,
scientists have been exploring and developing other types
of computers. In particular, considering that the physical
characteristics of electrons will limit the development of elec-
tronic computer hardware, various non-electronic computers
have emerged, such as optical computers [1], [2], quantum
computers [3], [4], biological computers [5], etc. Research
on ternary optical computers is a unique branch of non-
traditional computer research, with France, India, and Iraq
currently engaged in many aspects of international research
on ternary optical computers. The second and third genera-
tion experimental systems of the ternary optical computer,
ShangDall (for short SD11, means:Shanghai University
2011), developed by the Optical Computer Laboratory of
Shanghai University, both have reconfigurable ternary logical

The associate editor coordinating the review of this manuscript and

approving it for publication was Md Selim Habib

VOLUME 10, 2022

optical processors with thousand-bit data widths and easily
scalable bit counts. The completed experiments fully confirm
this theory of large number of computer data bits and
processor reconfigurability. The first stably operating ternary
optical computer - SD16 (Shanghai University 2016), has
192 ternary logic bits in one basic arithmetic module and can
construct up to a 36-bit three-step parallel binary adder or a
64-bit one-step parallel binary adder.

Ternary optical computers are named for their processors
that use three-state optical signals to represent information
and are capable of performing all ternary logic opera-
tions [6], [7]. The biggest difference between this processor
in application and conventional electronic processors is that
it allows the user to reconfigure the computational functions
of individual data bits at any time, and a huge number of
data bits can be used independently in any group [8]-[11].
In addition, the memory of a ternary optical computer has a
data bus width that varies with the total number of processed
data bits on the processor-facing side, but the effect of this

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 5585

https://orcid.org/0000-0001-9618-5414
https://orcid.org/0000-0002-1264-4327
https://orcid.org/0000-0003-0161-5325

IEEE Access

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

feature is not seen at the application level [12]. These dictate
that current programming environments built on conventional
processors cannot produce applications that take advantage
of the characteristics of ternary optical processors. Since
the functions of the I/O components and other parts of the
ternary optical computer are no different from those of the
conventional computer, which is the background device for
building the new computer, the ternary optical computer
follows exactly the conventional device in these aspects
and contains a front-end PC for peripheral management,
communication management, task management, and human-
computer dialogue. Therefore, the programming platform of
the ternary optical computer should enable the programmer to
accomplish the application of the new features of the ternary
optical processor, but also be fully compatible with the tra-
ditional programming environment. Therefore, the basic idea
of building a ternary optical computer programming platform
is to add to the existing programming environment ways for
programmers to use the new features of the ternary optical
processor. The main difference between the programming
platform of the ternary optical computer constructed in this
paper and the traditional computer programming platform
is that the programmer no longer uses a single instruction
to arrange the working order of each part of the processor
and the timing and direction of data transmission to match
it. Instead, the programmer only requests the calculation
and the number of data bits required, and gives all the raw
data to the ternary optical computer management program,
which controls and allocates the processor’s data bit resources
and calculates the raw data. This paper introduces the
basic theory and implementation mechanism of this new
programming platform, and gives application examples to
prepare conceptually, theoretically and technically for the
application stage of the ternary optical computer.

This paper has the following key contributions:

a.It presents the theoretical basis and core technologies
for building a programming platform for ternary optical
computers.

b.It constructs the operation-data files containing data
and computational requirements, and expands on high-level
programming languages.

c.It constructs the implementation mechanism of the
ternary optical computer programming platform based on
these proposed theories.

The remainder of this paper is as follows. In section II,
we introduce the ternary optical processor architecture and
the MSD adder. Section III presents the theoretical basis of
the ternary optical computer programming platform., includ-
ing: building a model—simple structured data type computer
to express the application characteristics of the ternary optical
computer, building an operation-data file containing data
and computational requirements, expanding the operation-
data file transfer instructions. Section IV constructs a ternary
optical computer programming platform based on the theory
and techniques proposed in the first half of the paper.
Section V verifies the effectiveness of the new programming

5586

platform through experiments. Finally, Section VI draws
conclusion to this research paper.

Il. RELATED WORK

A. TERNARY OPTICAL PROCESSOR

Light has three stable physical states: dark light state,
horizontally polarized light bright state, vertically polarized
light bright state, ternary optical computer with these three
stable physical light states to represent the information,
that is, the source of the “three values”. Due to the non-
interference of light rays, multiple rays can cross each other in
the same space without interfering with each other, so many
signal rays can be arranged together without isolation to
form a flat image. Generally, it takes a few pixels on a flat
image to make up a single bit of optical information [13],
but optical array devices have many pixels, thus creating the
characteristic of a large number of bits of optical computer
data. The current experimental system of ternary optical
processors constructed with liquid crystal dot matrix screens
can have 16384 bits of data, which far exceeds the number of
data bits of electronic computers [9], [14]-[16].

The “reconfigurable processor hardware” feature is
derived from the construction of the ternary optical
logic processor—Decrease-radix design principle [17]. The
Decrease-radix design principle states that if the n physical
states that represent information contain D states, then n(n x
n) two-input n-value operators without input (borrowing) can
be selected from n x n x (n— 1) basic base operation units in a
fixed step with no more than n x (n — 1) combinations. where
the D-state is the physical superposition with any physical
state A resulting in a physical state that is still a A-state. The
basic operation units is an n-valued logical operator where
only one combination of input data makes its output non-D-
state and all other combinations of input data make its output
D-state [7], [18]. Applying the theory to the ternary optical
computer, no more than six of the 18 basic operation units
can be combined to form any of the 3° = 19,683 ternary
logical operators. Figure 1 shows the optical structure of
the ternary optical operation unit. In this structure, the input
signal a is input to the main optical path, which consists
of two polarizers (P1 and P2) sandwiching a liquid crystal
pixel (LC), and the other input signal b is input to the control
optical path [19]. There are three types of control optical
paths, two semi-reflectors fl1 and f2 and a total reflector F
for the input optical signal b beam splitting and the upper
split is a vertical polarizer V. Only when b is horizontally
polarized light, the photocell g2 outputs a high level. There is
no polarizer in the lower splitter, as long as b is bright, either
horizontally polarized light or vertically polarized light, the
photocell g3 will output high level. Based on the values of
reconfiguration instructions k2 and k3, the device S will
select one of the output signals of gl, g2 and g3 and send
the selected signal to the XOR gate Y. When the k1 bit of the
reconfiguration instruction is 1, Y takes the signal from the
inverse S output, and when k1 is 0, it does not take the inverse.

VOLUME 10, 2022

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

IEEE Access

Input a 4)* Pl —)— LC —)’ P2 —) Output ¢

+

~
J/

F~<
=

Input bh——

N

S
Reconfigure
directivese

multiplexer

Three choose one

FlLL

72}

FIGURE 1. Optical structure of the basic computing unit of the ternary
optical computer.

The output signal of Y controls the spin characteristics of the
liquid crystal LC in the main optical path [20]. According
to the polarization direction of polarizers P1 and P2, the
main optical path is divided into four types: P1 is a vertical
polarizer while P2 is a horizontal polarizer called VH type,
P1 is a horizontal polarizer while P2 is a vertical polarizer
called HV type, P1 and P2 are both vertical polarizers called
VV type, and P1 and P2 are both horizontal polarizers called
HH type.

B. MSD ADDER

The MSD parallel adder is based on a redundant representa-
tion of binary values in three symbols. Using this redundant
representation of values inside the computer can speed up
numerical computation by eliminating the feed delay of the
adder. In 1961, Avizienis proposed MSD (Modified Signed
Digit) digital expression, an addition technique capable of
eliminating the rounding delay [21]. Any decimal number A
can be represented by an MSD number as follows:

A=) k2 (1)

Among them, the value range of k; € {u, 0, 1} and i is an
integer, the symbol u stands for -1. MSD is also a binary
counting. So there can be multiple MSD representations
for a decimal number. In the TOC, the three states of
light(horizontally polarized light, vertically polarized light
and no light) are used to represent 1, 0 or -1. The transition
between these three states is realized by the liquid crystal and
polarizer to complete the corresponding operation.

MSD addition uses four logical operations, called T, W,
T’ and W’, as shown in Table 1 (¢ and b are the input
data, and T, W, T’, W’ and M are the output data after
the corresponding truth table conversion). An MSD addition
operation is completed in 3 steps as follows:

Step 1. T, W operations are performed on input data a and
b simultaneously, and the result of T is shifted one place to
the left.

Step 2. Perform both T’ and W’ operations on the result of
the first step, and shift the result of T’ one place to the left.

VOLUME 10, 2022

TABLE 1. T, W, TW’ and M transformations used by MSD adders.

a|b|T|W|T |W |M
111|010 |1
ijo|1|1]0 | 1I1]o0
ij1/o0|o0o|0]| 0|1
01111 0 1 0
ololo|lo]| o] o0]oO
o1 |1 110 1]o0
1|1lo|lo0o]o0o| 0|1
1jo|1|T1I1]o 1|0
1|1 |1]0]1 0 1

Step 3. The result of the second step is T, and the result is
the sum of a and b.

Ill. THEORETICAL BASIS OF TERNARY OPTICAL
COMPUTER PROGRAMMING PLATFORM

A. SIMPLE STRUCTURED DATA TYPE COMPUTER

The number of data bits in a ternary optical computer is on the
order of thousands, and the long delay caused by the rounding
process in a serial rounding adder is undoubtedly a waste of
resources, so it is necessary to construct a full adder with
no rounding operation. Ordinary electronic computers have
only two values: 0 and 1, so electronic computers cannot
use the simple structure and parallel operation of the MSD
adder. There are three bases for constructing a ternary optical
MSD adder: (1) The ternary optical computer has three stable
physical states. (2) The per-bit reconfigurability of the ternary
optical logic processor. (3) The large number of data bits
of the ternary optical processor. These three foundations
dictate that the use of binary MSD adders for ternary optical
computers becomes inevitable. The MSD adder extends the
ternary optical computer from a logic operator to an optical
adder, and the processor can be reconfigured into a composite
operator containing a three-valued logic operator, a two-
valued logic operator, an adder, and a subtractor.

If a processor is capable of directly computing structured
data types, this processor must have many data bits and the
data bits must be groupable for independent use to cope with
the number of data bits for each component of the structured
quantity. At the same time, the computational functions of the
individual data bits of this processor must be reconfigurable
at runtime as required by the programmer to cope with
the different computational requirements of each component
of the structural data type. The ternary optical processor
satisfies these conditions, and the reconfigured composite
processor can compute all components of a simple structural
data type simultaneously when executing a single instruction.
Therefore, the application characteristics of ternary optical
computers are summarized as ‘“‘simple structural data type
computers”. Among them, the structural data type is a
composite data type customized by the programmer for the

5587

IEEE Access

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

characteristics of the application problem, which contains
multiple components, each with different data bits and
calculation rules.

The simple model of “simple structural data type com-
puter” is used to characterize the application of the ternary
optical computer, which is easy for programmers to accept,
understand and apply this new type of computer. More details
about structural data type computers can be found in the
literature [22].

B. OPERATION-DATA FILE

Ternary optical computer takes several clock cycles to
reconfigure the processor, if only a small amount of data is
computed after reconfiguring the processor, the time spent
reconfiguring the processor is comparable to the time spent
computing the data. If a large amount of data is computed
after reconfiguring the processor once, the time to reconfigure
the processor is negligible.

The most intuitive representation of optical processor uti-
lization is the percentage of data bits effectively used per unit
of time on average. It consists of the ratio of the number of
data bits effectively used in one operation to the total number
of data bits and the ratio of the processor reconstruction time
to the total operating time. Let the operator reconfiguration
operation takes g computation cycles, N, computations are
completed between reconfigurations, the total number of data
bits is 7, and the number of efficiently used data bits is m'.
Then, the effective use ratio B of data bits is:

m' x Ny

= @)

Ny +q) xn
where m’ x Ny is the amount of computation done by the
optical processor after one reconstruction. The product of the
channel width m of the task and the number of data N is called
the computational volume of the task. From equation (2), the
utilization rate is constrained by ¢ when Ny is not much larger
than g. This indicates that tasks with very little computation
are not suitable for running on a ternary optical computer.

Therefore, the ternary optical computer is more suitable
for processing the same operation for large amounts of
data, which requires the user to send the reconfiguration
requirements for the processor and a large amount of initial
data to the ternary optical processor at the same time when
using the ternary optical computer. In addition, a single
computing task rarely uses a processor of thousands of bits,
and it is often necessary to share the processor among several
computing tasks. Therefore, the calculation rules and raw
data are sent to the CPU at program runtime and are not
applicable to ternary optical processors. To adapt to the
characteristics of the ternary optical processor, it is proposed
to organize the computational tasks and raw data into a
dedicated file— the operation-data file, also known as *.SZG
file (* is a generic character for the file name), and then
send the SZG file to the optical processor in the application
program in due time to calculate.

5588

v SZG tile version
g File name
2 User’s address
k- Label amount
sl o Calculation rule 0
S| 5 | Data bit’s number
@ E Data amount 0
= -
2 First data address 0
=
2
= | @ e
=
—_—
N Calculation rule n
— | Data bit’s number #
§ Data amount n
First data address #
.5 Original data 0 or results 0
>
Q1
3 N
~ | Original data n or results »

FIGURE 2. SZG file format.

SZG files are the only way for users to exchange infor-
mation with ternary optical computers when processing large
volumes of data [23], [24]. To ensure that the ternary optical
processor is informed of the user’s computational intent
accurately, the programmer must maintain a consistent format
both when constructing the SZG file and when the ternary
optical computer parses the SZG file. As shown in Figure 2,
the SZG file consists of two parts: the indication section and
the data section. The indicator section records the general
information and necessary parameters of this SZG file, which
is an important basis for processor reconstruction and data
bit allocation by the ternary optical processor, and the data
section contains all the raw data in the SZG file. We have
developed a helper software to help users generate SZG files
accurately. This auxiliary software provides a user-friendly
input interface, as shown in Figure 3. The user only needs to
input the required arithmetic requirements and raw data on
this interface, and the software will automatically generate
the corresponding SZG files according to the information
input by the user and save them to the specified path.

VOLUME 10, 2022

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

IEEE Access

'WELCOME TO USETOC

z
(s}

OperandA OperandB Result

File name 526 [open |

I Galaulator 1

1

2

Next calculator 3

N e
|Calculator character A; B: (ef 6
|| Truth able A B c 7
8

9

| 10
| A 11
| 12
| B 13
14

c 15

0l 16
|calcutator rute [+ | [=] [(x J[=][ua] [17
i 18
19

\‘ Data bits Result bits 20
[
| |Operanda R i

| |OperandB
i ¥

: ‘ Check/Modify

Save SZG File esult ‘ |

FIGURE 3. SZG file generation assistant software interface.

The SZG file interaction can be summarized as:

Step 1. The programmer generates the SZG file through the
auxiliary software, sends the SZG file to the task management
software of the ternary optical computer when the application
is running, and makes the application wait for all the
calculation results to be returned, when the application can
handle other tasks.

Step 2.The ternary optical computer task management soft-
ware parses the received SZG file, assigns the corresponding
number of data bits from the ternary optical processor to this
SZG file, and reconstructs these data bits into the calculator
requested by the SZG file.

Step 3. The task management software sends the raw data
in the SZG file to the reconstructed calculator one by one and
collects the results until all the data in the SZG file has been
calculated.

Step 4. The task management software organizes all
calculation results into a result SZG file (-R.SZG file) and
returns the -R.SZG file to the corresponding application.

Step 5. The application receives the -R.SZG file and
processes the data in the result file for the next step.

In this process, the programmer only generates the SZG file
in Step 1 and removes the data from the -R.SZG file in Step 5,
while the operations on the ternary optical computer hardware
and the underlying software are done by the task management
software. Thus, the SZG file obscures the complexity of the
ternary optical processor hardware and underlying software
for the programmer, and users can more easily use the
application features of the ternary optical computer.

C. EXPANSION OF THE HIGH-LEVEL PROGRAMMING
LANGUAGE FOR TOC

The SZG file translates the programmer’s control of the
ternary optical processor into the task of transmitting the SZG
file to ternary optical computer. The instructions to control the
ternary optical processor are thus simplified to transfer SZG
file instructions. So we simply package the program module

VOLUME 10, 2022

that transfers the SZG file to the specified target device into an
expanded instruction for the current programming language
- the transfer SZG file instruction. This expansion command
can be used in the application to send the specified SZG file
to the ternary optical computer at the right time. The goal of
having the few-bit electronic processor where the application
is located and the many-bit optical processor where the SZG
file calculation task is done work together in one application.
Expansion instructions for transferring SZG files have been
successfully developed for C, MPI parallel programming
language and C++ [25]-[27]. The following is an example
of the core technical steps for the expansion of a high-level
programming language, using the expansion statements in C
as an example.

Step 1. void SZG_Init(). Creates the expansion instruction
environment for a ternary optical computer. It must be the
first expansion instruction that appears in the program and
can only appear once in a program.

Step 2. int SZG(char x path). Sends the *.SZG file referred
to by path to the ternary optical processor. The return value
of this instruction is the code for the success or failure of this
send, and the programmer can decide the next action based
on this return value.

Step 3. int SZG_SearchResult(char x path). Address
pointer path refers to the *.SZG file running status on the
ternary optical processor. The return value “0” indicates that
the receiving process has obtained the calculation result file
*-R.SZG and stored it in the same directory as the *.SZG file.
The return value of ““1”” means that the result file *-R.SZG is
not yet available. The return value of “2” indicates that there
is an error on the side of the ternary optical processor and the
processing of *.SZG files has been stopped, so no result is
returned.

Step 4. void SZG_Suspend(). Hangs this program until it is
woken up when the operation result file returns. In addition,
the application must also add the header file “#SZG.h”
before proceeding with the above steps.

IV. IMPLEMENTATION MECHANISM OF THE TOC
PROGRAMMING PLATFORM

Figure 4 gives a general view of the ternary optical
computer programming platform, which consists of two
computing cores, the electronic processor and the ternary
optical computer (TOP). Based on these two core underlying
software, the operating system (OS), the program language
of the SZG file transfer instruction is extended, and the
SZG file generation software, a complete programming
platform is formed. As shown in Figure 4, the ternary optical
computer implicitly contains an auxiliary processor with the
same status as the ternary optical processor. This auxiliary
processor is used to perform various transactional tasks
such as memory management, task management of TOC,
I/O operation management, SZG file transfer, and ternary
memory management for optical processor reconfiguration
planning, etc. Together with the TOC task management
software, processor reconstruction software and SZG file

5589

IEEE Access

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

Programming platform,
The program language of the
SZG file transfer instruction is
extended

Electronic processor

Simple structure calculation
Composite computation

Scalar computation
Simple vector calculation

JowaFuueu SeL

No segmentation of data bit,
No reconstruction of the function
of each data bit,
64-bit data

Reconstruction of the function of each data bit,
Data bits can be grouped and used in parallel,
Data bits are more than the thousand.

VO managemen;

SZG file chain instructions,
Initial SZG file generation software

FIGURE 4. View of the TOC programming platform.

transfer software, this constitutes the underlying software
system of the TOC.

The basic idea and process of preparing a ternary
optical computer application by applying the ternary opti-
cal computer programming platform can be described as
follows:

Step 1. Modeling. Mathematical description of the applica-
tion problem according to the structural data type computer.

Step 2. Organize the data. Determine the types of data
and the corresponding operation rules. Determine constants,
variables, arrays, structures, and enumerations, and determine
the rules for calculating each of them. We also need to
organize the raw data and the corresponding operation rules
into SZG files.

Step 3. Design the program structure. Draw data flow
diagram, draw control flow diagram, write pseudo code
program, etc.

Step 4. Write the program. Write the instruction sequence.
A typical instruction sequence can be described as follows:

Initialization instructions (define and initialize vari-
ables, system environment, etc., including establishing the
operating

environment for SZG expansion instructions);

Input Data Instruction;

Judgment Status Instruction;

Send the data in pairs to the operator for calculation and
obtain the result instruction (e.g.C = A + B);

Send the data to a mathematical function routine to
calculate and obtain the result instruction (e.g.Sin(45, C));

The expansion instruction that sends the SZG file to
the ternary optical processor for calculation (e.g. int SZG
Send(char * path));

Waiting for the TOC to send back the calculation results of
the expansion command (e.g. void SZG Suspend());

Judgment result instruction sequence;

Instructions that determine the flow of the program;

Sequence of instructions to output program results;

End of program.

5590

Power supply

Liquid crystal array Data line

FIGURE 5. Machine #1 of SD16.

Obviously, the four main steps above are the same as the
current programming process exactly. Only the concept of
“TOC is a simple structural data type computer” is added
in the first step. Added the method of ‘“‘organizing a large
amount of raw data into SZG files” in the second step.
The fourth step adds the expansion instruction “Send the
SZG file to the TOP and wait for the calculation result
file to return”. Thus the programming platform of TOC is
built on the theoretical basis of the simple structural data
type computer concept, SZG files and high-level language
expansion instructions proposed in our paper.

In addition, by observing the above steps, the TOC pro-
gramming environment constructed by this method contains
the complete, unaltered electronic computer programming
environment. Therefore, in this environment, we can prepare
electronic computer applications as usual, and the original
electronic computer programs can also run normally intact,
moreover, we can prepare electronic computers and ternary
optical processors to work together as an application.

V. EXPERIMENT AND ANALYSIS

A. EXPERIMENT ENVIRONMENT

This experiment uses a TOC prototype system SD16 of No. 1,
whose shape is shown in Figure 5. Among them, the TOP (the
black area with the bright spot in the middle) has 576 pixels
in the LCD array, arranged in a 24 x 24 array. Three adjacent
pixels in each row constitute one bit of the optical processor,
so this experimental device has a total of 192 processor bits,
meaning that 192 bits of data can be processed in parallel [28].
The liquid crystal is arranged as shown in Figure 6, the liquid
crystal is divided into two parts, with the processor bits in
each part numbered as shown by the arrows in Figure 6. Co-
working electronic computer hardware configuration: CPU:
Intel(R) Core(TM) i5 430 M 2.26 GHz. RAM: 4 GB. OS:
64-bit windows 8. Expanded programming language for SZG
file transfer instructions: C.

B. TEST CASES AND RESULTS ANALYSIS

In order to test the correctness of the TOC programming
platform, we will implement four functions in our program.
For example, calculate f 1 = a+b,f2 =c—d,f3 = eAgand
f4 = h v i. Its independent variables a, b, c, d, e, g, h, and

VOLUME 10, 2022

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

IEEE Access

TABLE 2. Test cases.

Item f1 f2 f3 fa
1 a(110100101%10u1010) ps ¢(1u1001u00011) pr €(1101010010111011010) ps h(11010100101010010101) ps
b(101u10110100001u0) p; | d(0101u10ul0lu)y; | ¢(1011110001010000100) (01011101011010000100) 57
9 a(u11100101u10u1010); | c(Ouulu0100110),, | e(0011011001001010011),, | A(0101000110101111010010011)
b(1111w10u10100001u:0) pr d(111001%00011) 51 ¢(1001010010101001010) ps 4(1100011110010101001010111) s
3 a(u11u00101u10u1010) 5r ¢(110u1u000111) 5r €(1111010010101001010) pr h(11011100101110110101) ps
b(111uu0u10100001u0) pp d(111uluul0luw) pr ¢(1010100001010000110) 5z 4(11011111011010000100) ps
4 a(u11u00111u10u1010) ps ¢(110u1u010111) 5p €(1001010010111011010) ps h(11111100101010010101) ps
b(111uu0u11100001u0) ps d(111luluullluu)y, | ¢(1110101001010000110) pp 4(11011111011010000110) 5z
5 a(u11u00111u10u1110) 5, ¢(1110u1u0101u) s €(11010100101110w1010) 54 h(10111100101000010101) 5z
b(111uu0u11100001ul) s | d(111uluulllul)yy, (1010101001010000110) 5 #(10111110001010000101) 57
6 | o(ulTu001TTuu0ull10)ys | e(I1Tuulu010Tu)as (0101010010111011010) 57 R(10111100101010010101) 5,
b(111uu0ul110u001ul) s | d(11luluululul)y (1010101101010000110) 5 4(10011100001010000100) 51
7 a(ullu0011luwOulllu)pr | e(101uuluw0101w)ps (1001010010111001010) ps h(10111100101010010100) ps
b(111uu0ull110uu0lul) s d(111uluululul)pr (1010100001010000110) pr 4(11011101001010000100) 5z
8 a(u11u00111luululluu)ps | c(luvuulu010lu)py (1001010010111001010) pr h(11111100101010010100) 5z
b(uuluuOulll0uullul)yy | d(luvuluuluOul)ps (1010100001010100110) 5z 4(10011101001010000100) ps
TABLE 3. Allocation table for adder processor bits.
e immcccceemeeeeh O | OF |
1:"'5 K :'.. 9{! ?) 99 T W T w’ To
= f1 0-16 17-33 34-51 52-69 70-88
d f2 | 89-100 | 101-112 | 113-125 | 126-138 | 139-152
TABLE 4. Allocation of processor bits for logical operators.
f3(Logic AND) | f4 (Logic OR)
153-171 172-191
fed into the ternary optical computer via the C expansion
R e DL I} Saaae e B [command.
After the ternary optical computer receives the Ls.SZG

FIGURE 6. Liquid crystal arrangement.

thave 17,17, 12, 12, 19, 19, 20, 20 bits, and each variable has
10,000 data. Given the length of the paper, the first eight sets
of MSD numbers for the four functions are given in Table 2,
and the subscripts are labeled with M.

In a ternary optical computer, the data of f1, 2, f3 and
f4 are first formed into simple structural data types. We can
represent this simple structured data type by A. It has four
subtypes (terms), namely: 17-bit floating-point type A(1),
12-bit floating-point type A(2), 19-bit logical type A(3) and
20-bit logical type A(4). The SZG file is then generated, and
the SZG file format is instantiated as follows:

File name: Ls. Total number of operation marks: 4.
Calculation rules for operation marker 1 (f1): 4+, number of
data bits: 17, number of data: 10000. Calculation rules for
operation marker 2 (f2): —, number of data bits: 12, number
of data: 10000. Calculation rules for operation marker 3
(f3): v, number of data bits: 19, number of data: 10000.
Calculation rule for operation mark 4(f4): A, number of data
bits: 20, number of data: 10000. Then, the Ls.SZG file is

VOLUME 10, 2022

file, the task management software of the optical processor
reconfigures the composite processor based on the data bit
information given in the Ls.SZG file. The first 89 bits of
the complex processor are constructed as an adder, 89 to
152 bits as a subtractor, the next 19 bits as an “AND”
operator, and the last 20 bits as an “OR” operator. Among
them, corresponding to the 192 processor bits of the optical
processor, the allocation of processor bits for the 5 transforms
of the adder corresponding to f'1 and f2 is shown in Table 3,
and the allocation of processor bits for f3 and f4 is shown in
Table 4. Then the first pair of raw data of A(1), A(2), A(3) and
A(4) is fed into the reconstructed simple structured data type
processor. Run the calculation instruction once to get a set of
f1,f2,f3 and f4 results, and so on. 10,000 times in parallel
can be executed to complete the calculation of all 40,000 pairs
of data and get the final result.

Figure 7 shows the theoretical output results for the first
8 groups of the 4 functions in the experimental use case.
Figure 8 shows the resultant images of the optical processor
output corresponding to the theoretical results. Table 5 shows
the theoretical results in the form of MSD. where, in Figure 8,
the high luminance points are pixels that output vertically
polarized light (V state), the low luminance points are

5591

IEEE Access

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

TABLE 5. Theoretical values of experimental results expressed in MSD.

Item f1 12 73 fa
1 (0010u1u010u1u000u00) s | (01ululOulOul00)s, | (1111110011111011110)5, | (01010100001010000100) 57
2 (001101%010u1u000u00) s | (011100u01u1u00)s, | (1111110011111001110), | (10010100001010000100) ps
3 (0011uu1010u1w000u00) s | (011001w00w1000)s, | (1111110011111001110)a, | (11011100001010000100) s
4 (0011%2101101%000u00) o (011001%0010000) pr (1111111011111011110)7 | (11011100001010000100) s
5 (0011u1101101%00001w) ps | (0111w10w101w00)s, | (1111111011111001110), | (10111100001000000101) ps
6 (0011wu10110w010001w) s | (0111w00ulwlw00)sy | (1111111111111011110)5, | (10011100001010000100) ps
7 (0011u110110w0010000) ps (0110u00u1%0000) 57 | (1011110011111001110)a7 | (10011100001010000100) 5r
8 (0u01uu10110uw0010u00) s | (01luuuw00ulu0000)y, | (1011110011111101110)a, | (10011100001010000100) ps

FIGURE 7. Theoretical output results. a)-h) are the theoretical outputs for
each group of four functions of the test case.

pixels that output horizontally polarized light (H state),
and the rest of the points are pixels that output no light

state (W state).

5592

FIGURE 8. Optical processor output results. a)-h) are the optical
processor outputs for each group of four functions of the test case.

Taking the first set of results of the addition operation as
an example, it can be seen from Table 3 that bits 70-88 of
the operator are the result area, which corresponds to the

VOLUME 10, 2022

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

IEEE Access

FIGURE 9. The first set of results of the addition operation.

area marked in yellow in Figure 9. White represents vertical
light and is represented by 1, blue represents horizontal light
and is represented by u, black represents no light and is
represented by 0. According to the decoding principle of
the ternary optical computer, the number of liquid crystal
bits is from left to right and from top to bottom, and every
3 liquid crystal pixels represent one processor bit, in the
order of (0010u1u010u1u000u00);; = (54076)p, which is
consistent with the theoretical results. We analyzed the rest
of the results and obtained all accurate results. Experiments
show that the SZG file generated by the electronic computer
can be correctly parsed by the ternary optical processor, that
the high-level language expansion instructions can deliver the
SZG file to the ternary optical processor correctly, and that
the ternary optical processor can compute data of a structural
data type correctly. Therefore, the programming platform
proposed in this paper can make use of the computational
features of the ternary optical computer while allowing
programmers to maintain their traditional programming
habits and build a bridge between the user and the ternary
optical computer.

VI. CONCLUSION

The ternary optical computer provides us with a massively
data-parallel computing tool through three major application
features: the large number of data bits, the fact that the data
bus can be used independently in arbitrary groups, and the
fact that the computational function of each data bit can
be reconfigured at runtime. However, current programming
platforms are built around traditional processors such as
electronic CPU, GPU or MIC, and are unable to produce
applications that take advantage of the strengths of ternary
optical computers. The theory and techniques presented in
this paper give a basic scheme for constructing program-
ming environments for new computer systems. The new
programming environment is not only fully compatible with
traditional programs, but also maintains the programmer’s
work and thinking habits very well, making it easy for

VOLUME 10, 2022

programmers to accept and develop new programs that work
with traditional processors and new processors. Meanwhile,
when other new computers are to enter the application stage,
the corresponding programming models can be constructed
by drawing on the ideas we propose in this paper.

DISCLOSURES
The authors declare that there are no conflicts of interest
regarding the publication of this paper.

ACKNOWLEDGMENT

This work was supported by the ¢ (61866006, 61775139,
61772164, 62072126), the Shanghai Sailing Program
(21YF1415100,21YF1432900), and University-level general
research project of Shanghai Normal University(SK202121).

REFERENCES

[1] D. Xiaoyi and L. Xueshen, “The advance in optical electronics devices,”
(in Chinese), J. Optoelectron. Laser, vol. 1, no. 1, pp. 12-23, 1990.

[2] A. K. Cherri, M. K. Habib, and M. S. Alam, “Optoelectronics recoded
trinary signed-digit adder using optical correlators,” in Proc. Aerosp.
Electron. Conf., 1997, pp. 495-502.

[3] J.Cai, A. Miyake, W. Diir, and H. J. Briegel, ‘‘Universal quantum computer
from a quantum magnet,” Phys. Rev. A, Gen. Phys., vol. 82, no. 5,
pp. 052309.1-052309.5, Nov. 2010.

[4] T.D. Ladd, F. Jelezko, and R. Laflamme, “Quantum computers,” Nature,
vol. 464, no. 7285, pp. 45-53, 2010.

[5] S. Tyll, E. Budinger, and T. Noesselt, ‘““Thalamic influences on multi-
sensory integration,” Commun. Integr. Biol., vol. 4, no. 4, pp. 378-381,
Jul. 2011.

[6] J. Yi, H. Huacan, and L. Yangtian, “Ternary optical computer architec-
ture,” Phys. Scripta, vol. 118, pp. 98-101, 2005.

[71 J. Yan, Y. Jin, and K. Zuo, “Decrease-radix design principle for

carrying/borrowing free multi-valued and application in ternary optical

computer,” (in Chinese), Sci. China F, Inf. Sci., vol. 51, no. 10,

pp. 1415-1426, 2008.

Y. Jin, H. Wang, S. Ouyang, Y. Zhou, Y. Shen, J. Peng, and X. Liu,

“Principles, structures, and implementation of reconfigurable ternary

optical processors,” (in Chinese), Sci. China Inf. Sci., vol. 54, no. 11,

pp. 2236-2246, Nov. 2011.

[9] Y. Jin, S. Ouyang, K. Song, Y. F. Shen, J. J. Peng, and X. M. Liu,
“Management of many data bits in ternary optical computers,” Scientia
Sinica Inf. Sci., vol. 43, no. 3, pp. 361-373, 2013.

[10] J.Peng,R. Shen, Y. Jin, Y. Shen, and S. Luo, “Design and implementation
of modified signed-digit adder,” IEEE Trans. Comput., vol. 63, no. 5,
pp. 1134-1143, May 2014.

[11] J. Peng, Y. Shen, S. Ouyang, X. Liu, W. Li, and Y. Jin, “Structure and
theory of dual-space storage for ternary optical computer,” Scientia Sinica
Inf., vol. 46, no. 6, pp. 743-762, Jun. 2016.

[12] Y. Jin, Y. Shen, J. Peng, S. Xu, G. Ding, D. Yue, and H. You, “Principles
and construction of MSD adder in ternary optical computer,” Sci. China F,
Inf. Sci., vol. 53, no. 11, pp. 2159-2168, Nov. 2010.

[13] J.Yi, H. Huacan, and A. Lirong, “‘Lane of parallel through carry in ternary
optical adder,” Sci. China F, Inf. Sci., vol. 48, no. 1, pp. 107-116, 2005.

[14] Y.Jin, “Management strategy of data bits in ternary optical computer,” (in
Chinese), J. Shanghai Univ., Nature Sci., vol. 13, no. 5, pp. 519-523, 2007.

[15] Y. Jin, X. C. Wang, and J. J. Peng, “Conceptual structure of ternary
optical computer and high performance computer merger,” High Perform.
Comput. Tech., vol. 6, pp. 1-4, 2010.

[16] Y. Shen, B. Jiang, J. Peng, Y. Jin, O. Shan, and J. Peng, “Principle and
design of ternary optical accumulator implementing M-k-B addition,”
Proc. SPIE, vol. 53, no. 9, pp. 95-108, 2014.

[17] X.Wang, J. Peng, M. Li, Z. Shen, and O. Shan, “Carry-free vector-matrix
multiplication on a dynamically reconfigurable optical platform,” Appl.
Opt., vol. 49, no. 12, pp. 2352-2362, 2010.

[18] J. Y. Yan, Y. Jin, and K. Z. Zuo, “No carry, no borrow n-value operate
unit,” China Patent 2007 100411 441, Oct. 28, 2009.

[19] Y. Jin, S. Ouyang, and J. J. Peng, “Reconfigurable tri-value optical
processor,” China Patent 2010 105 841293, May 2, 2012.

[8

5593

IEEE Access

S. Li et al.: Theoretical Basis and Implementation Mechanism of Programming Platform for TOC

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

5594

J. Peng, L. Teng, and Y. Jin, “Realization of a tri-valued programmable
cellular automata with ternary optical computer,” Int. J. Numer. Anal.,
vol. 2, no. 9, pp. 304-311, 2012.

A. Avizienis, “Signed-digit number representations for fast parallel
arithmetic,” IRE Trans. Electron. Comput., vol. 10, no. 3, pp. 389-400,
1961.

W. Lj, S. Ouyang, Y. Jin, Y. Han, and Q. Xu, “Structured data computer—
Application characteristics of a ternary optical computer,” Scientia Sinica
Inf., vol. 46, no. 3, pp. 311-324, Mar. 2016.

S. Zhang, Y. Han, Y. Shen, and Y. Jin, “Principle of a computing request
file of ternary optical computers,” in Proc. 3rd Int. Conf. High Perform.
Comput. Appl., vol. 7, 2015, pp. 150-157.

S. Li and Y. Jin, “Simple structured data initial SZG file’s generation
software design and implementation,” in Proc. 3rd Int. Conf. Wireless
Commun. Sensor Netw. (WCSN), 2017, pp. 383-388.

H. Gao, Y. Jin, and K. Song, “Extension of C language in ternary optical
computer,” (in Chinese), J. Shanghai Univ., Nature Sci., vol. 19, no. 3,
pp. 280-285, 2013.

Q. Zhang, Y. Jin, K. Song, and H. Gao, “MPI programming based on
ternary optical in supercomputer,” (in Chinese), J. Shanghai Univ., Nature
Sci., vol. 20, no. 2, pp. 180-189, 2014.

S. Li, Theory and Design of a Three-Value Computer Programming
Platform. Shanghai, China: Shanghai Univ., 2019.

J. B. Jiang, X. F. Zhang, Y. F. Shen, and S. Ouyang, “Design and
implementation of SJ-MSD adder in ternary optical computer,” (in
Chinese), Acta Electron. Sinica, vol. 49, no. 2, pp. 275-285, 2021.

SHUANG LI was born in 1988. She received
the Ph.D. degree from the School of Computer
Engineering and Science, Shanghai University,
Shanghai, in 2019. She is currently a Lecturer with
the College of Information, Mechanical and Elec-
trical Engineering, Shanghai Normal University,
China. Her research interests include parallel com-
puting, swarm intelligence systems, and ternary
optical computer.

ZHEHE WANG was born in 1980. He is currently
pursuing the Ph.D. degree with the School of
Computer Engineering and Science, Shanghai
University. He is currently a Lecturer with Hainan
Tropical Ocean University. His main research
interests include storage architecture, file systems,
embedded systems, and ternary optical computers.

SHUXIN WANG was born in 1996. She is
currently pursuing the degree with the School
of Computer Engineering and Science, Shanghai
University. Her research interest includes ternary
optical computer.

DONGDONG AN received the Ph.D. degree in
software engineering from East China Normal
University, Shanghai, China, in 2020. She is
currently a Lecturer with Shanghai Normal Uni-
versity, Shanghai. From 2016 to 2018, she got
a scholarship from China Scholarship Coun-
cil (CSC) to work as a joint Ph.D. Student in
KAIROS Team in the French Institute for Research
in Computer Science and Automation (INRIA),
France. Her research interests include model-

driven architecture, machine learning, formal methods, and statistical model
checking techniques.

VOLUME 10, 2022

