
Received December 18, 2021, accepted January 7, 2022, date of publication January 12, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142539

Consensus of Heterogeneous Multi-Agent
Systems Under Directed Topology
HUA GENG 1, HONGYANG WU 1, JINGLI MIAO1, SHUAI HOU1, AND ZENGQIANG CHEN 2
1School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China
2College of Artificial Intelligence, Nankai University, Tianjin 300350, China

Corresponding author: Hua Geng (huahua27102710@163.com)

This work was supported by the Natural Science Foundation of Hebei Province under Grant F2019402419.

ABSTRACT In this paper, the consensus problem of heterogeneous multi-agent systems under directed
topology is investigated. Specifically, this system is composed of three classes of agents respectively
described by first-order, second-order and third-order integrator dynamics. By the aid of linear filter, graph
theory and matrix theory, the consensus problem is realized based on the two proposed consensus protocols.
Moreover, group consensus can also be solved by adjusting parameters. Finally, some examples were
presented to illustrate the theoretical results. Our study is expected to establish a more realistic model and
provide a method to solve the consensus problem of heterogeneous multi-agent systems in more complex
situations.

INDEX TERMS Consensus, directed topology, multi-agent systems, heterogeneous, linear filter.

I. INTRODUCTION
In recent years, much attention has been received for
multi-agent systems because of its wide application, such
as military [1], energy management [2], sensor network [3],
transport [4], etc. In practice, agents often need to have a
common goal, reach the same place or work in the same
state, etc. Therefore, it is meaningful to study the con-
sensus problem of multi-agent systems. As a basic prob-
lem of multi-agent systems, consensus was first investigated
in [5], [6]. The theoretical frameworks of the consensus
problem and the basic method of solving consensus were
presented. Subsequently, second-order integrator agent sys-
tems [7], high-order integrator agent systems [8], nonlin-
ear agent systems [9] and multi-agent systems in different
application scenarios [10], [11] have been studied and some
meaningful conclusions have been obtained. Inspired by the
prominent work, the consensus problem in some special
application scenarios was studied. He etc. [12] investigated
the consensus problem in a more realistic scenario, which
associated with noisy environments, leader-following net-
works, high-order nonlinear dynamical, switching topology
and communication delay. The proposed consensus pro-
tocol was proved that it was robust against the bounded
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communication delay in noisy environments. In [13], the con-
sensus of partial differential equation (PDE) agents was dis-
cussed. Based on adaptive distributed unit-vector control law
and Lyapunov direct method, the condition of asymptotical
consensus and synchronization for uncertain parabolic partial
differential equation (PDE) agents with Neumann boundary
condition was obtained. It could solve the leader-following
tracking problem of uncertain parabolic partial differential
equation (PDE) agents. Recently, experts have obtained some
insightful results in this field. For example, novel consen-
sus protocol using only relative state was proposed in [14].
It was effective for the discrete-time second-order integra-
tor system with time-varying delay and switching topol-
ogy, in which the velocity of each agent was not required
to zero value. In [15], the containment control problem
was solved for general linear multi-agent systems (MASs)
under the asynchronous setting. An asynchronous distributed
algorithm was proposed for the linear multi-agent systems
(MASs). By the aid of non-negative matrix theory and the
composition of binary relations, the asynchronous contain-
ment control problem was well solved. In [16], based on
the properties of sub-stochastic matrix and super-stochastic
matrix, the tracking issues of multi-agent systems (MASs)
over signed networks was investigated in different scenar-
ios, such as first-order MASs, second-order MASs, gen-
eral linear MASs, time delays, switching topologies, random
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networks and so on. In [17], the bipartite tracking consensus
was studied over directed cooperation-competition networks.
These conclusions were valid for both fixed and switching
topology networks.

Most of the above results are mainly focused on solving
the consensus problem for the homogeneous multi-agent sys-
tems, which composed of a class of agents with homogeneous
dynamics. These agents work together to complete a com-
plex task through coordination, cooperation, competition and
scheduling. When agents are described as the same dynam-
ics, multi-agent systems can be modeled as homogeneous
systems with first-order, second-order or higher-order agents
respectively. However, in reality, many complex systems are
composed of various individuals with different characteris-
tics due to various constraints, such as Robot World Cup.
Different kinds of robots have different tasks, and the mod-
els are different. When the control input of the agents is
velocity, acceleration or jerk, the agents can be described
as first-order, second-order or third-order dynamics respec-
tively. Obviously, in this case, modeling multi-agent system
as a heterogeneous system is a better choice. It is more
practical and challenging. Also, there is a growing literature
on this meaningful issue. In [18], the consensus problem of
heterogeneous multi-agent systems composed of first-order
and second-order integrator agents was first investigated.
By the aid of Lyapunov direct method, some consensus
protocols were presented when the graph was undirected
connected. Considering the special situation that the speed
state of second-order agents was not measurable, some con-
sensus protocols without velocity information were proposed
in the scenarios of input constraints and leader-following
network [19]. In [20], based on the proposed consensus pro-
tocols with input saturation, consensus problem, aggregation
problem and tracking problem were solved when the com-
munication topology was undirected connected. Instead of
the linear dynamics case, the nonlinear dynamics systems
were studied in [21]. The consensus protocols with adaptive
control law were feasible in both nonlinear first-order system
case and nonlinear second-order system case. It was indepen-
dent of any global information and avoided the continuous
monitoring issue. In [22], by designing distributed observers
and tracking controllers, the fixed-time consensus problem
of heterogeneous multi-agent systems with first-order non-
linear agents and second-order nonlinear agents was solved.
It was a more challenging topic than the other consensus
problems, such as mean consensus, finite-time consensus and
min consensus, etc. In [23], the heterogeneous multi-agent
systems with first-order and second-order agents were dealt
with as quasi-consensus problem of homogenous multi-agent
networks. Under undirected networks, some important results
were obtained. In addition to the research on undirected
networks scenario, the past work has also made a great contri-
bution to the research on consensus problem of heterogeneous
systems under directed network. For example, by the aid
of the finite-time stability theory and LaSalle’s invariance
principle, the proposed nonlinear protocols could solve the

consensus problem for mixed-order systems in finite time
under directed topology [24]. In [25], the group consensus
was discussed for discrete-time mixed-order multi-agent sys-
tems under fixed and directed interactive topology. Further-
more, due to the needs of some specific application scenarios,
the consensus of high-order multi-agent systems with differ-
ent dynamics has also been studied. In [26], the finite-time
consensus problem for a general class of high-order nonlin-
ear heterogeneous multi-agent systems was investigated. The
integral sliding-mode control technique and a new variable-
gain finite-time observer were used to help solve the out-
put finite-time consensus of high-order multi-agent systems
with heterogeneous dynamics. In [27], a fully-distributed
Proportional-Integral-Derivative (PID) control strategy was
proposed to solve the leader-tracking and the containment
control problems for heterogeneous high-order multi-agent
systems. Each follower would track the leader and converge
to the convex hull spanned by the multiple leaders in the case
of containment control.

Up to now, the researches on heterogeneous multi-agent
systems are mainly about mixed-order system which com-
posed of first-order and second-order integrator agents
or homogeneous-order multi-agent systems with different
dynamics. More general and complex situations have not
been addressed. However, in reality, heterogeneous systems
may be composed of various individuals with different char-
acteristics, structure and dynamics. A special case is the multi
intelligent vehicle cooperative control system. When some
intelligent vehicles can carry people, comfort is an impor-
tant parameter, which is determined by jerk. Obviously, it is
appropriate to describe these agents as third-order integrator
dynamics. So the intelligent vehicle cooperative control sys-
tem is modeled as a heterogeneous multi-agent system com-
posed of first-order (input is velocity), second-order (input is
acceleration) and third-order agents (input is jerk). In addi-
tion, since the communication ability of different agents is
different, the directed case is more realistic and more reason-
able. In this paper, motivated by these issues, we investigate
the consensus of a heterogeneous multi-agent system com-
posed of first-order, second-order and third-order integrator
agents under directed topology. The proposed protocols can
solve the consensus problem for this more complex system
and they can be extended to the more complex heterogeneous
multi-agent system composed of arbitrary order integrator
agents by adjusting the parameters of control law. Moreover,
by selecting different control parameters, the group consen-
sus can also be solved. Our study is expected to establish
a more realistic model and provide a method to solve the
consensus problem of heterogeneous multi-agent systems in
more complex situations.

The rest of the paper is organized as follows. In Section 2,
some basic knowledge, definition and lemma are briefly
outlined. In Section 3, two consensus protocols are pro-
posed. Theoretical analysis shows that the system can achieve
exponential consensus with the protocols. Moreover, group
consensus can also be solved by adjusting parameters.
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In Section 4, some examples are given. Finally, we get the
conclusion in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. GRAPH THEORY
The communication among agents is represented by graph.
A directed graph G is composed of a pair (V ,E), where
V = {1, 2, . . . , n} is a finite, nonempty set of nodes and
E ⊆ V × V is a set of ordered pairs of nodes. An edge (i, j)
denotes node i can receive information from node j. Directed
spanning tree is at least one node can transmit information
along the edge {i, j}, {j, k} . . . sequence path to any other
node. The weighted adjacency matrix of G is denoted by
A = [aij] ∈ Rn×n, where aii = 0 and aij = 1 (if there
is an edge from node j to node i). Its degree matrix D =
diag{d1, d2, . . . , dn} ∈ Rn×n is a diagonal matrix, where

diagonal elements di =
n∑
j=1

aij for i = 1, 2, . . . , n. Then

the Laplacian matrix of the weighted graph is denoted by
L = D− A, which is asymmetric and row sum is zero.
The next lemma is given to establish the relationship

between graph and Laplacian matrix.
Lemma 1 [28]: Let G be a graph on n vertices with

Laplacian L, then L has at least one zero eigenvalue and all
of the nonzero eigenvalues are in the open right half plane.
Furthermore, L has exactly one zero eigenvalue if and only
if the directed graph associated with L has a spanning tree.
Moreover, 1 = [1, . . . , 1]T is the eigenvector corresponding
to the zero eigenvalue.

B. HETEROGENEOUS MULTI-AGENT SYSTEMS
In this subsection, the composition of heterogeneous multi-
agent systems, the definition of consensus and an important
lemma are given.

In this paper, the heterogeneous multi-agent system is
composed of three classes of agents respectively described by
first-order, second-order and third-order integrator dynamics.
The number of first-order agents, second-order agents and
third-order agents are l,m − l, n − m respectively, where
0 < l < m < n.

The first-order agent dynamics can be expressed as fol-
lows.

ẋi(t) = ui(t) (1)

where xi(t) ∈ R is the position information and ui(t) ∈ R is
the input.

The second-order agent dynamics can be expressed as
follows. {

ẋi(t) = vi(t)
v̇i(t) = ui(t)

(2)

where xi(t) ∈ R is the position information, vi(t) ∈ R is the
velocity information and ui(t) ∈ R is the input.

The third-order agent dynamics can be expressed as
follows. 

ẋi(t) = vi(t)
v̇i(t) = zi(t)
żi(t) = ui(t)

(3)

where xi(t) ∈ R is the position information, vi(t) ∈ R is the
velocity information, zi(t) ∈ R is the acceleration information
and ui(t) ∈ R is the input.
Definition 1: The heterogeneous multi-agent system com-

posed of (1)-(3) is said to reach consensus if for any initial
condition, we have

lim
t→∝

∣∣xj − xi∣∣ = 0

lim
t→∝

∣∣vj − vi∣∣ = 0

lim
t→∝

∣∣zj − zi∣∣ = 0.

The next lemma is given to help us solve the consensus
problem.
Lemma 2 [29]: The linear filter is given as follows:

r(t) = ė(t)+ αe(t) (4)

where α ∈ R+ is a positive real number.
ė(t) and e(t) are exponential convergent if r(t) is exponen-

tial convergent.

III. MAIN RESULTS
In this section, the distributed control law of heterogeneous
multi-agent systems composed of first-order, second-order
and third-order integrator agent is presented. By the lin-
ear filter, two consensus protocols are proposed when the
communication topology is fixed and directed. We sup-
pose that there are n agents in the heterogeneous multi-
agent systems. The first group agents, labeled from
1 to l, are first-order integrator agents. The second group
agents, labeled from l + 1 to m, are second-order
integrator agents. The third group agents, labeled from
m + 1 to n, are third-order integrator agents.
For every second-order agent, an appropriate linear filter is

designed as follows.

r1i(t) = ẋi(t)+ α1xi(t), i ∈ {l + 1, . . . ,m} (5)

where α1 > 0.
For every third-order agent, two appropriate linear filters

are designed as follows.{
r2i(t) = ẋi(t)+ α2xi(t)
r3i(t) = ṙ2i(t)+ α3r2i(t),

i ∈ {m+ 1, . . . n} (6)

where α2 > 0, α3 > 0.
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Motivated by [28], a consensus protocol is proposed as
follows.

ui =
n∑
j=1

aij(εj − εi)

i ∈ {1, . . . , l}

ui =
n∑
j=1

aij(εj − εi)− α1vi

i ∈ {l + 1, . . . ,m}

ui =
n∑
j=1

aij(εj − εi)− (α2 + α3)zi − α2α3vi

i ∈ {m+ 1, . . . , n}

(7)

where A = [aij]n×n is weighted adjacency matrix,
α1 > 0, α2 > 0, α3 > 0 are the parameter of linear filter
and ε = [x1, . . . , xl, r1(l+1), . . . , r1(m), r3(m+1), . . . r3(n)]T is
state vector.

Based on the proposed consensus protocol (7), the consen-
sus problem is solved as Theorem 1.
Theorem 1: Suppose communication topology with a

directed spanning tree is fixed and directed, based on the
linear filter (5)-(6) and the protocol (7), the consensus of
a heterogeneous multi-agent system composed of (1)-(3) is
solved if α1 = 1, α2 − α3 6= 0, α2α3 = 1 hold.

Proof: The heterogeneous multi-agent system is
described as follows.

ẋi = ui i ∈ {1, . . . , l}
ẋi = vi
v̇i = ui i ∈ {l + 1, . . . ,m}
ẋi = vi
v̇i = zi
żi = ui i ∈ {m+ 1, . . . , n}.

(8)

Substituting the linear filter (5)-(6) and consensus pro-
tocol (7) into (8), the heterogeneous multi-agent system is
written as follows.

ẋi =
n∑
j=1

aij(εj − εi)

i ∈ {1, . . . , l}

ṙ1i =
n∑
j=1

aij(εj − εi)

i ∈ {l + 1, . . . ,m}

ṙ3i =
n∑
j=1

aij(εj − εi)

i ∈ {m+ 1, . . . , n}

(9)

Let (9) be a vector form.

ε̇ = −Lε (10)

where ε= [x1, . . . , xl, r1(l+1), . . . , r1(m), r3(m+1), . . . , r3(n)]T .

It follows from Lemma 1 that system (10) could solve
consensus and the equilibrium state is [k, . . . , k]T , k ∈ R,
that is 

x1 = x2 = . . . = xl = k
r1(l+1) = r1(l+2) = . . . = r1(m) = k
r3(l+1) = r3(l+2) = . . . = r3(m) = k

(11)

The linear filter state in (5) and (6) satisfies the following
equation.{

r1i(t) = ẋi(t)+ α1xi(t) = k i ∈ {l + 1, . . . ,m}
r3i(t) = ṙ2i(t)+ α3r2i(t) = k i ∈ {m+ 1, . . . n}

(12)

Solving (12), we have

xi(t) =
k
α1
−

k
α1
e−α1t + xi(0)e−α1t , i ∈ {l + 1, . . . ,m}

(13)

xi(t) =
k

α2α3
+

k
α2(α2 − α3)

e−α2t −
k

α3(α2 − α3)
e−α3t

+
α2xi(0)
α2 − α3

e−α2t −
α3xi(0)
α2 − α3

e−α3t −
ẋi(0)
α2 − α3

e−α2t

+
ẋi(0)
α2 − α3

e−α3t −
(α2 + α3)xi(0)
α2 − α3

e−α2t

+
(α2 + α3)xi(0)
α2 − α3

e−α3t , i ∈ {m+ 1, . . . n} (14)

α1 = 1, α2 − α3 6= 0 and α2α3 = 1 hold from Theorem 1,
so we have

lim
t→∞

xi(t) = k i ∈ {1, . . . , n}

lim
t→∞

vi(t) = 0 i ∈ {l + 1, . . . , n}

lim
t→∞

zi(t) = 0 i ∈ {m+ 1, . . . , n}

(15)

Based on Definition 1, the consensus problem is solved.
Remark 1: Based on the protocol (7), the velocities of

all second-order integrator agents and third-order integrator
agents tend to zero. The acceleration of third-order integrator
agents tend to zero. It means that all agents in the hetero-
geneous multi-agent systems will converge to one point and
stay there. In directed case, the consensus state depends on
the right and left eigenvectors of L corresponding to zero
eigenvalue and the parameters of the linear filter. Further,
the value of the consensus state is the product of the left
eigenvector and the initial value of the ε vector.
Remark 2: The protocol (7) and linear filter (5)-(6) can

be extended to solve consensus problem of heterogeneous
multi-agent systems composed of arbitrary n-order agent.
It means that designing n-1 linear filter for every n-order
agent and these filter parameter need to match. These param-
eters can be determined according to the constant term and
exponential term by Laplace transform and inverse Laplace
transform. The order of agent is higher, the calculation is
more difficult.
Remark 3: The proposed protocol (7) is different from the

work in [23], [30]. The method in [23] is for the undirected
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network cases. It is only for heterogeneous system with first-
order and second-order integrator agents. The proposed pro-
tocol (7) based on linear filter can solve the consensus of
heterogeneous multi-agent systems composed of first-order,
second-order and third-order agents. Furthermore, it is eas-
ier to get a solution to the consensus problem of hetero-
geneous multi-agent systems composed of arbitrary n-order
agents. It could not be applied to the study of other het-
erogeneous systems, such as nonlinear second-order systems
with different dynamics in [30]. However, with this issue,
the higher-order agent can be reduced to a first-order agent,
so as to simplify the design of the controller. Furthermore,
By the aid of non-smooth control law and ADRC control
law, the consensus problem of heterogeneous system with
non-integrator dynamics can be solved.

It follows from the proof of Theorem 1 that the consensus
is different by adjusting α1, α2, α3. So the conclusion is given
as Corollary 1.
Corollary 1: Suppose communication topology with a

directed spanning tree is fixed and directed, based on the
linear filter (5)-(6) and the protocol (7), the group consensus
of a heterogeneous multi-agent system composed of (1)-(3)
is solved if α1 6= 1, α2 − α3 6= 0, α2α3 6= 1 hold.

Proof: It follows from proof of theorem 1 that the posi-
tion of first-order agents, second-order agents and third-order
agents will tend to k, k/α1, k/α2α3 respectively. The velocity
of second-order agents and third-order agents, the accel-
eration of third-order agents will tend to zero. So, let
α1 6= 1, α2 − α3 6= 0, α2α3 6= 1, the group consensus is
solved.

By the aid of linear filter and matrix theory, another proto-
col is proposed as follows.

ui =
n∑
j=1

aij(εj − εi)− xi

i ∈ {1, . . . , l}

ui =
n∑
j=1

aij(εj − εi)− α1vi − r1i

i ∈ {l + 1, . . . ,m}

ui =
n∑
j=1

aij(εj − εi)− (α2 + α3)zi − α2α3vi − r3i

i ∈ {m+ 1, . . . , n}

(16)

where A = [aij]n×n is weighted adjacency matrix,
α1 > 0, α2 > 0, α3 > 0 are the parameter of linear filter
and ε = [x1, . . . , xl, r1(l+1), . . . , r1(m), r3(m+1), . . . r3(n)]T is
state vector.

Based on the proposed consensus protocol (16), the con-
sensus problem is solved as Theorem 2.
Theorem 2: Suppose communication topology with a

directed spanning tree is fixed and directed, based on the
linear filter (5)-(6) and the protocol (16), the consensus of
a heterogeneous multi-agent system composed of (1)-(3) is
solved.

Proof:With the protocol (16) and linear filter (5)-(6), the
heterogeneous multi-agent systems can be written as follows.

ε̇ = −Lε − ε (17)

where ε = [x1, . . . , xl, r1(l+1), . . . , r1(m), r3(m+1), . . . , r3(n)]T .
Convert matrix (−L − I ) into diagonal matrix or Jordan

matrix.

−TLT−1 − TT−1 = −3− I . (18)

−TLT−1 − TT−1 = −J − I (19)

It follows from Lemma 1 that the real parts of all the
eigenvalues of (−3 − I ) or (−J − I ) are negative. It means
that (17) is exponentially convergent, i.e., all states of ε are
exponentially convergent. From Lemma 2, the linear states,
second-order agent states and third-order agent states are also
exponentially convergent. So we have

lim
t→∞

xi(t) = 0 i ∈ {1, . . . , n}

lim
t→∞

vi(t) = 0 i ∈ {l + 1, . . . , n}

lim
t→∞

zi(t) = 0 i ∈ {m+ 1, . . . , n}.

(20)

Based on Definition 1, the consensus problem is solved.
Remark 4: The consensus protocol (16) has a stronger

effect than the former protocol (7), i.e., all first-order, second-
order and third-order integrator agents will eventually tend to
zero and stay there.

IV. SIMULATION
In this section, three examples are given to illustrate the
effectiveness of the proposed consensus protocols.

Suppose the heterogeneous multi-agent system is com-
posed of first-order, second-order and third-order integrator
agents. Number 1 and 2 are first-order integrator agents.
Number 3 and 4 are second-order integrator agents. Number
5 and 6 are third-order integrator agents. If the consensus
protocols are still feasible for the heterogeneous multi-agent
systems with minimum communication cost, the communi-
cation topology can be described as figure 1. Obviously, the
adjacent matrix can be given as follows.

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


Example 1: Let α1 = 1, α2 = 2, α3 = 0.5, i.e.,

α1 = 1, α2 − α3 6= 0, α2α3 = 1. It means that the initial
conditions of Theorem 1 hold. Suppose the position initial
value is [x1, . . . , x6] = [1, 2, 3, 4, 5, 6], velocity initial value
is [v3, . . . , v6] = [2, 3, 4, 5], and acceleration initial value
is [z5, z6] = [1, 2]. The trajectory of all agents is shown in
figure 2, figure 3 and figure 4.

From figure 2, figure 3 and figure 4, we know that the
acceleration of number 5 and 6 agents will tend to zero, the
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FIGURE 1. Communication topology.

FIGURE 2. Position trajectory with theorem 1.

FIGURE 3. Velocity trajectory with theorem 1.

FIGURE 4. Acceleration trajectory with theorem 1.

velocity of number 3-6 agents will tend to zero and the posi-
tion of number 1-6 agents will tend to same value. It means
that the consensus has been obtained and Theorem 1 is cor-
rect. Moreover, from figure 1, we can get the right and left
eigenvectors of −L corresponding to zero eigenvalue are
[1, 1, 1, 1, 1, 1]T and [0, 0, 0, 0, 0, 1] respectively. Based on
the initial conditions in Example 1, the initial value of this
vector ε is [1, 2, 5, 7, 16, 20.5]T . So we know that the value
of consensus state is 20.5. As can be seen from figure 2,
it illustrates the theoretical results in Remark 1.
Example 2: Let α1 = 2, α2 = 4, α3 = 1, i.e., α1 =

2, α2 − α3 6= 0, α2α3 6= 1. It means that the initial condi-
tions of Corollary 1 hold. Suppose the position initial value
is [x1, . . . , x6] = [1, 2, 3, 4, 5, 6], velocity initial value is
[v3, . . . , v6] = [2, 3, 4, 5], and acceleration initial value is

FIGURE 5. Position trajectory with corollary 1.

FIGURE 6. Velocity trajectory with corollary 1.

FIGURE 7. Acceleration trajectory with corollary 1.

[z5, z6] = [1, 2]. The trajectory of all agents is shown in
figure 5, figure 6 and figure 7.

From figure 5, figure 6 and figure 7, it is shown that the
acceleration of number 5 and 6 agents will tend to zero,
the velocity of number 3-6 agents will tend to zero and the
position of number 1-6 agents will tend to three different val-
ues respectively. The group consensus is reached. It implies
that different classes of agents can be grouped to complete
their own tasks. The stable position value of second-order
and third-order agents is one half and a quarter of first-order
agents, and it is determined by 1/α1 and 1/α2α3 respectively.
Obviously, the result in figure 5 matches the initial conditions
α1 = 2, α2α3 = 4.
Example 3: Let α1 = 1, α2 = 1, α3 = 1, i.e., the initial

conditions of Theorem 2 hold. Suppose the position initial
value is [x1, . . . , x6] = [1, 2, 3, 4, 5, 6], velocity initial value
is [v3, . . . , v6] = [2, 3, 4, 5], and acceleration initial value
is [z5, z6] = [1, 2]. The trajectory of all agents is shown in
figure 8, figure 9 and figure 10.

It can be seen from figure 8, figure 9 and figure 10, the
acceleration of number 5 and 6 agents, the velocity of number
3-6 agents and the position of number 1-6 agents will tend to
zero. With the protocol (16), all agents are driven to zero and
stay there. The consensus is solved.
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FIGURE 8. Position trajectory with theorem 2.

FIGURE 9. Velocity trajectory with theorem 2.

FIGURE 10. Acceleration trajectory with theorem 2.

From the simulation results of three examples, the consen-
sus can be solved with protocol (7), the value of consensus
state is not zero which depends on the right and left eigenvec-
tors of L corresponding to zero eigenvalue and the parameters
of the linear filter. Further, group consensus can also be
solved by adjusting parameters. Compared with protocol (7),
protocol (16) has a stronger effect. It not only solves the
consensus problem, but also makes the state tend to zero. The
value of the consensus state must be zero. It is different from
protocol (7).

V. CONCLUSION
In this paper, by the method of designing linear filter, the
consensus problem of heterogeneous multi-agent system is
investigated which composed of first-order, second-order and
third-order agents. Based on the proposed protocols, some
filter states will match the position state and will not change
i.e. both the velocity and acceleration of agents will tend
to zero. It means that consensus is solved. Moreover, group
consensus can also be solved by adjusting filter parameters.
Furthermore, this method can be used to deal with high-order
integrator agents. It is easy to solve the consensus problem
of heterogeneous multi-agent systems composed of arbitrary
classed of order agents. Our study is expected to establish
a more realistic model and provide a method to solve the

consensus problem of heterogeneous multi-agent systems in
more complex situations. With the help of this issue, it is
meaningful to study the consensus of heterogeneous systems
in different scenarios that are more reasonable and practi-
cal, such as without state measurements, time-delay, leader-
following, fixed-time consensus and so on.
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