
Received December 8, 2021, accepted January 7, 2022, date of publication January 12, 2022, date of current version January 21, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142345

Privacy Protection Framework for Android
BHARAVI MISHRA1, AASTHA AGARWAL 1, AYUSH GOEL 1, AMAN AHMAD ANSARI 1, PRAMOD GAUR 2,
DILBAG SINGH 3, (Member, IEEE), AND HEUNG-NO LEE 3, (Senior Member, IEEE)
1The LNM Institute of Information Technology, Rajasthan, Jaipur 302031, India
2Birla Institute of Technology and Science Pilani, Dubai, United Arab Emirates
3School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea

Corresponding author: Heung-No Lee (heungno@gist.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP)
under Grant NRF-2021R1A2B5B03002118; and in part by the Ministry of Science and ICT (MSIT), South Korea, under the Information
Technology Research Center (ITRC) Support Program under Grant IITP-2021-0-01835 supervised by the Institute of Information &
Communications Technology Planning & Evaluation (IITP).

ABSTRACT The increase in popularity and users of the Android platform in recent years has led to a lot of
innovative and smart Android applications (apps). Many of these apps are highly interactive, customizable,
and require user data to provide services. While being convenient, user privacy is the primary concern.
It is not guaranteed that these apps are not storing user data for their need or scrapping algorithms through
them. Android uses the system of permissions to provide security and protect user data. The user can grant
permission for requested resources either at runtime or during the installation process. However, this system
is often misused in practice by demanding extra permissions that are not required to provide services.
These kinds of apps stop functioning if all permissions are not granted to them. Therefore, in this paper,
a privacy preserved secure framework is proposed to prevent an app from stealing user data by restricting all
unnecessary permissions. Unnecessary permissions are recognized by predicting the permissions required
by a given app by using collaborative filtering and frequent permission set mining algorithms. Thus, the
proposed model interacts with the target application and modifies the permission data inside. Experimental
results reveal that the proposed model not only protects the user data but also ensures the proper functioning
of the given application.

INDEX TERMS Android, instrumentation, permission model, security, privacy.

I. INTRODUCTION
Android is the most popular operating system (OS) when it
comes to mobile platforms. According to Global Stats [1],
Android OS enjoys almost 75% of the market share in the
Mobile OS Industry, followed by iOS with a 25% share in
June 2020. Users prefer Android because of its free and
open-source nature with support for many apps. Developers
also select Android over the competitive iOS as it is open-
source in nature. Applications for Android are written mainly
in Java and are commonly referred to as ‘apps’.

Security is a crucial aspect of apps. The nature of Android
apps makes it difficult to rely on standard, traditional, and
dynamic malware analysis systems [2]. Google launched a
Google play app security improvement program for providing
security services to Google Play app developers to improve
the security of their apps [3]. Apps are scanned for potential

The associate editor coordinating the review of this manuscript and

approving it for publication was Kaitai Liang .

malware before uploading on Play Store. In 2017, Google
worked on detecting malware and potentially harmful apps
for improving security on devices and Play Store using
Google Play Protect [4]. In Android 9, Google put a
restriction on the access of sensors in the background so that
apps running in the background cannot access the camera,
microphone, and sensors [5].

To protect user data and passwords, Google has provided a
feature for hardware-backed keys. Safe Browsing application
programming interface (API) is also present for protection
against deceptive websites. While there have been significant
developments towards platform security, application develop-
ment security, and secure Android OS, the apps taking user
data can sometimes be malicious. With over 2.7 million apps
already present in the Google play store [6], it is hard to
determine which app is malicious or which may take data to
analyze behavior or sell it to any third party.

To prevent the issue of data security and malicious usage
of the applications, Android works on the principle of

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 7973

https://orcid.org/0000-0003-1801-0023
https://orcid.org/0000-0001-5479-4545
https://orcid.org/0000-0002-9732-4137
https://orcid.org/0000-0002-9466-7417
https://orcid.org/0000-0001-6475-4491
https://orcid.org/0000-0001-8528-5778
https://orcid.org/0000-0003-0262-7678

B. Mishra et al.: Privacy Protection Framework for Android

permissions, i.e., the apps must ask for the permissions
required for their applications from the user, and Android
provides access to the APIs of that very permission only if
the user grants it [7]–[9]. The Android system has permission
categories based on security levels - normal, dangerous, and
signature permissions. The developer just needs to mention
the required permissions in the manifest file. The Android
system does not prompt users for such permissions. The
dangerous permissions could lead to some severe data breach
problems. Hence, these permissions need to be mentioned in
the manifest file and should prompt the user to allow the app
to use these permissions inside the app. It allowed users to use
the app without really permitting access to any permissions.
However, this still did not solve the issue of data breaching
as some apps started to crash when the user declined the
requested permission.

As discussed, the Android OS platform works on per-
mission mechanisms. Certain apps take many permissions.
The intent and nature behind these permissions motivated
us to study data trade, user privacy leaks, and current
security policies in Android. After analyzing many of the
applications, it is found that the application developermisuses
permissions to steal the user’s private and personal data.
Android 6.0 (Marshmallow) Android has provided support to
allow/decline permissions, i.e., users could decide whether an
app requires specific permissions and could decline whatever
permissions they find unnecessary. However, this often leads
to apps being crashed on purpose by the developer if specific
malicious permission(s) are rejected.

Due to a lack of protection in dangerous permissions
associated with sensitive APIs, user privacy is exploited
by malicious apps by manipulating users and application
services. This situation motivated us to make a system that
would improve the app’s functioning while securing sensitive
data. In this paper, a framework of data protection is proposed
that will ensure data security and try to stop on-purpose
crashes by making the app believe it has access to the
requested data.

This paper addresses the malfunctioning of applications
when permissions are denied and protects data privacy.
Considering all these issues, service is enforced to identify
the malicious permissions inside the installed applications on
the user’s device. The proposed framework provides services
to predict the permissions required by an app and instructs the
app to prevent malfunction dynamically. The instrumented
Android Package (APK) file is installed on the target device.
It communicates with the server service at runtime whenever
a potentially dangerous API is triggered. The mobile client
communicates over the insecure public channel (the Internet).
The communicated messages can be read or modified over
the network, or the mobile client’s identity can be known
to an adversary. Therefore, an anonymous authentication
and key agreement scheme are also proposed to protect
communication without revealing the client’s identity. Thus,
the proposed framework protects user data without affecting
the functionality of the application.

The paper is organized into the following sections.
Section II describes security measures that are available in
Android. Sections III and IV describe the motivation and
previous work done in this regard, respectively. The proposed
framework and the communication scheme are discussed in
section V. The application of the proposed model, through a
case study, is discussed in section VI. Conclusions and future
work are shown in section VII.

II. SECURITY IN ANDROID
A. ANDROID ARCHITECTURE
Android is a Linux-based open-source software program or
rather, an Operating System (OS) [2]. The platform security
is based on the OS’s architecture, Fig. 1, which is achieved by
separating resources and accessibility in subsequent layers.

FIGURE 1. Android platform architecture.

Each layer assumes that the proceeding layer is secure.
Subsequent layers become less accessible. The Linux kernel
runs on the lowest level and is responsible for performing the
basic OS operations such as process management, memory

7974 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

management, and managing other device-related operations.
Above the Linux, kernel layer runs the Hardware Abstraction
Layer (HAL) which is responsible for providing a standard
interface to hardware so that hardware vendors can build their
hardware without affecting higher-level layers. Now, the OS
can be updated without changing or re-configuring hardware
implementations. It also provides an advantage in the HAL.
It promotes the principle of least privileges, as HALs in a
process do not have access to an identical set of permissions
compared to the rest of the process [10].

HAL lies on the services layer of the Android system. The
service layer consists of Android runtime libraries and native
C libraries. These can be easily accessed by the application
layer to perform various Android related functions such as
accessing the camera module to record, media module to play
something, notification service for sending notifications, and
various other Android provided services.

The Java API layer is placed on the top of the service
layer. It is an intermediary layer that makes it easy for the
application layer to access Android services using Java-based
APIs corresponding to them. The topmost layer is the
application layer where all the applications installed on the
device remain and make use of the Java API framework to
access various required Android services.

The Android low-level security model is based on applica-
tion sandboxing [4], [5]. Android sandboxing is the process
of isolating an application in the system. It prevents outside
influences on the layers mentioned in the architecture. All
applications are assigned a user ID while they are running.
They have access rights to their own files only. It prevents
outside malware and security threats; if an application
experiences a security breach, other applications’ operations
will not be affected.

Android provides hardware-backed key protection for
cryptographic services. The stored keys provide a safe, secure
channel for the authentication of user data. Verified Boot
is used to check the state of the system when it starts [4].
It verifies whether the system is in a good state. In Android
8.0 (Oreo), Google introduced Project Treble to increase
low-level security [4], [11]. Project Treble separates the
open-source Android OS framework from the hardware code
implementations at the vendor level. It has had a positive
impact on device security and the speed of updates.

B. APPLICATION SECURITY
Android uses the permission model to prevent an app from
using sensitive data and resources that are not required
during runtime. Apps need corresponding permissions to
use APIs to interact with the underlying system [12]–[14].
All permissions taken by an app must be specified in the
application’s manifest file [15].

Permissions are grouped into three categories correspond-
ing to the risk and security level associated with resources and
APIs: normal, dangerous, and signature permissions. Normal
permissions include the permissions where the application
must interact with resources out of the sandbox and do

not pose any threat to user privacy. Normal permissions
include Bluetooth, KILL_BACKGROUND _PROCESS, and
Internet. Signature permissions are granted at the install
time and allow an application to use the permissions signed
by the identical certificate. VPN_SERVICE is included
in the signature permissions. Dangerous permissions are
the permissions that could pose a potential security threat
or a threat to user privacy. The user is required to
approve each of these permissions needed by the appli-
cation after installation. SMS, storage, and camera per-
missions are some of the permissions included in this
category.

In earlier versions (Until Android 5.0), users were not
allowed to choose a subset of permissions. They needed
to accept all the permissions mentioned by the application
in their manifest file to install the software application
into their devices. In Android 6.0 (Android Marshmallow),
Google introduced a new mechanism for permission, called
runtime permission [16]. Where users are notified of any
dangerous permissions at runtime and choose not to give
specific permission, it gives a choice to the user to understand
the usage of the app and determine whether the requested
permission is required for the proper functioning of the app.
In some cases, if permissions are not given, the app may not
work correctly. Ultimately, the user is forced to accept all the
permissions to use the app.

Android’s System Alert Window API was modified in
Android 8.0. It does not allow apps to draw special windows
used to notify the user of the critical messages. It has resulted
in the prevention of clickjacking that was used by malicious
apps creating overlays on the screen. Users are now allowed
to tap the notification to hide overlays [16].

For protecting user phone data, Android provides strict
policies for sensitive APIs. In Android 8.0 and above, the
GET_ACCOUNTS permission is no longer sufficient to gain
complete access to the list of accounts active on the device.
For example, the user is now required to grant permission to
the Gmail app to access the Google account on the device
even though Google owns Gmail. As concrete examples,
Settings.Secure.ANDROID_ID or SSAID is an ID provided
to all apps. To prevent misuse of the ANDROID_ID value,
Android 8.0 provides a mechanism that does not allow the
change in ANDROID_ID when the application is re-installed
until the package name and key are identical. Another feature,
Build.getSerial() returns the actual serial number of the
device till the caller holds the PHONE permission. Android
8.0 has deprecated this API’s use, and it protects the serial
number of the device from being misused by the applications.

Android has seen advancements in hardening security
policies. However, it can be noted that as of October 2020,
only 40.35% of devices are running Android 10.0, and
22.59% of devices are running Android 9.0 (Pie). More than
35 percent of users are using older versions of Android on
their phones [17]. Due to a lack of knowledge in users and
lack of security in sensitive APIs, users are often manipulated
into using over-privileged applications.

VOLUME 10, 2022 7975

B. Mishra et al.: Privacy Protection Framework for Android

III. RELATED WORK
With the growth of Android in the market, malicious
applications have also surfaced, which has driven many
studies and research works towards it. Iman and Aala [25]
proposed a comprehensive analysis of Android permission
systems. They provided important insight into the permission
system evolution over the years and how permission usage
has increased up to 73.33% in top applications by 2020.
Sanz et al. [18] proposed a method to recognize malicious
Android applications with the help of machine learning (ML)
techniques, which extracts the Android permissions from
the application. Permissions extracted from the Android
Manifest file of an app were utilized to categorize an
application as malware using the machine learning model
for Android permissions. Karim et al. [15] suggested
permissions of an Android app using the collaborative
filtering method, associative rule mining, and Bayesian
text mining. This approach tried to predict the permissions
that must be used by the application after making an
association with similar applications. This was developed to
help developers know what type of permissions their app
might require; it does not include the feedback from the
end-users.

Mathur et al. [27] presented a malware detection frame-
work for Android called NATICUSdroid, which investigated
and classified benign and malware using statistically selected
native and custom Android permissions as features for
various ML classifiers. However, these approaches were
limited to only mobile resources for its processing and
classification. Furthermore, these approaches lacked learning
abilities, dynamic processing, and they did nothing to stop
these malicious activities in the application, which kept them
from being overly successful. Azim and Neamtiu [19] used
static dataflow analysis on the apps bytecode for systematic
testing of Android apps, which as a result, constructed a high-
level control flow graph among various activities inside the
apps. They deduced a method of depth-first flow among these
activities, which mimicked the user actions. This approach
showed good potential and was the basis of dynamic analysis,
though it was still unable to make it learn for itself. It used
mobile processing power to do the analysis, which has some
shortcomings.

Ricardo et al. [20] worked on a framework for Android
apps, which instrumented the app with injections to keep
track of any malicious activity an app performs. This
approach used dynamic analysis and is the basis of the
proposed work. However, this approach was also unable to
use the previous results and did not learn from the apps.
Shahriar et al. [21] proposed an approach to reduce the
number of apps needed to be sandboxed to determine if they
are malicious. They used Latent Semantic Indexing (LSI)
to identify malware apps though this was limited to the
identification of malware applications.

Sadeghi et al. [22] presented a Terminator frame-
work which can provide an effective yet non-disruptive
defense against permission-induced attacks by identifying

the system’s safe state and controlling the permission based
on this. It provided access to the permissions and revoked
identified unsafe permissions without modifying the app’s
implementation logic. Zhang et al. [23] presented VetDroid
to analyze fine-grained causes of information leaks by
capturing the app’s sensitive behaviors with permission to
use graphs. Security analysts were utilized to analyze the
internal sensitive behaviors of the app by reconstructing
these behaviors after they have been allowed dangerous
permissions. Although, it has a lot of potential but lacks a
way to inform and educate users about security threats and
does nothing to protect it.

Wu et al. [24] proposed a system that achieved the
robust and interpretable classification of Android mal-
ware. Their work demonstrated state-of-the-art obfuscation-
resilient malware analysis which can work on obfuscated
Android apps hiding their functionality. Mill et al. [26]
proposed a way to classify both obfuscated and unobfuscated
apps as malicious or benign. Qu et al. proposed Per-
mizer, an automatic permission optimization to recommend
app permission configuration to users. Permizer builds a
mapping between permissions and functionalities for each
app then regulates the relationship between permission and
functionality based on the user’s privacy preferences [28].
Xiao et al. proposed an approach to identify minimum
required permissions for an android app. They used collabo-
rative filtering to determine the initial minimum permissions
of the app. Then, they find the actual requirements that
the app really required for proper functioning using static
analysis and evaluate the risk by inspecting extra permissions
requested by the app, thereafter, generate a permission
recommendation [29].

Gao et al. suggested an autonomous permission recom-
mendation system, AutoPer+. It automatically recommends
permission decisions to users at runtime. They proposed
a deep semi-supervised machine to identify similar apps
and explore the privacy permission usage in a cluster
of apps that help in determining the correlation between
permission and app, which is used in generating permis-
sion recommendations [30]. Li et al. built an automatic
fuzzing tool, CUPERFUZZER+, to detect vulnerabilities
related to custom permissions in existing Android OS
and given general design guidelines to secure custom
permissions [31].

From literature, it is found that the existing methods do
very little to determine how to stop the applications from
beingmalicious and still use it; almost all of them usedmobile
processing power for the framework and did not learn with
time. One of the works in which permissions were being
revoked after use, also does not prevent the application from
using user data at runtime. This study addresses all these
issues by providing a system that analyses an application’s
functionality permission by permission and prevents them
from using user data potentially for malicious purposes. The
results that are obtained from the server during analysis are
processed and stored for all new applications.

7976 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

FIGURE 2. Flowchart of the proposed framework.

IV. PROPOSED APPROACH
We propose an end-to-end framework to ensure the proper
functioning of the app along with user privacy protection. A
background data protection service is installed on the user’s
phone to capture the dangerous API calls on the runtime.
It returns garbage data to be sent back to the malicious app.
Dedicated server analyze and instrument apps that the user
is using for making it compatible with the proposed service.
Table 1 shows various keywords used in the proposed model.

The proposed approach uses two algorithms to determine
malicious permissions asked by the apps that needs some
initial dataset to work on. The control flow of the proposed
work is illustrated in Fig. 2. The following two components
are presented in the proposed framework:

A. ANALYSIS AND INSTRUMENTATION OF THE APK
The analysis of the app is done using the resources and
permissions the app requires. Analysis of permissions against
the API calls and the utility of the application is done. The
permission recommendations are used to predict whether the
application is demanding extra permissions for stealing user
data. For that purpose, the algorithms collaborative filtering
and frequent permission set mining are used on permissions.
The training set is based on the data collected for various
applications in various categories (as described in the later
section). The result formed by the intersection of the results
from both the algorithms individually containing unsafe and
extra permissions is sent to the instrumentation engine, which
instruments the APK to support functionality to call the Data

VOLUME 10, 2022 7977

B. Mishra et al.: Privacy Protection Framework for Android

FIGURE 3. The flow of instrumentation engine.

TABLE 1. Keywords used in role specification in HLPSL.

Protection Service. Both algorithms work by classifying the
permissions of app based on the category that lies in in the
play store, and the acquired dataset.

B. DATA PROTECTION SERVICE
To prevent user privacy, the proposed service runs in the
background on the user’s phone andsends the APK file of the
installed app to the server for analysis and instrumentation.
It facilitates the installation of the instrumented APK for the
user. Finally, when the application starts running, it provides
garbage data to the app whenever an identified malicious
call to API is made. Garbage data is produced using the
broadcast receiver. The Android framework has a facility to
allow users to register for events using a broadcast receiver
according to the lifetime i.e., statistically and dynamically.
In the case of dynamic, the lifetime depends upon Con-
text.registerReceiver() and Context.unregisterReceiver() on
the app component. In the case of static, a receiver is specified
in the AndroidManifest.xml and has an identical lifetime
to the app. The receiver utilizes a callback approach i.e.,
BroadcastReceiver.onReceive(), to override SDK calls [27].

The following approaches on which the proposed frame-
work works are described in detail:

1) DATA COLLECTION
The data collection approach is divided into two parts. The
initial data collection is done by developing and circulating
one data collection app. This app is downloaded by roughly
300 users through which information about 1000 unique
applications is collected. Thereafter, the data of asked
permissions and the permissions provided by the user are
extracted, and the half probability rule is used to determine
whether the permission is necessary or malicious. Afterward,
whenever the algorithms run on the server, unique app data
is added to the database, which would help to increase the
dataset and help the proposed framework learn with time.

2) ANALYSIS AND INSTRUMENTATION
The engine on the server runs to analyze and instrumentAPKs
(see Fig. 3). It begins with the decompilation of the app using
Apktool which is used to reverse engineer Android apps.
It decompiles app into Smali code, i.e., the assembly code that
runs on the Dalvik Virtual Machine (Android’s Java Virtual
Machine). The decompiled code goes through the following
stages in the parsing and instrumentation engine.

The application is then repackaged using Apktool. It is
installed on the user’s Android phone by the Data Protection
Service.

7978 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

a: STATIC ANALYSIS
The original Smali code is given as input to the proposed
engine. Static analysis is performed by parsing Smali code
files. A map of app is created, which shows the file name
and the methods included in the file, class names, and API
calls. A clear map is created for reference in instrumentation
in the later stages. The manifest file is parsed separately.
All permissions are extracted from the file, and dangerous
permissions from the superset are kept for analysis. A python-
based parser handles the manifest file and Smali code; it
traverses the directory of the decompiled APK and maintains
a record of class names, method names, and API Calls for
each file. A map is created for all method calls. During
enforcement of redefined permission policies, themap is used
to locate the functions and files to be instrumented.

b: PERMISSION ANALYSIS
As discussed earlier, two approaches were used to identify the
permissions required by an app: collaborative filtering and
frequent permission set mining. The training set consists of
apps of all categories as available in the Google play store.

COLLABORATIVE FILTERING
Collaborative filtering is one of the commonly used tech-
niques in recommender systems. It utilizes the information
contained in a group to recommend information on a new
entity related to the group. It is based on the idea that entities
that share certain evaluation criteria of certain items in the
past are likely to agree again in the future. Feature vectors are
used in this method to represent the items in the entity that
goes through the evaluation process of finding a similarity
score.

(i) Finding the feature vector in the proposed engine
The app permissions are used as feature vectors for the

collaborative filtering engine. Permissions of an app are
extracted in a vector as V =< P1,P2, . . . ,Pn >, where Pi
can take values from the set [0, 1] depending upon whether
the app takes that permission. Feature vectors from the apps
in the training data set are taken. The engine first extracts
the apps in the same category as that of the test app. It then
extracts all the permissions in the feature vectors for filtering
and recommendation. Ai = {AP1,AP2, . . . ,APn}, where APi
takes the value from the set [0, 1].

(ii) Evaluation of similarity
A similarity score is a measure of how closely related two

entities are. The similarity is calculated for the appwith all the
apps in the same category using the Jaccard similarity score
as

S (Ai,At) =
F11

(F01 + F10 + F11)
(1)

Ai is the app from the data set in the same category. At is the
test app. F11 is the frequency of matches in the permissions
between Ai and At . F01 is the frequency of permissions 1 in
the case of Ai and 0 in the case of At . F10 is the frequency of
permissions 1 in the case of At and 0 in the case of Ai.

(iii) Recommendation of Permissions
A recommendation score is generated for each permission

request by the app At . It can be calculated using

RScoreCF (Pi) =
∑

S (Ai,At) (2)

Here, majority voting is considered, with the voting’s weight
proportional to the similarity score generated above. The
generated RScore is normalized. Depending on the score, the
permission is marked as safe if recommended for the app to
be used; otherwise, it is marked unsafe. The step-by-step flow
of the permission segregator is presented in Algo. 1.

Algorithm 1 Permission Segregator
1. JaccardSim ()

2. for i in range(len(app)):do
3. check the vector scores 11, 10 and 01
4. if ‘‘11’’ then
5. → num++, denum++
6. elif ‘‘01’’ or ‘‘10’’ t hen
7. → denum++
8. return num / denum
9. FindSupportForPermissions () {

10. → every asked permission is analyzed based on
category present a score is calculated and provided using
Jaccard similarity for permission set

11. return permissionScore[] }
12. perms[] = FindSupportForPermissions ()
13. for i in range (len (perms)):do
14. if (perms [i] > threshold) then
15. self.safePermissions.append (self.permsAt[i])
16. else
17. self.unsafePermissions.append (self.permsAt[i])

FREQUENT PERMISSION SET MINING
The second recommendation algorithm is based on predicting
permission pair values that occur together. Relationships
and patterns of the permissions requested simultaneously
are studied. Based on the relationship that two permissions
share, permissions are recommended for an application.
Preliminary support calculation in predicting an event is
based on frequency. Support is used to discover relationships
among entities. Suppose an event (event B) taken from a
dataset of N events occurs f times (frequency of event B).
The support of event B is

Sup (B) =
Frequency (B)

N
(3)

The permissions of the proposed test app At are extracted
in V =< P1,P2, . . . ,Pn > where Pi can take values from
the set [0, 1] depending upon whether the app takes the
permission. Vectors of training data apps containing their
permissions as Ai = {AP1,AP2, . . . ,APn} , where APi takes
the values from the set [0, 1].

VOLUME 10, 2022 7979

B. Mishra et al.: Privacy Protection Framework for Android

(i) Training of the Proposed Model
Applications belonging to the same category follow some

pattern of frequently co-occurring permissions as:

Ai = < P1,P3,P5,P6 > (4)

Ai+1 = < P1,P2,P4,P3,P7 > (5)

Ai+2 = < P1,P3,P8,P10 > (6)

Ai+3 = < P5,P4,P7 > (7)

Taking in pairs < Pi,Pj >, the support of the co-occurring
permission pair is calculated as:

Sup
(
< Pi,Pj >

)
=
Freq

(
< Pi,Pj >

)
N

(8)

where N is the total number of applications in the category
Freq

(
< Pi,Pj >

)
is the frequency of the pair < Pi,Pj >

when it is requested together.
(ii) Recommendation of permissions
The support calculated for all pairs is analyzed.

if Sup
(
< Pi,Pj >

)
> t then

Recommend
(
< Pi,Pj >

)
= 1 (9)

Here, t defines the threshold value. Permission pairs having
a support value higher than threshold are marked safe
and recommended. Rest is marked unsafe Recommend(
< Pi,Pj >

)
= 0. After calculating safe permissions from

each recommender, the intersection of the resulting permis-
sion sets is the final permission set that will be used for
further processing. Algo. 2 presents the various steps of the
permission miner.

C. INSTRUMENTATION
In this study, our primary focus is on dangerous permissions.
The permissions suggested by the permission recommen-
dation engine are fed into the instrumentation engine. The
policies suggested by the permission recommendation engine
are marked safe. The instrumentation engine modifies the
policies marked as unsafe. Smali code is instrumented to
facilitate communication with the background service at
runtime. Hence, through instrumentation, the communication
between the malicious detected app and the background ser-
vice through broadcast receivers is enabled. Background pro-
cesses are utilized as services on Android. These processes
do not provide graphical components and are implemented
for background activities for a given program. All services
utilized by an app must be added in the manifest [23].
Permissions that aremarked unsafe are injectedwith the piece
of code invoked by the required services using broadcast
receivers. All the unsafe policies are instrumented within the
app then repackaged using Apktool.

1) DATA PROTECTION SERVICE
The Data Protection Service is installed on the user’s phone
andserves two purposes:

Algorithm 2 Permission Miner
1. Permissions are numbered from 0 to n− 1.
2. Data is then read to identify patterns.
3. for i = 0 to n− 1 do
4. Identify and store the dangerous permissions
5. let there be k permissions
6. for i = 1 to k do
7. for j = i + 1 to k do
8. Support between permissions i and j is calculated

and stored {
Support is calculated using:
for i, row in Rows do

if (values in two col same) then
count ++

}
9. Max, Min, and Avg support are calculated for the k

permission set.
for i in 1 to k do
Max =Max > support[i] ? Max: support[i]
Min =Min < support[i] ? Min: support[i]
sum = sum + support[i]
Avg = sum / k

10. for key, value in the stored list do
11. if (key > Avg) then
12. Permission required
13. else
14. Permission not required

a: INTERFACE FOR INSTALLATION FOR
AN INSTRUMENTED APP
It is the job of the service installed on the device to
communicate with the server using a secure communication
channel when the user asks the service app to secure the
malicious app. The background service uploads the APK
file of the app to be sent to the server for analysis and
instrumentation. After the instrumentation is completed, the
server sends the instrumented APK file back to the service
using the same secure channel. The Data Protection Service
receives the instrumented app to be installed back to the user’s
phone. On receiving app, the background service prompts the
user to ‘‘uninstall and install’’ i.e., uninstall the previous build
and install the new modified build. The service runs a check
on that app for its working. If the app is found to work without
issue, themodifiedAPK configuration is approved and sent to
the server for future use.Whenever an app is sent to the server
for analysis, the server checks the database for pre-existing
records of the corresponding app. If found, it instruments
the APK file using pre-processed values else, the algorithm
determines the required permission set, and instrumentation
is done accordingly.

b: BACKGROUND SERVICE
Instrumented apps that get installed on the phone are now
allowed to communicate to the pre-installed background
service. Garbage values are returned to the app when the call

7980 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

to unsafe policies is made. The call to the API triggers an
intent to the background service running on the user’s phone.
The service returns a garbage value, and hence the user’s
privacy is protected. Thus, the data received by the proposed
app is carefully monitored, and the broadcast receiver sends
the garbage data corresponding to that permission to the
malicious app. The data received by the app is treated as real
data, while it is garbage. Hence, the proposed framework does
not hamper the proper functioning of the app, solving the
problem of malfunction of the apps if the user declines some
unwanted permissions.

2) ANONYMOUS AUTHENTICATION AND KEY
AGREEMENT SCHEME
To provide secure communication betweenmobile clients and
the server, an anonymous authentication and key agreement
scheme is also proposed. The notations used in this section
are presented in Table 2.

TABLE 2. Notations used in this section.

a: PROPOSED SCHEME
In the proposed scheme, each mobile is treated as a client.
The proposed scheme provides client authentication without
revealing the real identity of the client and session key
agreement for secure communication between client and
server. The scheme consists of four phases: system setup
phase, client registration phase, authentication phase, and
client’s secret parameter updating phase. The working of the
scheme is as follows:

SYSTEM SETUP PHASE
This phase is to generate initial parameters for the client
registration and authentication phase of the scheme. The
system generates initial parameters as follows
(i) Choose two large prime numbers p and q, and an elliptic

curve E over a prime field Fp (y2 = x3+ ax + b mod p,
where a, b ∈ Fp, and 4a3 + 27b 6= 0). Define O

at infinity, P is the generator point of E with order q
(where P 6= O).

(ii) The server S chooses a random number sm as the private
key and computes Ppub = sm.P, and selects three one-
way hash functions h1, h2, and h3.

(iii) Server S publishes as{
Eq\Fp,P,Ppub, h1 (.) , h2 (.) , h3 (.)

}
. (10)

CLIENT REGISTRATION PHASE
When a client Ci wants to register with server S, client and
server perform the following steps:
(i) The client Ci generates a random number ui and

computes the IDi using the user’s email id EIDi and ui,
IDi = h1(EIDi‖ui). Ci Encrypts IDi with the server’s
public key Ppub, C1 = EPpub(IDi‖T1), where T1 is a
timestamp. Ci sends < C1 > through a public channel.
While IDi and T1 are encrypted with the server’s public
key, only the server’s private key can decrypt C1.

(ii) On receiving a registration request < C1 >, the
server S decrypts the message to read the identity of
the client Ci and timestamp, (IDi,T1) = Dsm (C1).
Server S checks the freshness of the timestamp. If it is
not fresh, S drops the registration process; otherwise,
S checks for a collision in the verifier table. If the
collision happens, the server S informs the client Ci
to restart the registration process; else, the server S
chooses a random number vi and computes the client’s
secret key Ki = ((vi)/(sm.ID′i)).P, client’s anonymous
identity AIDi = IDi ⊕ h2(vi‖sm), and symmetric key
KT = h2(IDi‖T1) to communicateKi and AIDi securely.
After that, server S encrypts Ki and AIDi using KT ,
C2 = EKT (Ki‖AIDi‖T2) and sent < C2 > to client Ci
over a public channel. Server S stores {IDi, vi,AIDi} in
a table.

(iii) After receiving C2 from the server S, the client Ci
computes KT = h2(IDi‖T1) and decrypts the message
(Ki‖AIDi‖T2) = DKT (C2). Client Ci checks the
freshness of T2, Ci will abort the current registration
attempt and start the registration process from the start if
T2 fails the freshness test; else, Ci stores {IDi,Ki,AIDi}
into device memory.

AUTHENTICATION PHASE
In this phase, mutual authentication shall be accomplished
between client Ci and server S, and a session key will be
generated. To achieve this, server and client perform the
following steps. The details are illustrated in Fig. 4.
(i) The client Ci chooses a random number ri and computes

Ri = ri.P,K ′ = ri.Ki, M1 = h3(IDi‖Ri‖K ′‖T3) and
send < AIDi,Ri,M1,T3 > to the server S.

(ii) On receiving the message, server S checks the freshness
of T3. If T3 fails the freshness test, the session is termi-
nated by the S; otherwise, the server searches the verifier
table for AIDi. If AIDi is not in the verifier table, S sends
an error message and terminates the session; else, server

VOLUME 10, 2022 7981

B. Mishra et al.: Privacy Protection Framework for Android

FIGURE 4. The authentication phase.

S checks if M1 =?h3(IDi‖Ri‖((vi)/(sm.IDi)).Ri‖T3).
IfM1 fails, the session is terminated by the S; otherwise,
the server S chooses a random number rs and computes
Rs = rs.P, Rsc = rs.Ri (= rs.ri.P), AIDinew = AIDi ⊕
h3(Rsc‖IDi) and check for collisions in the verifier
table. If the collision happened, S chooses new rs and
computes again. Now, the server S computes session key
SK = h3(IDi‖Rsc‖((vi)/(sm.IDi)).P‖T3‖T4) and M2 =

h3(IDi‖Rs‖T4‖SK) and sends < AIDi,Rs,M2,T4 >

to the client Ci through a public channel. Session key
agreement suggests that the Ci wants to communicate
securely with server S, subsequent session work as an
acknowledgment, and server S updates the old AIDi
with AIDinew in the verifier table. If server S does not
receive any message encrypted with SK from Ci after
mutual authentication and key agreement, the server S
will know the client Ci may have lost the message and
stops AIDi.

(iii) After receiving the message < AIDi,Rs,M2,T4 >

from server S, client Ci checks the freshness of T4.
If not, Ci drops the session; else, Ci computes
Rcs = ri.Rs (= ri.rs.P = Rsc), session key SK =

h3 (IDi‖Rcs‖Ki‖T3‖T4) and checks if M2 =
? h3(IDi

‖Rs‖T4‖SK). If not, the Ci terminates the session;
otherwise, the client Ci accepts SK and computes the
anonymous identity AIDinew = AIDi ⊕ h3(Rcs‖IDi) and
replaces the old AIDi with AIDinew.

CLIENT’S SECRET PARAMETER UPDATING PHASE
After authentication and agreeing on the session key, the
client Ci sends an update request to the server S, encrypted
using session key SK . On receiving an update request, S
generates vinew for Ci and computes Kinew =

(
vinew
sm.IDi

)
.P

and AIDinew = IDi ⊕ h2(vinew‖sm). After that, S sends Kinew
and AIDinew with a timestamp to Ci encrypted using session
key SK . Client Ci updates the Ki and AIDi with received
parameters Kinew and AIDinew and send acknowledgement to
the server S. After receiving an acknowledgment from Ci, S
updates vi with vinew and AIDi with AIDinew in the verifier
table.

b: SECURITY ANALYSIS
This section provides formal security verification using
AVISPA and informal security analysis to prove that this
scheme provides mutual authentication, client anonymity,
session key agreement, and the scheme is secure against
known attacks.

FORMAL SECURITY VERIFICATION USING AVISPA
In the scheme execution, Client Ci receives the start signal
and sends the identity IDi with timestamp T1 encrypted with
the server’s public key as the registration request. Afterward,
client Ci receives the security parameter Ki and anonymous
identity AIDi with timestamp T2 encrypted with symmetric

7982 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

FIGURE 5. Role specification of client Ci in HLPSL.

key KT from server S, and store IDi,Ki, and AIDi into
memory. Server S stores IDi, vi, andAIDi in the verifier table.
During the authentication phase, client Ci sends <

AIDi,Ri,M1,T3 > to the server S. On receiving themessage
from client Ci, the server S computes session key SK and
new anonymous identity AIDinew forCi and sends a message
< AIDi,Rs,M2,T4 >. Afterward, Ci computes session key
SK using IDi,Rsc,Ki,T3, and T4 where Rsc is a session-
specific shared secret between Ci and S. Role of Ci and S are
given in Figs. 5 and 6, respectively.

The constants sec1, sec2, sec3, sec4, sec5, sec6, sec7,
sec8, ctos, and stoc are used to identify the goal of secrecy
and authentication in the goal section (see Fig. 9). The
communication channel (dy) used in the implementation of
this scheme belongs to the Dolev-Yao threat model in which
intruders (i) can intercept, analyze, reroute, and modify
the message. The HLPSL code has been simulated using
the SPAN (Security Protocol ANimator) to examine the
results. HLPSL code of environment and session is given in
Figs. 7 and 8, respectively. The simulation results are shown
in Fig. 10 and Fig. 11 for the OFMC and CL-AtSe model.
Results show that the proposed scheme is safe.

INFORMAL SECURITY ANALYSIS
(i) Mutual authentication: In this scheme, the server S

authenticates the client Ci by checking M1. If M1 is

FIGURE 6. Role specification of server S in HLPSL.

FIGURE 7. Role specification of the environment in HLPSL.

FIGURE 8. Role specification of the session in HLPSL.

valid, S authenticates Ci. On the other hand, Ci verifies
the legitimacy of S by checking M2. If M2 is valid,

VOLUME 10, 2022 7983

B. Mishra et al.: Privacy Protection Framework for Android

FIGURE 9. Role specification of goal in HLPSL.

FIGURE 10. Simulation result for the OFMC back-end.

Ci authenticates S. Thus, the proposed scheme attains
mutual authentication.

(ii) Client anonymity and privacy: In the proposed scheme,
only identity-related information used in communica-
tion is anonymous identity AIDi. Initially, it is computed
using the client’s identity IDi, servers master key sm
and client-specific random number vi, secured using a
one-way hash function h2. sm and vi are only known
to S, and IDi is not used in unsecured communication.
So, an attacker cannot relate any communication to the
client id. Anonymous id AIDi is updated in every session
using shared computed session value Rsc and the client’s
identity IDi. Where Rsc is computed using two random
values ri and rs (Rsc = ri.rs.P), which guarantees the
randomness of anonymity so it is computationally hard
to distinguish whether the messages belong to the same
client.

(iii) Resilience to replay attack: An attacker can capture an
authentication message communicated through a public
channel, then replay it as a new request, so it is necessary
to check the validity of the message. In the proposed
scheme, timestamps T3 and T4 are attached to the
messages and used in the computation of M1 and M2.
The server S will check for the validity of timestamp if

FIGURE 11. Simulation result for the CL-AtSe back-end.

valid then check the validity of M1. If both are valid,
the server S will authenticate the client Ci. The attacker
cannot changeM1 without knowledge of IDi. As a result,
the attacker will not be able to launch a successful replay
attack.

(iv) Malicious insider attack: if an attacker is also a
registered client, they know their secret information
IDe, Ke and AIDe where AIDe = IDe ⊕ h2(ve‖sm)
and Ke = ((ve)/(sm.IDe)).P as well as messages
communicated between server S and other clients on the
unsecured channel, e.g., < AIDi,Ri,M1,T3 > and <

AIDi,Rs,M2,T4 > where AIDi is an anonymous iden-
tity of the client, Ri = ri.P, M1 = h3(IDi‖Ri‖K ′‖T3),
K ′ = ri.Ki, Rs = rs.P, M2 = h3(IDi‖Rs‖T4‖SK)
and SK = h3(IDi‖Rcs‖((vi)/(sm.IDi)).P‖T3‖T4). It is
computationally hard to extract sm from ke and De, ri
fromRi, and rs fromRs. IDi,K ′, and SK are secured with
a one-way hash function. So, using these parameters, the
attacker will not be able to extract any secret parameters
of the server or other clients.

(v) Impersonation attack: To impersonate as the client Ci,
the attacker needs IDi, Ki, and current AIDi. These
parameters are secured on the client device or can be
computed using the server’s master key and client-
specific information stored on the server. Let us assume
that the attacker knows the real and anonymous identity
of the client Ci. To generate the request message, it can
compute Rie = re.P, but computing M1 required the
client’s secret parameter Ki. To impersonate server S,
an attacker needs the server’s master key sm, as it does
not have sm and client’s identity IDi. Hence, the attacker
cannot impersonate a client or server.

V. RESULTS AND CASE STUDY
In this study, the behavior of nine permissions is analyzed.
These permissions (listed in Table 3) are the permissions

7984 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

TABLE 3. Permission set for study.

FIGURE 12. Snapshot of a part of all permissions of brightest flashlight
obtained from the proposed framework.

FIGURE 13. Potentially dangerous permissions of brightest flashlight
identified in static analysis obtained from the proposed framework.

that ‘read’ user data on the phone. The proposed framework
begins the analysis of the manifest file and Smali code
concerning these permissions. To check the working of the
proposed framework, the three apps such as Brightest Flash-
light (golden-shores-technologies. Brightest-flashlight.free),
Peacock Flashlight (com.peacock. flashlight), and Flashlight
(com. spend apps. torch) were studied.

Each of the apps required a different set of permissions
to run. The Brightest Flashlight app asked for various
permissions, the peacock flashlight asked for location (loc)
and storage permissions, and the spend apps flashlight
asked for none. To get a minimum set of permissions
and instrumentation, these apps were sent to the proposed
framework. The apps were decompiled and Smali code was
generated for each APK. Here, AP and ACC represent
Android.permission and access, respectively.

FIGURE 14. Class and corresponding method in brightest flashlight APK
shown in the map obtained from the Smali code parser.

A. STATIC ANALYSIS
The first step in the process is static analysis; it yields the
permissions declared in the AndroidManifest.xml and classes
and their respective methods from the Smali code using
Smali parsers of the engine. A list of all permissions that
are processed by our engine that is required by Brightest
flashlight is shown in Fig. 12, and all the dangerous
permissions are shown in Fig. 13. As discussed in Section V
in analysis and instrumentation, a map is obtained from the
Python parser which shows method traces and data flow. The
class names and method calls of these dangerous permissions
of Brightest Flashlight APK are shown in Fig. 14.

The dangerous permissions declared in the Brightest
Flashlight app are AP.CAMERA, AP.ACC_FINE_LOC,
AP.ACC_COARSE_LOC, AP.READ_PHONE_STATE, and
AP.WRITE_EXTERNAL_STORAGE, as shown in
Figure 13. Similar code analysis on the two apps shows
that the dangerous permissions in the Peacock Flashlight
are AP.CAMERA, AP.WRITE_EXTERNAL_STORAGE,
AP.ACC_FINE_LOC, and AP.ACC_COARSE_LOC. Mean-
while, the Splendapps flashlight takes AP.CAMERA permis-
sion only which is justified as per the requirement.

B. PERMISSION ANALYSIS
The permissions parsed as described in the previous sub-
section are provided as input to permission recommendation
algorithms. The algorithms evaluate each permission and
yield result vectors. Each result vector contains 9 elements
which can be 0 or 1. Each value in the vector corresponds
to permission as given in Table 2. If the permission is
marked safe to use and is required by the application, the
corresponding value is 1 else the value is 0.

Running the permission recommender for Brightest
Flashlight: for collaborative filtering, using a threshold value
as 0.1. The resultant vector can be obtained as:

rp = [0, 0, 0, 0, 0, 0, 0, 0, 0] (11)

Here, rp shows the resultPermissions. The RScoreCF
for each permission was found below the threshold value.
It signifies that this app required none of the permissions
and all the three permissions ‘AP.ACC_FINE_LOC’,

VOLUME 10, 2022 7985

B. Mishra et al.: Privacy Protection Framework for Android

‘AP.ACC_COARSE_LOC’, and ‘AP.READ_PHONE_
STATE’ are classified as unsafe.

From frequent permission set mining, each permission’s
support was computed and evaluated against the average
value as mentioned in Section V. The result vector can be
obtained as:

rp = [0, 0, 0, 1, 1, 0, 0, 0, 0] (12)

It signifies that permissions AP.ACC_FINE_LOC’,
‘AP.ACC_COARSE_LOC’, are safe whereas ‘AP. READ_
PHONE_STATE’ is unsafe. It is found that, on the final
recommendation, all three permissions are marked unsafe.
Thus, the Brightest Flashlight takes three extra permissions
for which it is instrumented.

Running the permission recommender for Peacock Flash-
light, it is found that it takes dangerous permissions
‘AP.ACC_FINE_LOC’ and ‘AP.ACC_COARSE_LOC’.

Since Splendid Torch took no extra permissions, therefore,
we did not perform any permission analysis for this app.

C. INSTRUMENTATION AND FINAL RESULTS
The permission analysis phase identified LOC and
READ_PHONE_STATE permissions as unsafe for the
flashlight applications. Brightest Flashlight and Peacock
Flashlight were instrumented and installed on the target
device. The instrumented apps interacted with the back-
ground service at runtime. Garbage location data was sent
to the apps, and it was seen that the apps functioned properly
after instrumentation.

After completing the whole process, the proposed frame-
work gave the following results:

1) A flashlight app requires CAMERA permission for its
operation.

2) The rest of the permissions that the two applications
requested are classified as unsafe. The results of the
applications were added to the dataset for use in the future.

3) Instrumentation and re-packaging the application
restored the application’s true use while protecting user data
that could have been used for malicious activities.
We took three apps in the same category and of the same
utility to study their patterns of operation. The three apps
although, of the same nature, behaved differently as theywere
taking different permissions which were not directly related
to the actual functionality that they have been listed for. The
results obtained from the permission recommender show that
two of the applications are taking extra permissions. After
instrumentation, it is seen that their operation was unaltered,
which shows that their functioning had not been impacted.
At the same time, the user location was protected from a
potentially malicious Android application.

The above case study shows that the proposed framework
can be used to analyze and instrument Android applications
to prevent user data from being used maliciously.

The existing related works discussed in Section IV
is compared to the proposed framework as depicted in
Table 4. For comparison, four features such as use of

TABLE 4. Comparison of the proposed privacy protection framework with
existing works.

dynamic learning (DL), instrumentation (IN), permission
recommendation (PR), and app based dangerous permission
detection (ADPD) are considered. It is found that the
proposed framework is able to support the analysis of an
Android application as well as the prevention of user data
theft. Existing works focused on detecting whether the
app is benign/malware. Terminator prevents the application
from using extra permissions by revoking access to those
permissions identified as dangerous. But it is failed in the
scenarios where an application fails to start without access to
the permissions it requires. The proposed solution addresses
this issue with instrumentation and ensures that the app is
functioning as expected.

VI. CONCLUSION AND FUTURE DIRECTION
The smartphone market has grown extensively in recent years
and has become a repository for users’ private data making
the security of the device a big challenge. As technology
advances, the risk of data breaches and invasion of privacy
increases. Various research approaches were presented to
identify the malicious behavior of Android applications.
A privacy-preserving secure framework was proposed to
prevent the applications from stealing user data by restricting
all unnecessary permissions using instrumentation and re-
packaging of the application. These permissions were
recognized by predicting the permissions required by a given
Android app by using collaborative filtering and frequent
permission set mining algorithms. Thus, the proposed model
interacts with the target app and modifies the permission data
inside. A layer of security was added in proposed framework
to prevent attackers from intercepting communications.
Therefore, the proposed framework is more secure and
efficient than the competitive models. Experimental results
have shown that the proposed model not only protects the
user data but also ensures the proper functioning of the given
application.

However, this approach may achieve poor results for
sealed protected applications that generally come under
the category of finance/ payments as these applications
come with additional security. Hence, these apps cannot be
installed after they have been instrumented. In the future,

7986 VOLUME 10, 2022

B. Mishra et al.: Privacy Protection Framework for Android

the framework can be modified to make it resilient to the
additional securities/ protections in the applications.

REFERENCES
[1] Mobile Operating System Market Share Worldwide | StatCounter Global

Stats. Accessed: Oct. 29, 2020. [Online]. Available: https://gs.statcounter.
com/os-market-share/mobile/worldwide

[2] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, ‘‘CopperDroid: Automatic
reconstruction of Android malware behaviors,’’ in Proc. NDSS Symp.,
San Diego, CA, USA, 2015, pp. 1–15, doi: 10.14722/ndss.2015.23145.

[3] S. Hassan, C. Tantithamthavorn, C.-P. Bezemer, and A. E. Hassan,
‘‘Studying the dialogue between users and developers of free apps in the
Google play store,’’ Empirical Softw. Eng., vol. 23, no. 3, pp. 1275–1312,
Jun. 2018.

[4] Android Security 2017 Year in Review 2. Accessed: Oct. 17, 2020. [Online].
Available: https://source.android.com/security/reports/Google_Android
_Security_2017_Report_Final.pdf

[5] Android Security 2018 Year in Review 2. Accessed: Oct. 19, 2020.
[Online]. Available: https://source.android.com/security/reports/Google
_Android_Security_2018_Report_Final.pdf

[6] Biggest App Stores in the World 2020 | Statista. Accessed: Nov. 22, 2020.
[Online]. Available: https://www.statista.com/statistics/276623/number-
of-apps-available-in-leading-app-stores/

[7] K. W. Y. Au, Y. F. Zhou, Z. Huang, P. Gill, and D. Lie, ‘‘Short
paper: A look at smartphone permission models,’’ in Proc. 1st ACM
Workshop Secur. Privacy Smartphones Mobile Devices, 2011, pp. 63–67,
doi: 10.1145/2046614.2046626.

[8] M. Kaur, D. Singh, V. Kumar, B. B. Gupta, and A. A. A. El-Latif, ‘‘Secure
and energy efficient-based e-health care framework for green Internet of
Things,’’ IEEE Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1223–1231,
Sep. 2021, doi: 10.1109/TGCN.2021.3081616.

[9] M. Kaur and D. Singh, ‘‘Multiobjective evolutionary optimization
techniques based hyperchaotic map and their applications in image
encryption,’’ Multidimensional Syst. Signal Process., vol. 32, no. 1,
pp. 281–301, Jan. 2021.

[10] Android Architecture | Android Open Source Project. Accessed:
Nov. 22, 2020. [Online]. Available: https://source.android.com/devices/
architecture

[11] M.Kaur andV.Kumar, ‘‘Parallel non-dominated sorting genetic algorithm-
II-based image encryption technique,’’ Imag. Sci. J., vol. 66, no. 8,
pp. 453–462, Nov. 2018.

[12] M. Kaur and V. Kumar, ‘‘Beta chaotic map based image encryption using
genetic algorithm,’’ Int. J. Bifurcation Chaos, vol. 28, no. 11, Oct. 2018,
Art. no. 1850132.

[13] M. Backes, S. Bugiel, S. Gerling, and P. von Styp-Rekowsky, ‘‘Android
security framework: Extensible multi-layered access control on Android,’’
in Proc. 30th Annu. Comput. Secur. Appl. Conf., Dec. 2014, pp. 46–55, doi:
10.1145/2664243.2664265.

[14] S. Heuser, A. Nadkarni, W. Enck, and A.-R. Sadeghi, ‘‘ASM: A
programmable interface for extending Android security,’’ in Proc. 23rd
USENIX Secur. Symp. (USENIX Security), San Diego, CA, USA, 2014,
pp. 1005–1019.

[15] M. Y. Karim, H. Kagdi, and M. Di Penta, ‘‘Mining Android apps to
recommend permissions,’’ in Proc. IEEE 23rd Int. Conf. Softw. Anal.,
Evol., Reeng., Mar. 2016, pp. 427–437, doi: 10.1109/SANER.2016.74.

[16] Android Platform | Android Developers. Accessed: Nov. 24, 2020.
[Online]. Available: https://developer.android.com/about

[17] Mobile & Tablet Android Version Market Share Worldwide |
StatCounter Global Stats. Accessed: Dec. 10, 2020. [Online]. Available:
https://gs.statcounter.com/android-version-market-share/mobile-
tablet/worldwide

[18] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas, and
G. Álvarez, ‘‘PUMA: Permission usage to detect malware in Android,’’
in International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Spe-
cial Sessions. Berlin, Germany: Springer, 2013, pp. 289–298, doi:
10.1007/978-3-642-33018-6_30.

[19] T. Azim and I. Neamtiu, ‘‘Targeted and depth-first exploration for
systematic testing of Android apps,’’ ACM SIGPLAN Notices, vol. 48,
no. 10, pp. 641–660, 2013, doi: 10.1145/2544173.2509549.

[20] R. Neisse, G. Steri, D. Geneiatakis, and I. N. Fovino, ‘‘A privacy
enforcing framework for Android applications,’’ Comput. Secur., vol. 62,
pp. 257–277, Sep. 2016, doi: 10.1016/j.cose.2016.07.005.

[21] H. Shahriar, M. Islam, and V. Clincy, ‘‘Android malware detection
using permission analysis,’’ in Proc. IEEE SOUTHEASTCON, Mar. 2017,
pp. 1–6, doi: 10.1109/SECON.2017.7925347.

[22] A. Sadeghi, R. Jabbarvand, N. Ghorbani, H. Bagheri, and S. Malek,
‘‘A temporal permission analysis and enforcement framework for
Android,’’ in Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 846–857,
doi: 10.1145/3180155.3180172.

[23] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, ‘‘Vetting undesirable behaviors in Android apps with permission
use analysis,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2013, pp. 611–622.

[24] Y. Wu, S. Dou, D. Zou, W. Yang, W. Qiang, and H. Jin, ‘‘Obfuscation-
resilient Android malware analysis based on contrastive learning,’’
Jul. 2021, arXiv:2107.03799.

[25] I. M. Almomani and A. A. Khayer, ‘‘A comprehensive analysis of the
Android permissions system,’’ in IEEEAccess, vol. 8, pp. 216671–216688,
2020, doi: 10.1109/ACCESS.2020.3041432.

[26] S. Millar, N. McLaughlin, J. Martinez del Rincon, P. Miller, and
Z. Zhao, ‘‘DANdroid: A multi-view discriminative adversarial network
for obfuscated Android malware detection,’’ in Proc. 10th ACM Conf.
Data Appl. Secur. Privacy (CODASPY), Mar. 2020, pp. 353–364, doi:
10.1145/3374664.3375746.

[27] A. Mathur, L. M. Podila, K. Kulkarni, Q. Niyaz, and A. Y. Javaid,
‘‘NATICUSdroid: A malware detection framework for Android using
native and custom permissions,’’ J. Inf. Secur. Appl., vol. 58, May 2021,
Art. no. 102696, doi: 10.1016/j.jisa.2020.102696.

[28] Y. Qu, S. Du, S. Li, Y.Meng, L. Zhang, andH. Zhu, ‘‘Automatic permission
optimization framework for privacy enhancement of mobile applications,’’
IEEE Internet Things J., vol. 8, no. 9, pp. 7394–7406, May 2021.

[29] J. Xiao, S. Chen, Q. He, Z. Feng, and X. Xue, ‘‘An Android application risk
evaluation framework based on minimum permission set identification,’’
J. Syst. Softw., vol. 163, May 2020, Art. no. 110533.

[30] H. Gao, C. Guo, D. Huang, X. Hou, Y. Wu, J. Xu, Z. He, and
G. Bai, ‘‘Autonomous permission recommendation,’’ IEEE Access, vol. 8,
pp. 76580–76594, 2020.

[31] R. Li, W. Diao, Z. Li, S. Yang, S. Li, and S. Guo, ‘‘Android custom per-
missions demystified: A comprehensive security evaluation,’’ IEEE Trans.
Softw. Eng., early access, Oct. 14, 2021, doi: 10.1109/TSE.2021.3119980.

[32] AVISPA Team, HLPSL Tutorial: A Beginner’s Guide to Modelling and
Analysing Internet Security Protocols, AVISPA, 2006.

BHARAVI MISHRA received the master’s degree
from the Indian Institute of Information Tech-
nology, Allahabad, India, and the Ph.D. degree
from the Indian Institute of Technology (BHU),
Varanasi. He is working as the Assistant Professor
with the Department of Computer Science and
Engineering, The LNM Institute of Information
Technology, Jaipur, India. He published more
than 15 research articles in reputed journals
and conferences. He also published three book

chapters. His research interests includemachine learning and its applications,
security, and privacy.

AASTHA AGARWAL received the B.Tech. degree
from The LNM Institute of Information Technol-
ogy. Currently, she is working at VMware, India,
as a Software Development Engineer. Her research
interests include brain–computer interface with
psychology, android security, and machine
learning.

VOLUME 10, 2022 7987

http://dx.doi.org/10.14722/ndss.2015.23145
http://dx.doi.org/10.1145/2046614.2046626
http://dx.doi.org/10.1109/TGCN.2021.3081616
http://dx.doi.org/10.1145/2664243.2664265
http://dx.doi.org/10.1109/SANER.2016.74
http://dx.doi.org/10.1007/978-3-642-33018-6_30
http://dx.doi.org/10.1145/2544173.2509549
http://dx.doi.org/10.1016/j.cose.2016.07.005
http://dx.doi.org/10.1109/SECON.2017.7925347
http://dx.doi.org/10.1145/3180155.3180172
http://dx.doi.org/10.1109/ACCESS.2020.3041432
http://dx.doi.org/10.1145/3374664.3375746
http://dx.doi.org/10.1016/j.jisa.2020.102696
http://dx.doi.org/10.1109/TSE.2021.3119980

B. Mishra et al.: Privacy Protection Framework for Android

AYUSH GOEL received the B.Tech. degree from
The LNM Institute of Information Technology.
Currently, he is working at Zeta Suite (Directi),
India, as a Software Development Engineer.
His research interests include brain–computer
interface, analysis of non-stationary signals, and
machine learning.

AMAN AHMAD ANSARI received the M.Tech.
degree from the Indian Institute of Information
Technology, Allahabad, India. He is currently
pursuing the Ph.D. degree with The LNM Institute
of Information Technology, Jaipur, India. His
current research interests include security and
privacy.

PRAMOD GAUR received the B.E. degree
(Hons.) in computer science and engineering from
the University of Rajasthan, Jaipur, India, in 2004,
the PGDIT degree from the Indian Institute of
Technology Kharagpur, Kharagpur, India, in 2006,
the M.E. degree in software engineering from
the Birla Institute of Technology, Ranchi, India,
in 2008, and the Ph.D. degree from Ulster
University, U.K., in 2018. He is currently working
as an Assistant Professor at the Birla Institute of

Technology and Science, Pilani, Dubai. Previously, heworked as anAssistant
Professor at The LNM Institute of Information Technology (LNMIIT),
Jaipur, and a Postdoctoral RA in neuro-imaging technology at the Intelligent
Systems Research Centre, Ulster University. His research interests include
brain–computer interface, analysis of non-stationary signals, and machine
learning.

DILBAG SINGH (Member, IEEE) received the
M.Tech. degree from the Computer Science and
Engineering Department, Guru Nanak Dev Uni-
versity, India, in 2012, and the Ph.D. degree
in computer science and engineering from Tha-
par University, India, in 2019. He is currently
working as a Research Professor at the School
of Electrical Engineering and Computer Science,
Gwangju Institute of Science and Technology
(GIST), South Korea. He is the author and

coauthor of more than 70 SCI/SCIE indexed journals, including refereed
IEEE/ACM/Springer/Elsevier journals. He has also obtained three patents,
three books, and two book chapters. His research interests include computer
vision, medical image processing, machine learning, deep learning, infor-
mation security, and meta-heuristic techniques. He was in the top 2% list
issues by ‘‘World Ranking of Top 2% Scientists,’’ in 2021. He was part of
the 11 Web of Science/Scopus indexed conferences. He has helped many
under-graduated students to successfully implement their project work. He is
a reviewer of more than 60 well-reputed journals, such as IEEE, Elsevier,
Springer, SPIE, and Taylor & Francis. He is also acting as a Lead Guest
Editor ofMathematical Problems in Engineering (Hindawi) (SCI and Scopus
Indexed), an Executive Guest Editor of Current Medical Imaging (Bentham
Science) (SCIE and Scopus Indexed), and an Associate Editor of The Open
Transportation Journal (Scopus).

HEUNG-NO LEE (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering from the University of
California at Los Angeles, Los Angeles, CA, USA,
in 1993, 1994, and 1999, respectively. He was
with HRL Laboratories, LLC, Malibu, CA, USA,
as a Research Staff Member, from 1999 to 2002.
From 2002 to 2008, he was an Assistant Professor
with the University of Pittsburgh, PA, USA.
In 2009, he moved to the School of Electrical

Engineering and Computer Science, Gwangju Institute of Science and
Technology, Gwangju, South Korea, where he is currently affiliated. His
research interests include information theory, signal processing theory,
blockchain, communications/networking theory, and their application to
wireless communications and networking, compressive sensing, future
Internet, and brain–computer interface. He has received several prestigious
national awards, including the Top 100 National Research and Development
Award, in 2012, the Top 50 Achievements of Fundamental Researches
Award, in 2013, and the Science/Engineer of the Month (January 2014).

7988 VOLUME 10, 2022

