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ABSTRACT A novel modeling methodology is developed for interconnect parasitic capacitances in
rule-based extraction tools. Traditional rule-based extraction tools rely on pattern matching operations
to match every interconnect structure with corresponding pre-characterized capacitance formulas. Such a
method suffers from three main problems including limited pattern coverages, potential pattern mismatches,
and limited handling of systematic process variations. These problems prohibit rule-based methods from
coping with the new capacitance extraction accuracy requirements in advanced process nodes. The proposed
methodology overcomes these problems by providing machine learning compact models for interconnect
parasitic capacitances that cover varieties of realistic cross-section metal patterns. Those models efficiently
include the impact of systematic process variations on parasitic capacitances. Moreover, each model can
handle thousands of patterns replacing thousands of existing capacitance formulas. The input to the models
is a cross-section pattern that is represented by a novel vertex-based pattern representation. The models are
implemented using two different machine learning methods: neural networks and support vector regressions.
The two methods are tested and compared to each other. The proposed methodology is tested over thirteen
test chips of 28nm, 14nm, and 7nm process nodes with more than 6.7M interconnect cross-section patterns.
The results show that the proposed methodology provided outstanding accuracy as compared to field-solvers
and rule-based models with an average error < 0.15% and a standard deviation < 3.3%, whereas the
average errors and standard deviations of rule-based models exceed 6%, for the same test chips. Also, the
computational runtimes of the compact models are almost 2.5X faster than rule-based models.

INDEX TERMS Machine learning, process variations, parasitic capacitance, parasitic extraction.

I. INTRODUCTION
During the past decades, the semiconductor industry has
developed considerably. There is a continuous increase in
market demand to integrate more functionalities together
on a single chip at a much lower cost and higher speed.
Such an increasing demand motivated process technology
nodes to scale down in a continuous manner.Therefore, the
density of integrated circuits keeps increasing, and the dimen-
sions ofmetal wires (i.e., interconnects) keep decreasing from
one technology generation to the next. This resulted in an
increase in the impact of interconnect parasitic elements on
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chip performances, which is one of the major problems in
advanced process technology nodes [1]–[4].

Interconnect parasitic elements represent the unintended
passive circuit elements, such as resistors, capacitors, and
inductors, that are not included in original circuit designs but
exist in final chips. Such parasitic elements are associated
with circuit routes (i.e., interconnects) that connect circuit
devices together. The impact of such parasitic elements on
circuit performances keeps increasing from one technology
generation to the next. In recent advanced process technology
nodes, the impact of interconnect parasitic elements on inte-
grated circuits significantly increased degrading the overall
circuit performances.

A layout parasitic extraction is an essential step in inte-
grated circuit (IC) design flows. It is used to extract the
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parasitic elements of a given layout and associate the
extracted parasitic elements with the corresponding circuit’s
netlist (i.e., parasitic netlist). The parasitic netlist is later
used to perform a post-layout simulation in order to ver-
ify the performance of the corresponding layout. In case of
any violation in post-layout simulation results, the layout
designer would adjust his layout, re-extract its parasitic ele-
ments, and re-simulate it. Such a process is repeated until
the simulation results meet the required circuit specifications.
In other words, the current IC design flow requires multiple
parasitic extraction and simulation runs in order to meet
the required circuit specifications. Therefore, any inaccuracy
in extracted parasitic elements would generate misleading
post-layout simulation results. Such misleading results would
degrade the yield and increase the turn-around time of a
circuit design. Moreover, in advanced process technology
nodes, the accuracy requirements of the parasitic capacitance
extraction significantly increased (< 5% error). This increase
added more challenges on parasitic capacitance extraction
tools in order tomeet such new requirements [1], [5], [6]. As a
result, more accurate parasitic extraction tools are required
to help circuit designers in developing more efficient layouts
that meet the required specifications [1], [2], [4], [5].

There are two main parasitic capacitance extraction meth-
ods including field-solver and rule-based extraction meth-
ods. Field-solvers provide very accurate parasitic capacitance
results relative to measurements; however, they are very
slow and have a limited capacity [7]. Field-solvers mainly
use numerical methods to perform electrostatic (or electro-
magnetic) simulations over a given layout. This is done by
solving Maxwell equations across the entire layout domain
using any of computational methods such as finite difference
(FDM), finite element (FEM), and boundary element (BEM)
methods. On the other hand, rule-based extraction methods,
also known as 2.5D extraction methods, are way faster than
field-solvers, and they can handle full chips with a reason-
able accuracy. Rule-based extraction methods use pattern
matching operations to match every layout pattern with
corresponding pre-characterized analytical or empirical par-
asitic capacitance formulas that are stored in a database
(i.e., library) of pre-characterized formulas [1], [6], [8], [9].

The current rule-based methods cannot cope with the new
parasitic capacitance extraction accuracy requirements in
advanced process technology nodes (< 5% error) [1], [6].
To improve the accuracy of rule-based extraction methods,
one solution is to extract the parasitic capacitances of compli-
cated and problematic layout structures using a field-solver;
however, this is not a sustainable solution because the effi-
ciency of existing rule-based methods is decreasing from one
technology generation to the next, and the size of layout
designs keeps increasing. Therefore, more layout patterns
would be extracted by field-solvers impacting the perfor-
mance and the capacity of parasitic capacitance extraction
processes. As a result, there is a strong need to improve
the accuracy of rule-based parasitic capacitance extraction
models in order to cope with the new accuracy requirements

and handle the complicated and denser layout designs in
advanced process nodes [1], [2], [10], [11].

The current rule-based extraction methods have three main
problems including 1- a limited pattern coverage, 2- potential
pattern mismatches, and 3- a limited handling of systematic
process variations. With regards to the limited pattern cov-
erage, the current rule-based extraction tools rely on limited
pre-characterized layout patterns. Such patterns are generated
using a limited number of geometrical parameters, such as
widths and spacings, that are used to create corresponding
parasitic capacitance formulas. Such formulas cannot cope
with the complicated layout patterns, with arbitrary dis-
tributed polygons, in recent layout designs as they do not have
enough geometrical parameters to accurately represent such
patterns. Therefore, detailed and multi-dimensional models
are required to capture all required geometrical parameters
that impact parasitic capacitances in a certain layout pattern.

Regarding the potential pattern mismatch, it means that
parasitic capacitances of a certain layout pattern are extracted
using inappropriate capacitance formulas. This results in
extracting wrong parasitic capacitance values. There is a
tradeoff between pattern coverages and pattern mismatches,
where increasing the number of pre-characterized patterns
increases the probability of pattern mismatches.

As for systematic process variations, they represent
physical variations in layout interconnects and devices. Such
variations are layout-dependent, and they mainly occur dur-
ing layout manufacturing processes. The most common sys-
tematic variations of interconnects include metal thickness
variations, loading effects (i.e., inter layer dielectric thickness
variations), metal width variations (e.g., etching), and trape-
zoidal variations (i.e., sidewall slope of metals). The impact
of such variations on parasitic capacitances significantly
increased in advanced process nodes, where the dimensions
ofmetal wires are smaller, and systematic variations started to
represent considerable portions of metal dimensions. There-
fore, layout parasitic capacitance extraction processes must
consider systematic process variations in order to provide
accurate parasitic netlists [5], [12].

The current rule-based extraction tools handle the impact
of systematic process variations on parasitic capacitances
independently using sensitivity formulas that represent the
sensitivity of a certain capacitance component to a cer-
tain variation parameter. Such formulas are pre-characterized
with limited geometrical parameters [13]–[15]. Therefore,
they also suffer from potential pattern mismatch and limited
pattern coverage problems. To consider systematic process
variations during the parasitic capacitance extraction, each
capacitance component is calculated using a single capaci-
tance formula and multiple sensitivity formulas. This way of
handling systematic variations neglects the cross-dependency
impact of different variation parameters on parasitic capac-
itances, where the capacitance sensitivity to each variation
parameter is calculated independently while keeping other
parameters fixed. Moreover, the computational runtime of
capacitance calculations significantly increased due to using
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multiple pre-characterized formulas to calculate a single
capacitance component.

This work mainly focuses on implementing a new inter-
connect parasitic capacitance compact models for 2D cross-
section layout patterns in rule-based extraction tools. The new
models use a novel input pattern representation that considers
systematic process variations efficiently. The new models
are compact, have high pattern coverage, mitigate pattern
mismatches, and provide a faster layout parasitic capaci-
tance extraction process. Also, the proposed compact models
can replace thousands of existing capacitance and sensitiv-
ity formulas, where each model can calculate a coupling
capacitance between two certain polygons using a single
computation instead of multiple computations (using multi-
ple capacitance and sensitivity formulas) in traditional rule-
based methods. The contributions of this paper are:
a. Machine learning compact models that predict inter-

connect parasitic capacitances in layouts of a certain
process node. Each model predicts parasitic coupling
capacitances of cross-section patterns covering a cer-
tain set of metal layers with arbitrary distributed poly-
gons considering systematic process variations. Unlike
existing models that require multiple computations to
calculate a capacitance component, the compact models
can calculate a certain capacitance component using
a single computation. Therefore, there is no need to
invoke multiple capacitance and sensitivity formulas
to calculate a certain capacitance component anymore.
This resulted in a higher extraction accuracy and a lower
computational runtime.

b. A new vertex-based representation of 2D cross-section
layout patterns is proposed. The new pattern representa-
tion accounts for systematic process variations including
metal thickness variations, loading effects, metal width
variations, and trapezoidal variations. Also, it can handle
layout patterns with arbitrary distributed polygons.

c. The compact models are generated using two differ-
ent machine learning methods including Neural Net-
works (NN) and Support Vector Regression (SVR)
methods. The compact models are almost 2.5X faster
than existing rule-based models.

d. The proposed methodology is validated on thirteen real
designs covering 28nm, 14nm, and 7nm nodes.

This work mainly focuses on two-dimensional integrated
circuit (2DIC) technologies [16], where the die is mounted
on a single plane inside the package. As for three-dimensional
integrated circuit (3DIC) technologies, they have special par-
asitic modeling requirements as they contain special layer
types such as through-silicon-vias (TSVs) and interposers
that are used to connect multiple dies together [17], [18].

This paper is organized as follows. Section II provides
a discussion on related works. Section III provides a back-
ground on rule-based parasitic capacitance extraction meth-
ods and systematic process variations. Section IV describes
the proposed compact models. Section V provides the
experimental results. Section VI provides the conclusion and

future works. Moreover, Table 1 shows a list of common
abbreviations that are used in this work.

TABLE 1. List of abbreviations.

II. RELATED WORK
Many efforts were done to improve the accuracy of rule-based
extraction methods [8], [9], [13], [14], [19]–[23]; however,
most of them either use simplified models to improve pattern
matching as in [21], [22], or tackle specific interconnect
structures by using analytical models as in [8], [9], [23].
As for systematic process variations, all previous efforts of
modeling the impact of systematic variations on parasitic
capacitances, in rule-based methods, focused only on the
accuracy of the capacitance and sensitivity formulas. They
completely ignored other sources of inaccuracies such as
pattern mismatches and pattern coverages. Also, they did not
consider the impact on the extraction runtime after incorpo-
rating their formulas [13], [19].

In [13], a modeling methodology was developed to
improve the accuracy of the 2.5D parasitic capacitance
extraction method by considering reactive ion etching (RIE)
variations using sensitivity formulas. This effort used tradi-
tional sensitivity methods to handle interconnect thickness
variations that are caused by RIE. Such an approach has three
main problems. First, it has a limited pattern coverage as it
only considers basic three wires patterns. Therefore, it can-
not be generalized on complicated layout patterns. Second,
it adds more computational runtime on parasitic extraction
tools as it introduces additional sensitivity formulas to be
computed on top of existing formulas. Third, it only considers
RIE effects and completely ignores the cross-dependency
impact of different variation parameters on parasitic capac-
itances. As a result, it is not suitable for advanced process
nodes.

In [19], a modeling methodology for interconnect parasitic
capacitances considering lithography effects was developed.
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The methodology uses a lithography simulator across many
3D layout patterns to incorporate lithography effects, such as
metal width variations, into the generated 3D layout patterns.
Then, it passes the modified layout patterns to a 3D field-
solver to extract their parasitic capacitances. After that, the
modified patterns and their parasitic capacitances are stored
in a pre-characterized library to be later used by parasitic
extraction tools. This effort has several problems. First, it is
not applicable for 2.5D extraction methods since it only con-
siders 3D layout patterns. Second, the lithography simulator
would generate a lot of curvilinear layout shapes that add a
lot of complications on layout parasitic extraction processes.
The complications include more pattern mismatches, more
parasitic extraction runtime due to running a lithography
simulator on layouts, and a huge pre-characterization run-
time due to running a 3D field-solver over many curvilinear
shapes. Third, such a methodology has a very limited pattern
coverage, and it cannot provide good accuracy on full chips.
Moreover, the authors did not introduce any solution for the
pattern coverage and pattern mismatch problems.

In [8] and [9], field-based parasitic capacitance formulas
for metal wires were developed. Such formulas consider
the different 3D parasitic effects of a metal wire including
fringing and corner coupling capacitances; however, those
formulas are only valid for isolated wires. They do not
consider the impact of surrounding metals and systematic
process variations. Hence, they are not efficient for full chip
interconnect parasitic extraction in advanced process nodes.

In [24], a neural-network model was developed for sev-
eral 3DIC interconnect structures around through-silicon-
vias (TSVs). This model uses a single dielectric structure,
and it is only limited to certain interconnect structures around
TSVs. Hence, such amodel is not efficient formulti-dielectric
environment and full chip extraction.

In [22], a pattern matching classifier was developed using
neural networks in order to assign each layout pattern to a cor-
responding capacitance model. Also, interconnect parasitic
capacitance models using neural networks were developed
for 2D cross-section layout patterns. Such an approach man-
aged to reduce pattern mismatches and improve the accuracy
of parasitic capacitance extraction results; however, it has
three main problems. First, the proposed models use lay-
out patterns with limited geometrical parameters. Second,
the models completely ignore systematic process variations.
Third, the proposed models were only verified on simple
2D cross-section patterns, and they were not verified on real
layout patterns.

In [6], a preliminarily work was done to reduce pattern
mismatches and improve pattern coverages. The work mainly
focused on implementing neural-network models for 28nm
process node. Each model represents 2D cross-section lay-
out patterns with arbitrary distributed metal polygons. Each
model handles a pre-defined set of metal layers (i.e., metal
collections), e.g., metal1-metal2-metal3. Two different pat-
tern representations were proposed to represent each set of
metal layers. The proposed representations provide detailed

geometrical information for each cross-section layout pattern.
The first cross-section pattern representation is called the
ratio-based representation, whereas the second one is called
the dimension-based representation. In the ratio-based repre-
sentation, each metal layer in a pattern is represented by a
vector of segments, each segment holds the ratio between the
segment width and the overlapping polygon’s width. On the
other hand, in the dimension-based representation, eachmetal
layer in a pattern is represented by a vector of widths and dis-
placements. The proposed models managed to reduce pattern
mismatches and improve the extraction accuracy. However,
this effort has four main problems. First, the models did not
consider the different systematic process variations. Second,
the models did not introduce any performance improvement
as compared to existing rule-based models, Third, the mod-
els were only implemented using neural networks, and they
were not compared with any other machine learning method.
Fourth, the models were only verified on 28nm process tech-
nology node.

Table 2 summarizes the contributions and limitations of our
work and related works. Table 3 provides a comprehensive
comparison among related works including our work. The
comparison includes ten factors as below:
a. The considered systematic process variations.
b. The modeling methodology of systematic process varia-

tions, where the impact of systematic variations on par-
asitic capacitances can be implicitly considered while
predicting parasitic capacitances by using the capaci-
tance models (i.e., embedded inside the model), or it can
be modeled using sensitivity formulas or lithography
simulators.

c. The pattern coverage, where some models may only
cover a limited number of layout patterns.

d. Type of input layout patterns (2D cross-section or 3D
layout patterns).

e. The pattern matching mechanism, which is an essential
step in 2.5D extraction flows. The pattern matching
is used to match layout patterns with corresponding
pre-characterized capacitance formulas (or models) in
order to calculate the corresponding parasitic capaci-
tance numbers. There are two types of pattern match-
ing that include geometry-based and layer-based. In the
geometry based, the pattern matching is performed
based on the geometrical structures of layout patterns,
whereas in the layer-based, the pattern matching is per-
formed based on the layer names, where each set of
metal layers is handled by a specific model (regardless
of its geometrical structure).

f. The possibility of pattern mismatches that occur when
parasitic capacitances of a layout pattern are calculated
using inappropriate capacitance formulas.

g. The support of multi-dielectric environment.
h. The modeling method, which represents the method that

is used to implement the models, such as analytical
formulas, curve fitted formulas, lookup tables, neural
networks, and support vector regressions.
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TABLE 2. Contributions and limitations of this work and related works.

i. The testing and validation methodologies, which
indicate whether the related work was verified on real
process technology nodes or not.

j. The overhead on the actual parasitic capacitance extrac-
tion runtime, where some models require additional
computations in order to predict the impact of system-
atic process variations on parasitic capacitances.

III. BACKGROUND
A. RULE-BASED PARASITIC CAPACITANCE EXTRACTION
METHODS
Rule-based parasitic extraction methods are used in several
commercial extraction tools, such as Calibre xRC [25] and

StarRC [26], because they can handle full chips efficiently.
Rule-based methods employ 2.5D extraction approaches in
order to extract interconnect parasitic capacitances of a
given layout. In 2.5D approaches, parasitic extraction tools
scan a given layout in the x and y directions to obtain all
corresponding 2D cross-section layout patterns. For each
cross-section pattern, plate and fringing coupling capaci-
tances (per unit length) are calculated using pre-characterized
capacitance formulas [1], [6]. The mapping between cross-
section patterns and the corresponding capacitance formulas
is performed using pattern matching operations. Once all
capacitances are calculated, they are multiplied by the corre-
sponding projection length to get the total capacitance values.
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TABLE 3. A comparison among different parasitic capacitance extraction methods including our work.

Figure 1 provides an illustrative example of extract-
ing a certain metal polygon using the 2.5D extraction
approach. The figure shows a layout structure of three
metal layers including metal1, metal2, and metal3 layers.
The target metal polygon is the middle metal2 polygon.
There are four cross-sections for the target metal polygon.
Three cross-sections are in the z-y plane, and one cross-
section is in the z-x plane. Cross-section1 (C1) and cross-
section2 (C2) are identical, and each contains five
capacitance components. Cross-section3 (C3) contains
eight capacitance components. Cross-section4 (C4) contains

six capacitance components. The fringing and lateral capac-
itances are calculated for each cross-section using cor-
responding capacitance formulas. Then, each capacitance
component is multiplied by the corresponding projection
length (i.e., L1 to L4) [6].
As for plate capacitances, they are calculated in one cross-

section, either z-x or z-y cross-sections, and multiplied by
the corresponding projection length. This is done to avoid
duplicate calculations of the same plate capacitance [6].

The rule-based extraction method has two main steps:
1- a pre-characterization (i.e., calibration) step, as shown in
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FIGURE 1. An illustrative example of extracting a metal polygon using the
2.5D parasitic capacitance extraction method [6].

Figure 2 (a), and 2- a layout parasitic capacitance extrac-
tion step, as shown in Figure 2 (b). The pre-characterization
(i.e., calibration) step is responsible for generating a
pre-characterized library of capacitance and sensitivity for-
mulas, where each process technology node has a differ-
ent pre-characterized library. On the other hand, the layout
parasitic extraction step is responsible for analyzing layouts
and calculating corresponding parasitic elements using the
corresponding pre-characterized library.

1) THE PRE-CHARACTERIZATION STEP
In this step, a pre-characterized library f capacitance and
sensitivity formulas are generated for a certain process tech-
nology node. The pre-characterization process starts with
generating many 2D and 3D layout patterns based on the
corresponding technology specifications. The structures of
those patterns are pre-characterized. Then, a field- solver tool
is used to extract reference parasitic capacitance values for
each layout pattern. The reference capacitance numbers are
either formatted in lookup tables or passed to a curve fitting
tool. The curve fitting tool generates a capacitance formula
for each capacitance component as below:

C = f (p1, p2, . . .) , (1)

where C represents a certain capacitance component,
f (p1,p2,..) represents the curve fitted capacitance for-
mula, whereas p represents a certain geometrical parameter
(e.g., width or spacing). Moreover, sensitivity formulas are
generated to measure the impact of systematic process vari-
ations on each capacitance component, where each capac-
itance component is calculated using a single capacitance

formula and multiple sensitivity formulas as below:

C = f (p1, p2, . . .)+
n∑
i=0

1Si ·
∂C
∂Si

, (2)

where S represents a certain variation parameter (e.g., a metal
thickness variation), ∂C

/
∂S represents a sensitivity formula

that measures a capacitance sensitivity to a certain variation
parameter, whereas n represents the number of systematic
process variation parameters.

Eventually, the generated capacitance and sensitivity for-
mulas are stored in a pre-characterized library in order to be
later used by parasitic capacitance extraction tools [6], [27].

FIGURE 2. Rule-based parasitic capacitance extraction steps including
(a) pre-characterization and (b) layout parasitic extraction steps [6].

2) LAYOUT PARASITIC CAPACITANCE EXTRACTION STEP
The layout parasitic capacitance extraction step is responsible
for extracting parasitic capacitances of a given layout and
writing the extracted parasitic elements into a parasitic netlist.
The extraction flow starts with analyzing and measuring the
geometries of a layout. After that, layout geometries are
fractured into 2D cross-section patterns as shown in Figure 1.
Then, a pattern matching operation is performed to
match each 2D cross-section pattern with correspond-
ing pre-characterized capacitance and sensitivity formulas.
Eventually, the measured geometries are passed to the
obtained pre-characterized formulas to calculate the cor-
responding capacitance values. Once all parasitic capac-
itances are extracted, a parasitic netlist is generated to
be later used by circuit simulators to perform post-layout
simulations [6], [27].

B. SYSTEMATIC PROCESS VARIATIONS
As process technology nodes scale down, the dimensions of
metal wires continue to shrink, and the difficulty of con-
trolling the variations of interconnect geometries and device
parameters significantly increased [28]. There are two types
of variations including random and systematic variations.
Random variations represent the unpredictable and stochastic
variations that cannot be associated with specific conditions
or layout patterns. They might change from time to time and
from location to another. The random variations are usually
modeled using statistical models as in [29]–[32].
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FIGURE 3. Examples of systematic process variations showing (a) metal
thickness variation and loading effects, (b) trapezoidal variations, and
(c) metal width variations.

On the other hand, systematic variations represent the
predictable and deterministic variations that are associated
with specific process conditions (e.g., chemical mechanical
polishing) and layout patterns. In advanced process technol-
ogy nodes, the impact of systematic variations on parasitic
capacitances increases because systematic variations repre-
sent higher percentages of interconnect and device dimen-
sions [12], [13], [33]. The main systematic process variations
includemetal thickness variations, inter layer dielectric thick-
ness variations (i.e., loading effects), metal width variations
(e.g., etching), and trapezoidal variations of metal layers as
shown in Figure 3. Figure 3 (a) shows examples of metal
thickness variations and inter layer dielectric thickness varia-
tions (i.e., loading effects). The loading effects mainly impact
the thickness of inter layer dielectrics and the elevation of
the corresponding upper metal layers, whereas the metal
thickness variations mainly impact the top thickness of the
corresponding metal layer. Figure 3 (b) shows an example
of trapezoidal variations in metal layers, where the sidewall
slope of a certain metal layer changes. Figure3 (c) shows an
example of a metal width variation that impacts the width of
metals and the separation between them.

Since systematic variations are pattern dependent, para-
sitic capacitance extraction tools usually model their effects
using sensitivity formulas as in [13]–[15]. Such a modeling
approach has three main problems that impact the extraction
accuracy: 1- it neglects the cross-dependency impact among
different variation parameters on parasitic capacitances, 2- it
uses a limited number of patterns and parameters to model the
impact of systematic variations on parasitic capacitances, and
3- it has a high potential of pattern mismatches similar to the
case of capacitance calculations (i.e., formulas). Moreover,
the current handling of systematic variations introduces extra
computational runtime, where each capacitance component

is calculated using a single capacitance formula and multiple
sensitivity formulas as shown in (2).

IV. COMPACT MODELS FOR PARASITIC CAPACITANCES
CONSIDERING SYSTEMATIC VARIATIONS
A novel modeling methodology for interconnect parasitic
capacitance extraction is developed for rule-based extraction
methods. The proposed methodology uses machine learn-
ing methods to create compact models that predict parasitic
coupling capacitances between metal polygons in 2D cross-
section layout patterns. Unlike existing models, the compact
models handle patterns with arbitrary distributed polygons,
consider connected polygons (i.e., polygons that hold the
same potential), reduce pattern mismatches, increase pattern
coverage, and consider systematic process variations. The
compact models are technology-dependent, where each pro-
cess technology node has a pre-characterized set of compact
models. The proposed compact models enabled the extraction
of more complicated and multi-dimensional layout patterns.
Moreover, each compact model can replace hundreds to
thousands of existing capacitance and sensitivity formulas.
Therefore, the compact models managed to provide a lower
computational runtime, significant reduction in pattern mis-
matches, and significant accuracy improvements.

The implementation process of the parasitic capacitance
compact models consists of five main steps as follows:
1- identify the main characteristics of input patterns, 2- obtain
training patterns, 3- generate reference parasitic capacitance
numbers of training patterns, 4- extract features of cross-
section patterns, and 5- train machine learning models.
Figure 4 shows the implementation process of interconnect
parasitic capacitance compact models.

FIGURE 4. The process of implementing 2D cross-section machine
learning compact models for rule-based extraction methods.

A. IDENTIFY INPUT PATTERNS CHARACTERISTICS
To create a compact model, we need to study several factors
that identify the main characteristics of input patterns. The
factors include: the surrounding multi-dielectrics, the win-
dow size of a cross-section pattern, the number ofmetal layers
in a pattern window, the number of metal polygons in each
layer, and systematic process variations.
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1) SURROUNDING MULTI-DIELECTRICS
Each process technology node (i.e., process stack) consists
of multiple metal layers that are placed vertically and sur-
rounded by dielectrics. Each metal layer has its own geo-
metrical specifications such as minimum width, minimum
spacing, thickness, elevation, and corresponding systematic
process variation parameters. The metal layers are separated
by dielectric structures. The dielectrics can be planar or con-
formal. Each dielectric has certain specifications such as a
dielectric constant and thickness. Figure 5 shows an exam-
ple of a typical process technology node stack (i.e., process
stack) with multi-dielectric environment. The surrounding
dielectrics have a direct impact on coupling capacitances
between metal layers. So, they must be considered during
parasitic capacitance extraction processes.

FIGURE 5. An example of a process technology node (i.e., process stack)
with multi-dielectric environment [6].

FIGURE 6. An example of machine learning compact models for
cross-section patterns of two different metal collections.

However, including the surrounding dielectrics into the
input parameters to our parasitic models would complicate
the models, require more training patterns, increase pattern
mismatches, and add more overhead on training and predic-
tion runtimes. Therefore, to avoid such complications and
generate effective parasitic models, each process technology
node (i.e., process stack) must have its own set of para-
sitic capacitance compact models. Also, each pre-defined set
of metal layers (i.e., metal collection), in a certain process
technology node, must have a certain parasitic capacitance
compact model as shown in Figure 6, for example,

metal1-metal2-metal3 collection has a compact model,
whereas metal3-metal4-metal5 collection has another com-
pact model. In other words, each process technology node
would have a separate pre-characterized library of machine
learning compact models.

2) WINDOW SIZE OF CROSS-SECTION PATTERNS
The window size of a 2D cross-section pattern represents the
width of the pattern in the horizontal direction as shown in
Figure 7. When the size of a pattern window increases, the
number of polygons that overlap with the window increases.
Hence, more coupling capacitance components are extracted.
However, this would trigger the extraction of minor capac-
itance components that do not have any observable impact
on the extraction accuracy. Moreover, extracting such minor
capacitance components would significantly increase the
extraction runtime without any considerable gain. As a result,
the pattern window should only consider the coupling capac-
itances that impact the extraction accuracy.

As the separation between any two metal polygons
increases, the coupling capacitance between them decreases
as shown in Figure 8. Hence, any metal polygon would
have an effective coupling distance (i.e., range), where any
coupling capacitance to a polygon that is outside of this range
is negligible.

FIGURE 7. An example of a 2D cross-section pattern of a certain metal
collection showing the corresponding window size.

A pattern window size is identified by using the maxi-
mum coupling range of a target metal layer. The maximum
coupling range is the maximum distance where the lateral
coupling capacitance between two polygons, which belong to
the same target metal layer, represents 1% of their total capac-
itances. Therefore, all coupling capacitances to polygons that
are outside of this range are ignored. For each metal layer,
the maximum coupling range is calculated by constructing
a 2D cross-section pattern of two adjacent polygons using
minimum dimensions. The total and lateral coupling capac-
itances are calculated by a 2D field-solver. The separation
(i.e., spacing) between the two polygons is increased until the
lateral coupling capacitance between the two polygons is less
than or equal to 1% of the total capacitance on one polygon.
Figure 8 shows an example of calculating the maximum
interaction range for metal3 layer in 28nm process node. The
capacitance unit is in femtofarad (fF), whereas the separation
unit is in micrometer (µm).

3) THE NUMBER OF METAL LAYERS IN A PATTERN
Each cross-section layout pattern consists of arbitrary
distributed metal polygons that belong to the same or
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FIGURE 8. An example of calculating the maximum coupling range using
metal3 layer with minimum dimensions in 28nm process technology
node.The capacitance unit is in femotfarad (fF), whereas the separation
unit is in micrometer (µm).

different metal layers. Most of existing rule-based models
handle cross-section layout patterns with one, two, and three
metal layers [34]–[37]. This might be enough for high density
layout designs; however, for low density designs, the capaci-
tance models should consider more than three metal layers to
provide a higher extraction accuracy.

The maximum number of layers in a pattern is identified
by measuring the impact of adding multiple upper and lower
metal layers on total and lateral capacitance of a target metal
layer. The maximum number of upper metal layers (or lower
layers) is identified by constructingmultiple 2D cross-section
patterns of two adjacent metal polygons. Each 2D cross-
section pattern has a different numbers of upper metal layers
(or lower) as shown in Figure 9 (a). The lateral capacitance,
of a target metal polygon, is measured using a 2Dfield-solver,
while adding more upper metal layers, until the impact of
adding more upper metal layers on the lateral capacitance is
negligible (< 1% difference in the lateral capacitance). It is
worth mentioning that the patterns are constructed on a way
that minimize the impact of intermediate upper metal layers
and maximize the impact of the most upper metal layer on the
lateral capacitance, where all intermediate upper metal layers
are represented by a single polygon with minimum dimen-
sions, whereas the most upper metal layer is represented by a
plane. This process is applied on all metal layers on a process
stack. Also, the same process is applied to the maximum
number of lower metal layers.

Figure 9 shows an example of identifying the maximum
number of upper metal layers using metal1 as a target layer
in 28nm process node. Figure 9 (a) shows the constructed
patterns, whereas Figure 9 (b) shows the lateral coupling
capacitance values with increasing the number of upper metal
layers. The results show that adding more than two upper
layers has a minor impact (< 1% difference in the lateral
capacitance) on the lateral capacitances. This process is tested
on different process nodes including 28nm, 14nm, and 7nm
nodes to identify the maximum number of upper and lower
metal layers. The experiments show that adding more than
two upper or lower metal layers has a minor impact on the
lateral capacitance of a target layer. As a result, the maximum
number of metal layers in a pattern is five, i.e., two upper
layers, two lower layers, and one target layer.

FIGURE 9. An example showing (a) 2D cross-section patterns that are
created to identify the maximum number of upper metal layers for a
target metal layer, and (b) the impact of adding upper metal layers on the
lateral capacitance of a target metal layer. The results are generated using
metal1 as a target layer in 28nm process node.

4) MAXIMUM NUMBER OF POLYGONS IN A PATTERN
Each pattern may contain multiple polygons across differ-
ent metal layers. It is not necessarily for all polygons to
have considerable coupling capacitances to target polygons,
where some of the capacitances are considerable and impact
the extraction accuracy, whereas other capacitances may be
minor and do not impact the extraction accuracy. As a result,
surrounding polygons that only impact the parasitic extrac-
tion accuracy, of target metal polygons, should be considered
by the corresponding model.

The maximum possible number of polygons in a pattern is
identified for each metal layer separately, where each metal
layer in a pattern may have a different maximum number of
polygons. In other words, the maximum number of polygons
is identified for a target metal layer and surrounding (i.e.,
secondary) metal layers in a cross-section pattern. As for
a target metal layer, the maximum number of polygons is
identified by constructing 2D cross-section patterns of 3, 5,
and 7 adjacent polygons as shown in Figure 10 (a). The lateral
capacitance between the middle and right polygons is mea-
sured in each case, by using a 2D field-solver, until the impact
of adding more adjacent polygons on the lateral capacitance
is negligible (< 1%difference in the lateral capacitance). This
process is applied on all metal layers in a process stack.

Figure 10 shows an example of identifying the maximum
number of target metal polygons usingmetal1 as a target layer
in 28nm process node. Figure 10 (a) shows the constructed
patterns, whereas Figure 10 (b) shows the lateral coupling
capacitance values with increasing the number of adjacent
polygons. This process is tested on different process nodes
including 28nm, 14nm, and 7nm nodes. The experiments
show that the appropriate maximum number of polygons for
a target metal layer is 5.

As for upper and lower (i.e., secondary) metal lay-
ers, the maximum numbers of polygons are calculated by
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FIGURE 10. An example of (a) 2D cross-section patterns that are used to
identify the maximum number of target metal polygons in an input
pattern, and (b) the impact of adding more adjacent polygons on a same
layer lateral capacitance. The results are generated using metal1 as a
target layer in 28nm process node.

constructing 2D cross-section patterns of two metal lay-
ers (i.e., the target and secondary layers) as shown in
Figure 11 (a). The target metal layer contains one polygon at
the middle, whereas the secondary metal layer has a varying
number of polygons (from 2 to 7). All polygons are con-
structed using the corresponding minimum dimensions. The
total capacitance on the middle target polygon is measured,
using a 2Dfield-solver, in each case until the impact of adding
more secondary layer polygons on the total capacitance is
negligible (< 1% difference in the total capacitance). This
process is applied on all metal layers in a process stack.

Figure 11 shows an example of identifying the maximum
number of secondary metal layer polygons using metal1 as
a target layer and metal2 as a secondary layer in 28nm
process node. Figure 11 (a) shows the constructed pattern,
whereas Figure 11 (b) shows the total capacitance values with
increasing the number of secondary metal layer polygons.
This process is tested on different process nodes including
28nm, 14nm, and 7nm nodes. The experiments show that the
appropriate maximum number of polygons for a secondary
metal layer is 4.

Eventually, the maximum number of polygons in a target
metal layer is 5, whereas themaximumnumber of polygons in
each secondary metal layer is 4. For example, the maximum
number of polygons in metal1-metal2-metal3 cross-section
pattern is 13, where metal1 may contain up to 4 polygons,
metal2may contain up to 5 polygons, andmetal3may contain
up to 4 polygons.

5) SYSTEMATIC PROCESS VARIATIONS
Systematic process variations may have a major impact on
parasitic capacitances in advanced process technology nodes.
They do not only impact parasitic capacitances of associated
polygons, but they also may impact parasitic capacitances
of surrounding polygons [5], [12], [38]. Therefore, parasitic
models must consider systematic process variations along
with input patterns in order to improve the accuracy of

FIGURE 11. An example of (a) 2D cross-section patterns that are used to
identify the maximum number of secondary metal polygons in an input
pattern, and (b) the impact of adding more secondary metal polygons on
a target layer total capacitance. The results are generated using metal1 as
a target layer and metal2 as a secondary layer in 28nm process node.

parasitic capacitance extraction processes. In other words, the
inputs to a parasitic model should be a 2D cross-section lay-
out pattern along with the corresponding systematic process
variations.

Systematic process variations are pattern dependent. They
are provided by foundries in the form of lookup tables through
a technology specifications file such as interconnect technol-
ogy file (ITF) [12]. Therefore, systematic variations can be
processed by parasitic extraction tools.

Figure 12 shows an example of metal width variations
using metal1 layer with minimum dimensions in 28nm pro-
cess node. Figure 12 (a) show the impact of metal width
variations on metal dimensions. The width variations impact
both the width of metal wires and the separation between
them, where increasing the width of metal wires decreases the
separation between them. Figure 12 (b) shows the impact of
width variations on lateral and total capacitances usingmetal1
layer with minimum dimensions in 28nm process node. The
width variations may cause the lateral and total capacitances
to change by more than 50%.

Figure 13 (a) shows an example of metal thickness varia-
tions using metal1 layer with minimum dimensions in 28nm
process node. Figure 13 (b) shows the impact of metal thick-
ness variations on lateral and total capacitances. The results
show that the metal thickness variations may cause the lateral
and total capacitances to change by more than 20%.

Figure 14 (a) shows an example of inter layer dielec-
tric (ILD) thickness variations below metal1 layer with mini-
mum dimensions in 28nm process node. Figure 14 (b) shows
the impact of ILD thickness variations on the total capaci-
tance. The results show that the ILD thickness variations may
cause the total capacitances to change by more than 10%.

Figure 15 (a) shows an example of trapezoidal vari-
ations using metal1 layer with minimum dimensions in
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FIGURE 12. An example of (a) width variations in cross-section
interconnect patterns, and (b) the impact of metal width variations on
same layer lateral and total capacitances. The results are generated using
metal1 in 28nm process node.

FIGURE 13. An example of (a) metal thickness variations in cross-section
interconnect patterns, and (b) the impact of metal thickness variations on
same layer lateral and total capacitances using metal1 with minimum
dimensions in 28nm process technology node.

28nm process node. Figure 15 (b) shows the impact of trape-
zoidal variations (i.e., sidewall slope) on the lateral and total
capacitances. The results show that the trapezoidal variations

FIGURE 14. An example of (a) ILD thickness variations in cross-section
interconnect patterns, and (b) the impact of ILD thickness variations on
total capacitances using metal1 with minimum dimensions in 28nm
process technology node.

FIGURE 15. An example of (a) trapezoidal variations in cross-section
interconnect patterns, and (b) the impact of trapezoidal variations on
total capacitances. The results are generated using metal1 with minimum
dimensions in 28nm process technology node.

may cause the total and lateral capacitances to change by
more than 9%. Table 4 summarizes all required characteris-
tics of input patterns.

Eventually, the maximum number of models for a process
stack with N metal layers is given by:

Number of models = (NCk +N Ck−1· · · +NC1), (3)

where C is the combination function, k is the maximum
number of layers in a pattern of a certain layer collection.
Usually, the number of models in a process stack ranges from
tens to few hundreds, whereas the corresponding number
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TABLE 4. A summary of input pattern characteristics.

of traditional rule-based formulas is in the range of many
thousands.

B. GENERATE 2D CROSS-SECTION PATTERNS
Once all input pattern characteristics are identified, they are
used to generate input and training patterns for parasitic
models. The training patterns are obtained from several real
designs in order to increase the pattern coverage and make
sure that training patterns reflect real design topologies. The
generation process of training patterns starts with select-
ing several real designs, for example, ring oscillator (RO),
static read access memory (SRAM), and digital to analog
converter (DAC) layout designs. Then, the geometries and
dimensions of all selected designs are modified by apply-
ing the corresponding systematic process variations. After
that, the modified layouts are fractured into 2D cross-section
patterns taking into considerations the corresponding char-
acteristics of input patterns. In addition, more patterns are
generated randomly for each metal collections covering the
ranges from 1X to 10X of minimum dimensions. Eventually,
the obtained 2D cross-section patterns are used as training
patterns to machine learning models. The total number of
obtained cross-section patterns for each model is 30K pat-
terns, where each model handles patterns of a certain metal
layer collection (e.g., metal1-metal2-metal3).

C. FIELD-SOLVER EXECUTION
Once all training patterns are obtained, their parasitic capac-
itances are extracted using Raphael2D, a 2D field-solver
tool [39]. The extracted parasitic capacitances are used as
reference numbers to train our machine learning models.

D. VERTEX-BASED FEATURE REPRESENTATION
Parasitic capacitance models require three main inputs to
predict parasitic capacitances efficiently. The inputs are:
1- pattern’s geometries, 2- corresponding systematic pro-
cess variations, and 3- required capacitance components. The
three inputs are represented by a single input feature vector
that is passed to the corresponding machine learning model.

FIGURE 16. An example showing the novel vertex-based pattern
representation using three polygons of the same metal layer in a
cross-section pattern.

The pattern’s geometries and systematic process variations
are represented together by using a novel vertex-based feature
representation. In vertex-based representation, each metal
layer in a pattern is represented by a vector of polygons.
The number of polygons of each metal layer in a pattern is
shown in Table 4, where the maximum number of polygons
of a target metal layer is 5, whereas the maximum number of
polygons of a secondary metal layer is 4. Each metal polygon
in a vector is represented by the polygon’s vertices, where
each vertex is measured from the center of the corresponding
pattern. In other words, each polygon is represented by 8 dis-
placement parameters including (x1, y1), (x2, y2), (x3, y3), and
(x4, y4) as shown in Figure 16. As a result, each polygon is
represented by 8 values (vertices), and the vector size of each
layer is estimated by (8×maximum number of polygons in a
metal layer). It is worth mentioning that the vertices of empty
polygons are represented by zeros as shown in Figure 16.

Such a vertex-based representation considers metal thick-
ness variations, loading effects, wire width variations, and
trapezoidal variations of all polygons in a pattern simultane-
ously. In other words, it includes systematic process varia-
tions during capacitance calculations. Therefore, there is no
need to invoke traditional sensitivity formulas or any special
modeling to handle systematic process variations. Also, such
a representation considers the cross-dependency impact of
different variation parameters on parasitic capacitances. This
resulted in fewer computations, better performance, andmore
accurate parasitic extraction results.

The next required input parameter by parasitic models
is the required capacitance component, which informs the
model about the capacitance components to be extracted. The
required capacitance components are identified by includ-
ing the geometries of aggressor and victim polygons to the
input vector of parasitic models. Therefore, the input feature
vector is represented by three internal vectors. The first vec-
tor contains geometries of all polygons, the second vector
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contains geometries of aggressor polygons, whereas the third
vector contains geometries of victim polygons as shown in
Figure 17. The three vectors have the same size. The novel
vertex-based pattern representation is used to represent the
polygons in the three vectors. The size of an internal vector
is estimated by:

internal vector size = 8× (4× number of secondary layers

+5× number of target layers),

(4)

whereas the input feature vector size of is estimated by:

input feature vector size = 3× internal vector size, (5)

for example, the input vector size of a pattern with one target
metal layer is 120, where the maximum number of polygons
of a target metal layer is 5, each polygon is represented by
8 parameters (i.e., vertices), and there are three internal vec-
tors with the same size (i.e., all polygons, aggressor polygons,
and victim polygons). Table 5 shows the input vector sizes of
different metal collections (i.e., models).

FIGURE 17. An example showing the input vector of a parasitic model.

E. TRAINING PARASITIC MODELS
Two different machine learning methods are used to cre-
ate parasitic capacitance models including Neural Net-
works (NN) and Support Vector Regressions (SVR). The
models are used to predict parasitic coupling capacitances
between metal polygons in 2D cross-section patterns. For a
certain process technology node, there is a model for each
metal collection, where metal1-metal2-metal3 has a model,
whereasmetal2-metal4-metal5 has anothermodel. The inputs
of the models are the vertex-based representation of all poly-
gons followed by aggressor and victim polygons as shown
in Figure 18.

TABLE 5. Input vector sizes of several metal collections and models.

1) NEURAL-NETWORKS MODELS
ANeural Network (NN)model is implemented to predict par-
asitic capacitances in 2D cross-section patterns. There is aNN
model for each metal collection in a certain process technol-
ogy node. The architecture and hyper-parameters of NNmod-
els are obtained using a grid search algorithm. The purpose of
applying a grid search algorithm is to obtain appropriate NN
architectures. The NN architectures are obtained based on the
number of metal layers in the corresponding metal collection.
For example, a metal collection with five metal layers has a
NN architecture, whereas a metal collection with four metal
layers has another NN architecture.

The grid search algorithm is applied on fully connected
neural networks. The search range of the grid search covers
several parameters including the number of layers, number of
neurons in each layer, activation functions, optimizer, batch
size, learning rate, and initializations. Table 6 summarizes
the search ranges of each parameter. The evaluation criteria
of selecting a NN architecture are set based on the test set
accuracy, where the grid search observes the accuracy of test
sets across all architectures until amean square error of 0.01%
is achieved. Such a process is applied on 28nm, 16nm, and
7nm process nodes in order to obtain unifiedNN architectures
for each metal collection model. Table 7 shows the obtained
NN architectures for each input vector size.

As for hyper-parameters, the dataset is divided into 70%
training data and 30% test data, validation set is 10%,
the number of epochs is 1K, adaptive moment estimation
(ADAM) optimizer is used, the learning rate is set to 1e-3,
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FIGURE 18. An example showing the flow of generating an input feature
vector of a parasitic capacitance model.

TABLE 6. Search ranges of neural network architectures.

the batch size is set to 500, the cost function is set to a mean
square error, and the batch normalization is applied. These
parameters are obtained using a grid search.

2) SUPPORT VECTOR REGRESSIONS
Support vector regression (SVR) models are implemented to
predict parasitic coupling capacitances of 2D cross-section
patterns. There is a model for each metal collection in a cer-
tain process technology node. In order to obtain unified hyper
parameters for all models, a grid search algorithm is applied
across 28nm, 14nm, and 7nmprocess nodes. The search range
of SVRmodels includes kernel, regularization parameter (C),
gamma, and epsilon parameters. The search ranges of these
parameters are listed in Table 8. The cost function is set to
a mean square error. The evaluation criteria are set based
on the test set accuracy, where the grid search observes the
accuracy of test sets across different combinations of hyper-
parameters until a mean square error of 0.01% is achieved.
Table 9 shows the obtained SVR hyper-parameters for each
input vector size.

V. EXPERIMENTAL RESULTS
The proposed modeling methodology was tested across three
different process technology nodes including 28nm, 14nm,
and 7nm process nodes. The testing covered several real
designs for each node. The accuracy of the generated compact

TABLE 7. Neural network architectures of parasitic capacitance models.

TABLE 8. Search ranges of support vector regression hyper-parameters.

models was measured relative to Raphael, 2D field-solver.
Also, the accuracy and runtime of the generated NN and SVR
compact models were compared against Calibre PEX cross-
section models [25] and ratio-based cross-section models
in [6] using sensitivity formulas of Calibre PEX to handle
systematic process variations [25]. The relative error was
measured for each capacitance component in a layout pattern
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TABLE 9. SVR hyper-parameters of parasitic capacitance models.

using the below formula:

Relative error = (predicted−−reference)/predicted, (6)

where the predicted value represents the capacitance value
that is obtained from the model, whereas the reference
value represents the corresponding capacitance value that was
obtained from Raphael, 2D field-solver. Moreover, nonpara-
metric statistical tests were performed to test the significant
difference in performance (i.e., accuracy) between each two
models.

For each process technology node, the proposed modeling
methodology was used to generate NN and SVRmodels. The
training data were obtained from real layouts including static
read access memory (SRAM), digital to analog converter
(DAC), and ring oscillator (RO) designs. Also, more training
patterns were randomly generated covering the ranges from
1X to 10X of the minimum dimensions. The training and
model’s generation used Tensor flow libraries [42]. The train-
ing used Intel Xeon(R) E5-2680, 4CPU, 2.50GHz, and 16G
of RAM. The errors of extracted capacitances were measured
relative to Raphael, 2D field-solver.

A. TESTING REAL DESIGNS OF 28nm PROCESS NODE
The total number of generated models (either NN or SVR)
is 130. The generated models cover 130 different metal col-
lections each includes 1 to 5 different metal layers. Each
model (i.e., NN or SVR model) was trained over 30K cross-
section patterns, where 21K patterns (70%) were used for the
training set, and 9K patterns (30%) were used for the test set.
As for NN models, the total training runtime of all models is
19.3 hours. As for SVR models, the total training runtime of
all models is 12.7 hours. The training (i.e., models generation)
runtimes can significantly improve by multi-processing. It is
worth mentioning that the models were generated only once
for each process node. After that, the generated models are
used numerous times by parasitic extraction tools.

TABLE 10. The accuracy and relative errors of test sets for NN and SVR
models of 28nm process node.

Table 10 shows the test sets accuracy of NN and SVR
models. The training and test sets accuracy comparison used
four main criteria including 1) the mean of all relative errors,
2) the standard deviation of all relative errors, 3) the percent-
age of outliers that exceeds 5% relative error (i.e., the num-
ber of outliers to the total number of extracted capacitance
components), and 4) the mean square error across all models.
The accuracy results of test sets show that the NN and SVR
models provide a high accuracy, where almost 98% of the
extracted capacitances have relative errors below 5%.

As for testing the generated models on real design patterns
of 28nm process node, the generated models were tested over
cross-section patterns of three different test chips including
dynamic read access memory (DRAM), static read access
memory (SRAM), and voltage-controlled oscillator (VCO)
designs that were not included during the training processes.
The total numbers of extracted cross-section patterns in
DRAM, SRAM, and VCO designs are 790K, 327K, and
953K patterns, respectively. The corresponding total num-
ber of capacitance components are 2.76M, 1.3M, and 4.2M
capacitances, respectively. Therefore, the total number of
extracted cross-section patterns across all designs is 2.07M
patterns, and the total number of extracted capacitances
across all designs is 8.26M.

Figure 19 shows histograms of relative errors covering
all extracted capacitances across all designs using the rule-
based extraction, ratio-based, proposed NN, and proposed
SVR cross-section models. The accuracy comparisons show
that the proposed NN and SVR models provide high accu-
racy results as compared to existing rule-based cross-section
models and ratio-based models. The percentages of extracted
capacitance components with relative errors below 5% using
the rule-based, ratio-based, NN, SVR cross-section models
are 75.24%, 92.29%, 98.5%, and 98.1%, respectively. The
corresponding mean of relative errors are 2.61%, 0.973%,
0.071%, and 0.104%, respectively, while the corresponding
standard deviation of relative errors (STDEV) are 6.8%,
4.8%, 2.31%, and 2.89%, respectively. On the other hand,
most of the outliers, with more than 5% relative error, that
were generated using the proposed NN and SVRmodels have
very small capacitance values (<1e-4 fF).

As for runtime comparisons, the total runtimes of extract-
ing (i.e., computing) all cross-sections (i.e., 2.07M patterns)
using the rule-based, ratio-based, NN, and SVR cross-section
models are 16.07, 19.27, 6.7, and 6.1 hours, respectively.
Therefore, the corresponding runtimes relative to rule-based
models are 1, 1.2, 0.417, and 0.38, respectively. The capac-
itance computations were done on a single CPU using Intel
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FIGURE 19. Relative error histograms of extracted capacitances for
2D cross-patterns of 28nm designs using the (a) existing rule-based,
(b) ratio-based, (c) proposed NN, and (d) proposed SVR cross-section
models.

Xeon(R) E5-2680, 2.50GHz, and 16G of RAM. As a result,
the generated models (i.e., NN and SVR models) managed to
achieve high accuracy results as compared to existing rule-
based cross-section models and ratio-based models, in [6],
with an average speed up of 2.5X.

B. TESTING REAL DESIGNS OF 14nm PROCESS NODE
The total number of generated models (either NN or SVR)
is 175. The generated models cover 175 different metal col-
lections each includes 1 to 5 different metal layers. Each
model (i.e., NN or SVR model) was trained over 30K cross-
section patterns, where 21K patterns (70%) were used for the
training set, and 9K patterns (30%) were used for the test set.
As for NN models, the total training runtime of all models is
21.7 hours. As for SVR models, the total training runtime of
all models is 13.9 hours.

TABLE 11. The accuracy and relative errors of test sets for NN and SVR
models of 14nm process node.

Table 11 shows the test sets accuracy of NN and SVR
models. The results show that the NN and SVR models pro-
vide high accuracy values, where almost 98% of the extracted
capacitances have relative errors below 5%.

As for testing the generated models on real design patterns
of 14nm process node, the generated models were tested
over cross-section patterns of three test chips including cache
memory, DRAM, and VCO designs that were not included
during the training processes. The total numbers of extracted
cross-section patterns in cache memory, DRAM, and VCO
designs are 630K, 915K, and 1.03M patterns, respectively.
The corresponding total number of capacitance components
are 2.8M, 4M, and 4.4M capacitances, respectively. There-
fore, the total number of extracted cross-section patterns is
2.575M patterns, and the total number of extracted capaci-
tances is 11.2M.

Figure 20 shows histograms of relative errors covering
all extracted capacitances across all designs using the rule-
based extraction, ratio-based, proposed NN, proposed SVR
cross-section models. The accuracy comparisons show that
the proposed NN and SVR models provide high accuracy
results as compared to existing rule-based cross-section mod-
els and ratio-based models. The percentages of extracted
capacitance components with relative errors below 5%
using the rule-based, ratio-based, proposed NN, proposed
SVR cross-section models are 74.3%, 87.4%, 98.03%, and
97.81%, respectively. The corresponding mean of relative
errors are 2.36%, 1.81%, 0.107%, and 0.148%, respec-
tively, while the corresponding standard deviation of rela-
tive errors (STDEV) are 6.94%, 5.82%, 2.58%, and 3.07%,
respectively. On the other hand, most of the outliers, with
more than 5% relative error, that were generated from the
proposed NN and SVR models have very small capacitance
values (<1e-4 fF).

As for runtime comparisons, the total runtimes of extract-
ing (i.e., computing) all cross-section patterns (i.e., 2.575M
patterns) using the rule-based, ratio-based, proposed NN,
proposed SVR cross-section models are 20.03, 24.1, 8.32,
and 7.84 hours, respectively. Therefore, the corresponding
runtimes relative to rule-basedmodels are 1, 1.203, 0.415, and
0.391, respectively. The capacitance computations were done
on a single CPU using Intel Xeon(R) E5-2680, 2.50GHz,
and 16G of RAM. As a result, the generated models (i.e.,
NN and SVR models) managed to achieve high accuracy
results as compared to existing rule-based cross-section mod-
els and ratio-based models, in [6], with an average speed
up of 2.45X.
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FIGURE 20. Relative error histograms of extracted capacitances for
2D cross-patterns of 14nm designs using the (a) existing rule-based,
(b) ratio-based, (c) proposed NN, and (d) proposed SVR cross-section
models.

C. TESTING REAL DESIGNS OF 7nm PROCESS NODE
The total number of generated models (either NN or SVR)
is 231. The generated models cover 231 different metal col-
lections each includes 1 to 5 different metal layers. Each
model (i.e., NN or SVR model) was trained over 30K cross-
section patterns, where 21K patterns (70%) were used for
the training set, and 9K patterns (30%) were used for the
test set. As for NN models, the total training runtime of all
models is 23.01 hours. As for SVR models, the total training
runtime of all models is 15.03 hours. The training runtimes
can significantly improve by multi-processing. It is worth
mentioning that the models were generated only once for
each process node. After that, the generated models are used
numerous times by parasitic extraction tools.

TABLE 12. The accuracy and relative errors of test sets for NN and SVR
models of 7nm process node.

Table 12 shows the test sets accuracy of NN and SVR
models. The results show that the NN and SVR models
provide high accuracy values, where almost 97% of the
extracted capacitances have relative errors below 5%.

As for testing the generated models on real design patterns
of 7nm process node, the generated models were tested over
cross-section patterns of two test chips including cache mem-
ory (CM) and VCO designs that were not included during
the training processes. The total numbers of cross-section
patterns of cache memory and VCO designs are 920K and
1.17M patterns, respectively. The corresponding total number
of capacitance components are 4.1M and 5M capacitances,
respectively. Therefore, the total number of extracted cross-
section patterns is 2.09M patterns, and the total number of
extracted capacitances is 9.1M.

Figure 21 shows histograms of relative errors covering all
extracted capacitances across all designs using the rule-based
extraction, ratio-based, proposed NN, proposed SVR cross-
section models. The accuracy comparisons show that the
proposed NN and SVR models provide high accuracy results
as compared to existing rule-based cross-section models and
ratio-based models. The percentages of extracted capacitance
components with relative errors below 5% using rule-based,
ratio-based, NN, and SVR cross-section models are 71.1%,
76.7%,97.47%, and 96.8%, respectively. The corresponding
mean of relative errors are 2.51%, 2.6%, 0.11%, and 0.15%,
respectively, while the corresponding standard deviation of
relative errors (STDEV) are 8.31%, 7.01%, 2.65%, and
3.29%, respectively. On the other hand, most of the outliers,
withmore than 5% relative error, that were generated from the
proposed NN and SVR models have very small capacitance
values (<1e-4 fF).

As for runtime comparisons, the total runtimes of
extracting all cross-sections (i.e., 2.09M patterns) using
the rule-based, ratio-based, proposed NN, proposed SVR
cross-section models are 16.26, 19.46, 6.93, and 6.81 hours,
respectively. Hence, the corresponding runtimes relative to
rule-based models are 1, 1.197, 0.43, and 0.419, respectively.
The capacitance computations are done on a single CPU
using Intel Xeon(R) E5-2680, 2.50GHz, and 16G of RAM.
As a result, the generated models (i.e., NN and SVR mod-
els) managed to achieve high accuracy results as compared
to existing rule-based cross-section models and ratio-based
models, in [6], with an average speed up of 2.35X.

As for the uncertainty of predictions, there are two types
of uncertainties that include aleatoric and epistemic uncer-
tainty. In interconnect parasitic capacitance extraction, the
aleatoric uncertainty represents the irreducible part of the
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FIGURE 21. Relative error histograms of extracted capacitances for
2D cross-patterns of 7nm designs using the (a) existing rule-based,
(b)ratio-based, (c) proposed NN, and (d) proposed SVR cross-section
models.

uncertainty that might occur due to the random process varia-
tions [29]–[32]. On the other hand, the epistemic uncertainty
represents the reducible part of the uncertainty. It occurs due
to limited coverages of training patterns, for example, input
cross-section patterns that violate the corresponding design
rules may not be part of training patterns. The epistemic
uncertainty can be reduced by increasing the coverage of
training patterns.

D. STATISTICAL TESTS
Nonparametric statistical tests were performed to test the
significant difference in performance (i.e., accuracy) between
each two models. The Wilcoxon signed-ranks test [43] was
selected because it is a nonparametric statistical test that is
performed to test the significant difference between twomod-
els (i.e., paired comparisons). In our case, the null hypothesis
indicates a lack of a significant difference between the two
tested models. The null hypothesis will be rejected if the

TABLE 13. Accuracy comparisons in terms of mean square errors for
rule-based, ratio-based, the proposed SVR, and the proposed NN models.

TABLE 14. Paired comparisons using Wilcoxon signed-rank test
(two-tailed) to test the significant difference between each two models,
where the mean square error, against a field-solver, is used as a
performance metric.

p-value is less than 0.05 (p-value < 0.05). The mean square
error (MSE) was used as a performance metric to help in
performing statistical tests. MSE values were obtained for
the four extraction models over 13 datasets using Raphael,
2D field-solver, as a reference, as shown in Table 13.

Table 14 shows statistical comparisons using Wilcoxon
signed-rank tests. The table shows the p-value and z-value
for each paired comparison test. Also, the table shows the
sum of positive ranks (SPR) and sum of negative ranks (SNR)
for each paired comparison test. The comparisons show that
there is no significant difference between the proposed NN
and SVRmodels as the p-value is greater than 0.05. However,
the results show significant differences (i.e., rejecting the
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null hypothesis) between the proposed models and each com-
pared extraction model as the p-values are less than 0.05.

VI. CONCLUSION AND FUTURE WORK
A novel modeling methodology for interconnect parasitic
capacitances is developed for rule-based extraction tools
using machine learning methods. The proposed methodology
managed to overcome several problems in rule-based extrac-
tion tools such as handling systematic process variations,
high pattern mismatches, and limited pattern coverages. The
proposed methodology creates cross-section compact models
for a certain process technology node. Such compact models
predict the parasitic coupling capacitances between metal
polygons on a given 2D cross-section layout pattern consider-
ing the impact of systematic process variations. Themodeling
methodology process starts with processing process stack
specifications to identify the main characteristics of layout
input patterns, such as pattern’s size, the maximum number
of metal layers in a pattern, handling multi-dielectric stacks,
systematic process variations, and the maximum number of
polygons in a pattern. The input of the compact models is
a given cross-section pattern including the required capaci-
tances and the corresponding systematic process variations.
The patterns are represented by a novel vertex-based pattern
representation that considers systematic process variations as
a part of the geometrical characteristics of a given pattern.
The compact models are implemented using two different
machine learning methods: neural networks and support vec-
tor regression methods. The proposed methodology is tested
over thirteen real designs of 28nm, 14nm, and 7nm process
nodes with more than 6.7M interconnect patterns. The gen-
erated compact models are faster than traditional rule-based
models by 2.5X. Also, they managed to achieve outstanding
results as compared to field-solvers and rule-based cross-
section models, where the average relative error of the gener-
ated models is < 0.5% and the standard deviation of relative
errors is <.31%.

As for a future work, the proposed models cannot pre-
dict parasitic capacitances of three-dimensional integrated
circuits (3DIC) technologies, such as stacked-die 3DIC and
monolithic 3DIC technologies. The 3DIC technologies aims
to combine and integrate multiple systems on a single
package. In stacked-die 3DIC technologies, multiple sili-
con wafers (or chips) are stacked vertically and connected
together by using a through-silicon-via (TSV). The stacking
may have many forms, such as a face to face or a face to
back. In such cases, the capacitance coupling interactions
among the interconnects across those chips need to be mod-
eled. As for monolithic 3DIC technologies, the device layers
and their corresponding devices are fabricated sequentially,
and multiple devices with different elevations may exist.
In such cases, there are many different metal and device
layers that are vertically overlapped, and the parasitic capac-
itances among them need to be modeled correctly. Eventu-
ally, the proposed models need to be extended to support
3DIC technologies.
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