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ABSTRACT This study proposes an optimization scheme of thermal power and electric power dispatch
integrated with load scheduling for the domestic fuel cell-based combined heat and power (DFCCHP)
system. The scheme is implemented in home energy management systems installed in smart homes.
To provide accurate energy cost evaluation for the optimization scheme, the nonlinear electric efficiency
characteristics of the fuel cell are approximated with a polynomial expression. Along with the inclusion of
thermal power dispatch in the scheme, the nonlinear relationship between the thermal power and the electric
power of the fuel cell is incorporated to design temperature constraints in the DFCCHP system. On top
of the nonlinearity and complexity of the fuel cell, residential electric load scheduling and other energy
sources including the power grid, PV panels, and battery energy storage are considered to ensure that the
scheme takes a comprehensive energy management approach. Because of the nonlinearity that exists in the
modeling of the DFCCHP system, a mixed-integer nonlinear programming formulation is utilized to solve
the optimization problem. The scheme is tested in a day-ahead environment with time-varying electricity
prices and natural gas prices. The optimization aims to minimize the electricity cost and natural gas cost.
It is shown in the simulation that optimization scheme dispatches the electric power and thermal power in an
optimal way so that the energy cost due to time-varying electricity prices and natural gas prices is minimized.
The electricity cost optimization puts both power purchase and power selling into consideration. It is also
shown in the simulation that the household loads are scheduled in an optimal way to the time slots with lower
electricity prices in accordance with the optimal thermal and electric power dispatch.

INDEX TERMS Home energy management system, nonlinear optimization, combined heat and power, load
scheduling, power dispatch, fuel cell, PV panels.

I. INTRODUCTION
Global electricity consumption has increased dramatically
as the population grows and through technological and
economic advances [1]. Burning fossil fuels, the most
common way to generate electricity, accounts for the largest
share of global electricity generation [2]. Conventional means
of electricity generation have resulted in massive greenhouse
gas emissions that have caused global warming issues.
The environmental damage caused by global warming has
prompted a shift toward reducing carbon emissions [3].

Fuel cells are regarded as a promising technique for future
electricity generation because of their ability to efficiently
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produce clean electricity with low pollutant emissions and
low noise levels [4]–[6]. While producing electricity, fuel
cells also produce residual heat as a byproduct. If this residual
thermal power is utilized, the energy efficiency of fuel cells
can be further improved. This prompted the idea of using
a fuel cell as a combined heat and power (CHP) system
in residential houses to simultaneously provide electric and
thermal power.

ENE-FARM in Japan and Lolland Hydrogen Community
in Denmark are typical examples of current domestic
fuel cell-based CHP systems [7]–[9]. In the near future,
domestic fuel cell-based CHP (DFCCHP) systems are likely
to become a common way to generate power due to the
environmental issues related to carbon emissions [10]. The
benefit of using DFCCHP systems will be greatly enhanced
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if both electric and thermal power are integrated well
and dispatched optimally. For this purpose, home energy
management systems (HEMS) can be deployed in smart
homes. HEMS refer to technological platforms installed in
smart homes that comprise hardware and software with
the overall functionality required for smart home energy
management (i.e., monitoring the energy sources and home
appliances). A thermal power and electric power dispatch
scheme for DFCCHP systems can be formulated in HEMS
according to household energy demands, energy prices, and
any other related factors.

A thermal power and electric power dispatch optimization
scheme for DFCCHP systems is primarily intended to
minimize energy cost of DFCCHP systems. Hence, an accu-
rate modeling of the natural gas consumption for the fuel
cell is vital in formulating a thermal power and electric
power dispatch scheme for DFCCHP systems. This requires
knowledge of the electric efficiency of fuel cells. In reality,
the electric efficiency of a fuel cell varies nonlinearly with its
generated electric power [11], [12]. This nonlinearity causes
considerable complexity in the power dispatch scheme for
DFCCHP systems. To avoid this complexity, some articles
have formulated power dispatch schemes for DFCCHP
systems by assuming that the electric efficiency of a fuel
cell is constant [13]–[17]. However, this approach does not
result in an accurate energy cost evaluation of the power
dispatch scheme. To put it in perspective, suppose that a
given fuel cell has an electric efficiency of 50% when it
delivers 2.5 kW of electric power and 30% when it delivers
5 kW [18]. In this case, the fuel cell consumes 5 kW worth of
natural gas if it delivers 2.5 kW of electric power (calculated
by 2.5 kW/0.5). If the fuel cell delivers 5 kW of electric
power, it consumes nearly 3.5 times as much natural gas
as when it delivers 2.5 kW of electric power (calculated by
5 kW/0.3 = 16.67 kW). Consequently, if a constant is used
to represent the electric efficiency of fuel cells, it would
result in a less accurate energy cost evaluation for the power
dispatch scheme of the DFCCHP system. Typically, power
dispatch schemes for any types of power system search for
optimal power dispatch according to the energy cost function
values calculated by their cost functions [19]–[21]. By using
a less accurate energy cost evaluation to formulate the cost
function for calculating energy cost corresponding to any
power dispatch decision, the formulated cost function will
be not so accurate and might mislead the power dispatch
scheme to make a less appropriate power dispatch decision.
Therefore, the nonlinear variation of the electric efficiency
for the fuel cell must be considered in order to develop an
appropriate power dispatch scheme for DFCCHP systems.

In order to develop an appropriate power dispatch scheme
for DFCCHP systems, several literatures incorporated the
nonlinear variation of the electric efficiency for the fuel
cell [22]–[26]. In [22], an analytical rule-based power
dispatch strategy was proposed to optimize the power
dispatch results according to the time-of-use prices as well as
with electric and thermal demands considering the nonlinear

variation of the electric efficiency for the fuel cell. In [23],
an electric power and thermal power dispatch optimization
scheme was presented to optimize the electric and thermal
power dispatch of a DFCCHP system considering the
nonlinear variation of the electric efficiency for the fuel cell.
A similar optimization scheme was also presented in [24].
In [25], the Real Coded Genetic Algorithm is utilized to
determine the optimal electric and thermal power dispatch
of a DFCCHP system considering the nonlinear variation of
the electric efficiency for the fuel cell. In [26], the Colonial
Competitive Algorithm was utilized to determine the optimal
electric and thermal power dispatch for a DFCCHP system
considering the nonlinear variation of the electric efficiency
for the fuel cell. Although it is rarely seen, [27] proposed
a power dispatch scheme that incorporated thermal load
scheduling. However, the scheme proposed in [27] was
formulated for dispatching a fossil fuel-based CHP system
rather than a DFCCHP system.

This paper proposes a comprehensive energy management
scheme for DFCCHP systems while incorporating optimal
residential electric load scheduling. Besides the electric
power generated from the fuel cell, the proposed scheme
optimizes the power from the PV panels, the batteries,
and the power grid, making it a comprehensive energy
management scheme for DFCCHP systems. The proposed
scheme also minimizes the energy cost due to the natural gas
consumption and energy purchased from or sold to the power
grid. Additionally, it optimizes the scheduling of residential
appliances. Although there is some research available that
investigates residential load scheduling schemes, only a
minimal amount explores the feasibility of integrating
electric load scheduling with the electric and thermal power
dispatch schemes for DFCCHP systems. To realize a more
realistic residential environment, the residential electric loads
are categorized into three types in the proposed scheme:
interruptible, uninterruptible, and time-varying appliance
loads.

The proposed power dispatch scheme involves mixed
integers, nonlinear objective functions, and nonlinear con-
straints, making the entire scheme a mixed-integer nonlinear
programming (MINLP) formulation. The MINLP problem
can be solved using deterministic algorithms such as gen-
eralized bender decomposition, nonlinear branch and bound,
and outer approximation [28]–[30]. Note that some research
has applied heuristic algorithms such as particle swarm
optimization, differential evolution, and genetic algorithms
to solve MINLP problems [31]–[33]. However, this paper’s
proposed MINLP formulation is solved using a nonlinear
branch and bound algorithm.

The fuel cell described in this paper uses natural gas
through a reformer as the fuel [34]. The auxiliary burner
also uses natural gas as a direct fuel. For this reason, the
energy cost of the DFCCHP system is highly dependent
on natural gas prices. The time-of-use models for natural
gas were utilized in [35] and [36]. This paper investigates
the effectiveness of the proposed power dispatch scheme in
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dealing with time-varying natural gas prices. Note that all the
previously published power dispatch schemes for DFCCHP
systems have not been tested in a time-varying natural gas
price environment.

The major novelties and contributions of this paper are
summarized as follows.

1) A comprehensive power dispatch scheme is proposed
to minimize the energy cost for DFCCHP systems. The
residential energy resources are optimized using the
HEMS including the power from the fuel cell, the PV
panels, the batteries, and the power purchased or sold
to the grid.

2) To make the proposed scheme a more comprehensive
energy management scheme for DFCCHP systems,
residential electric load scheduling is considered in the
proposed scheme. To realize a more realistic residential
environment, the electric loads are categorized into
interruptible, uninterruptible and time-varying appli-
ances.

3) An optimization based on MINLP is proposed to
solve the nonlinear optimization problem that involves
electric and thermal power dispatch and electric load
scheduling.

4) The proposed optimal power dispatch is conducted
under the environment of time-varying natural gas
prices and electricity prices.

The rest of this paper is organized as follows: Section II
introduces the problem statement and the HEMS for the
DFCCHP system. Section III describes the residential elec-
tric loads considered in this work as well as their constraints.
Section IV describes the battery energy storage and hot
water storage considered in this work and their constraints.
Section V explains the fuel cell and the power grid considered
in this work and their constraints. Section VI investigates
the nonlinear variation of the fuel cell’s electric efficiency
and the nonlinear relationship between thermal power and
electric power. Section VII presents the objective function
of the proposed optimization model. Section VIII presents
the simulation results and the discussion. Finally, section IX
concludes.

II. HOME ENERGY MANAGEMENT SYSTEM FOR
DOMESTIC FUEL CELL-BASED COMBINED HEAT AND
POWER SYSTEMS
This paper proposes an optimal thermal power and electric
power dispatch scheme integrated with optimal residential
load scheduling for a DFCCHP system. To enable accurate
energy cost evaluation, the proposed scheme is formulated by
considering the nonlinear variation of the fuel cell’s electric
efficiency. Figure 1 depicts the residential energy system
considered in formulating the proposed energy dispatch. This
energy system comprises various types of energy sources
including the PV panels, the battery, the fuel cell, and the
power grid.

As the core of the DFCCHP system, the fuel cell
simultaneously provides electric and thermal energy using

FIGURE 1. The residential energy system considered in this work.

natural gas as its fuel, meaning that the fuel cell is equipped
with a reformer that extracts pure hydrogen from natural
gas and provides it to the fuel cell. The auxiliary burner
produces thermal energy by also using natural gas. The hot
water storage is used to store the hot water. All the required
domestic hot water is from the hot water storage. The volume
of the hot water in the hot water storage remains constant all
time, i.e., when a particular amount of water is consumed
from the hot water storage, the same amount of cold water
is refilled into the hot water storage. The thermal power
generated from the residual heat of the fuel cell and the
auxiliary burner are used to heat the hot water in storage.
Therefore, the thermal energy resources in the DFCCHP
system include the fuel cell and the auxiliary burner.

The electric energy resources in the DFCCHP system
include the power grid, PV panels, battery and the fuel
cell. The electric load can be divided into controllable and
uncontrollable loads. The controllable loads are the loads
that can be scheduled to the time slots with lower energy
prices whereas the uncontrollable loads do not provide this
flexibility. The controllable loads are further categorized
into interruptible, uninterruptible, and time-varying loads.
The interruptible loads can be interrupted at any time; the
uninterruptible loads, once started, must operate continuously
for a certain period of time without interruption to properly
complete the tasks. Like uninterruptible loads, once started,
time-varying loads cannot be interrupted until they have
completed their task.

Electric power can be purchased or sold to the power
grid. A HEMS is implemented with a computer that controls
and monitors the energy resources and appliances in the
residential energy system through home area networks. The
time-varying electricity and natural gas prices are adopted.
The cost of electricity and natural gas consumed by the
DFCCHP system are calculated based on the time-varying
electricity and natural gas prices, respectively. Electricity
is sold back to the grid based on the same time-varying
electricity prices. An optimal power dispatch scheme is
proposed and implemented in HEMS so that the minimum
energy cost is attained by optimally dispatching both electric
and thermal power. An optimal scheduling scheme for those
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three types of schedulable loads is also designed along with
the proposed optimal power dispatch. The MINLP is utilized
for energy cost minimization according to the time-varying
electricity prices and natural gas prices.

III. HOUSEHOLD ELECTRIC LOADS
Within three types of controllable loads, let Ac1, Ac2 and
Ac3 be the sets of interruptible, uninterruptible and time-
varying loads, respectively. Denote the set of uncontrollable
loads as Auc. The sampling interval is denoted as Ts minutes,
and it is assumed that the entire scheduling horizon for the
HEMS to perform scheduling is 1 day (i.e., 24 h). There are
N sampling intervals in the entire scheduling horizon, where
N = 1440/Ts.
Let r ja ∈ {0, 1} be the on/off status of the a-th appliance

such that r ja = 0 indicates that the appliance is turned
off at the j-th sampling interval and r ja = 1 indicates the
opposite, j = 0, . . .N − 1,∀a ∈ (Ac1 ∪ Ac2 ∪ Ac3). Every
a-th appliance can be pre-assigned with an allowable
operation interval denoted by τ sa and τ ea , where τ

s
a, τ

e
a ∈

[0,N − 1]. The HEMS can control the on/off status of a-th
appliance only during the operation interval

[
τ sa, τ

e
a
]
. If it is

not in the permitted time range, r ja = 0. Hence,

r ja

=

{
β, β ∈ {0, 1} , j ∈

[
τ sa, τ

e
a
]
,

0, otherwise;
∀a ∈ (Ac1 ∪ Ac2 ∪ Ac3) .

(1)

The power consumption of each interruptible appliance is
assumed to be constant. Denote the rated power of the a-th
interruptible appliance as Pmax

a ,

Pja =

{
r jaPmax

a , j ∈
[
τ sa, τ

e
a
]
,

0, otherwise;
∀a ∈ Ac1. (2)

Although the interruptible appliances can be interrupted
at any time, the work performed by interruptible appliances
should be regulated such that they operate for at least a certain
number of sampling intervals to avoid affecting the comfort
of the dwelling members too much. For example, although
a water pumping motor can be interrupted by the HEMS at
any time, it should be regulated to pump water for at least a
certain number of sampling intervals each day so that there is
enough water stored for use.

For every a-th appliance belonging to the set of interrupt-
ible loads Ac1, assume that they must operate for at least Qa
sampling intervals every day, i.e.,

τ ea∑
j=τ sa

r ja ≥ Qa, ∀a ∈ Ac1. (3)

For uninterruptible and time-varying appliances, HEMS
determines a starting time within their operation interval.
Once these appliances have started, they cannot be inter-
rupted before they completed their task.

Assume that the a-th uninterruptible and time-varying
appliances, after started, must operate continuously for 0a
sampling intervals. For the optimization scheme implemented
in the HEMS to find the optimal starting time for the
uninterruptible and time-varying appliances, an auxiliary
binary variable δja ∈ {0, 1}, ∀a ∈ (Ac2 ∪ Ac3), is introduced.
Note that δja = 1 indicates that the a-th uninterruptible or
time-varying appliance is started at the j-th sampling interval
and that δja = 0 indicates the opposite. Once δja is set to 1 at
the j-th sampling interval, then from the j-th sampling interval
onwards, r ja = 1 consecutively for 0a sampling intervals
without interruption. The constraints for the optimization can
set as:
τ ea−0a+1∑
j=τ sa

δja = 1, (4)

r j+na ≥ δja, n = 0, . . . , (0a − 1) , ∀a ∈ (Ac2 ∪ Ac3) . (5)

The power consumption of uninterruptible appliances is
constant, whose definition is similar to (2). Thus,

Pja =

{
r jaPmax

a , j ∈
[
τ sa, τ

e
a
]
;

0, otherwise;
∀a ∈ Ac2. (6)

As for the time-varying appliances, assume that once they
have started, their time-varying load at each sampling interval
is σ na , n = 0, . . . , (0a − 1); then the power consumption of
time-varying appliances can be defined as:

Pj+na =

{
r j+na σ na , n = 0, . . . , (0a − 1) ;
0, otherwise;

∀a ∈ Ac3. (7)

If PjL is denoted as the total residential load at the j-th
sampling interval, then

PjL =
∑

a∈Ac1∪Ac2∪Ac3∪Auc

Pja. (8)

IV. BATTERY AND HOT HOTWATER STORAGE
It is assumed that the battery is only allowed to work in one
state (either charge or discharge) at each sampling interval.
To realize this statement, the following constraint is applied:

µ
j
ch + µ

j
dch ≤ 1, (9)

where µjch, µ
j
dch ∈ {0, 1} are the binary variables indicating

the charging statuses of the battery. µjch = 1 or µjdch =
1 indicate the battery is charging or discharging at the j-th
sampling interval; µjch = 0 or µjdch = 0 indicate the battery
is not charging or discharging.

To prevent battery damage, it is necessary to ensure that
the battery charging and discharging power (Pjch and Pjdch,
respectively) is kept within a given range bounded by lower
and upper bounds Pmin

dch and Pmax
dch for discharging, Pmin

ch and
Pmax
ch for charging. Therefore,

Pmin
ch ≤

Pjch
ηch
≤ µ

j
chP

max
ch ; (10)
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Pmin
dch ≤ Pjdchηdch ≤ µ

j
dchP

max
dch ; (11)

where ηch and ηdch represent the charging and discharging
efficiencies of the battery where ηch, ηdch ≤ 1.

To prevent the battery from being overcharged or over
discharged, the state of charge (SOC) of the battery at every
j-th sampling interval is also constrained by lower and upper
bounds (SOCmin and SOCmax , respectively), i.e.,

SOCmin
≤ SOC j

≤ SOCmax. (12)

The SOC of the battery at every j-th sampling intervals is
modeled as follows:

SOC j
= SOC j−1

+
Pjch − P

j
dch

Ebatt
Ts, (13)

where Ebatt is the full capacity of the battery.
If Pjbatt is denoted as the power of battery at the j-th

sampling interval, then

Pjbatt =
Pjch
ηch
− Pjdchηdch. (14)

Pjbatt is positive if the battery is charging and negative if the
battery is discharging.

Denote Vtotal as the total volume of water in the hot water
storage, Vtotal is assumed to remain constant at all time. Thus,
when a certain amount of hot water is consumed, the same
amount of cold water is allowed to flow into the water storage
to replace the consumed hot water. For the convenience
of analysis, no thermal loss is assumed in the hot water
storage. When a particular volume of cold water enters the
hot water storage at the j-th sampling interval, the temperature
of the cold water will be raised to the temperature of the
water in storage before the cold water entered (at the (j-1)-th
sampling interval). Denote V j

cold and T
j
cold as the volume and

temperature of the cold water entering the hot water storage
at the j-th sampling interval, respectively. Let T jst represent
the temperature of the hot water storage at the j-th sampling
interval. If some hot water is consumed at the j-th sampling
interval, then an equivalent volume V j

cold of cold water with
temperature T jcold is refilled to maintain the constant total
volume Vtotal of the hot water storage. The additional thermal
energy that the thermal resources require to compensate for
this is calculated as V j

cold

(
T j−1st − T

j
cold

)
Cwater . The thermal

energy required to raise the hot water storage temperature
from T j−1st to T jst is calculated as Vtotal

(
T jst − T

j−1
st

)
Cwater ,

where Cwater is the specific heat of water.
The hot water storage is heated by the thermal power

from the fuel cell’s residual heat and from direct heating by
the auxiliary burner. The thermal energy supplied to the hot
water storage at the j-th sampling interval can be calculated
as
(
H j
FC + H

j
aux

)
Ts, where H

j
FC and H j

aux are the residual
thermal power of the fuel cell and the thermal power from
the auxiliary burner at the j-th sampling interval, respectively.
With the above-mentioned statements, the thermal energy

balance of the hot water storage between two consecutive
sampling intervals can be defined as:

V j
cold

(
T j−1st − T

j
cold

)
Cwater + Vtotal

(
T jst − T

j−1
st

)
Cwater

=

(
H j
FC + H

j
aux

)
Ts. (15)

By rearranging (15), the hot water temperature at the j-th
sampling interval can be modeled as:

T jst=
V j
cold

(
T jcold−T

j−1
st

)
+VtotalT

j−1
st

Vtotal
+
H j
FC + H

j
aux

VtotalCwater
Ts.

(16)

To prevent the hot water storage temperature from being too
hot or too cold, the temperature of the hot water storage at any
j-th sampling interval is constrained by the lower and upper
bounds Tmin

st and Tmax
st , respectively. Thus,

Tmin
st ≤ T

j
st ≤ T

max
st . (17)

V. FUEL CELL AND POWER GRID
The electric power of the fuel cell PjFC at any j-th sampling
interval must be constrained by lower and upper bounds
to prevent it from underloading or overloading. Hence, the
following constraint is applied:

Pmin
FC ≤ P

j
FC ≤ P

max
FC , (18)

where Pmin
FC and Pmax

FC denote the lower and upper bounds,
respectively, for fuel cell’s generated power. To prevent the
fuel cell from charging or discharging too fast, the rate of
change in fuel cell’s electric output must also be constrained
by an upper and lower limit (1PUFC and 1PLFC ) as follows:

PjFC − P
j−1
FC ≤ 1P

U
FC , (19)

Pj−1FC − P
j
FC ≤ 1P

L
FC . (20)

Denote Pjgrid as the power purchased or sold to the
power grid at the j-th sampling interval. It also needs to be
constrained by an upper and lower limit (Pmax

grid and Pmin
grid ) as

follows:

Pmin
grid ≤ P

j
grid ≤ P

max
grid , (21)

where Pjgrid is positive if electric power is purchased from the

power grid and negative Pjgrid if it is sold to the power grid.

Let PjPV be the power generated from PV panels at the j-th
sampling interval. The electric power in the DFCCHP system
remains balanced as follows:

Pjgrid + P
j
PV + P

j
FC − P

j
batt = PjL . (22)

VI. ELECTRIC AND THERMAL EFFICIENCIES OF FUEL
CELLS
The electric efficiency ηjFC of the fuel cell at the j-th sampling
interval is defined as the ratio of generated electric powerPjFC
to the consuming rate of natural gas ϕjFC , i.e.,

η
j
FC = PjFC/ϕ

j
FC . (23)
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The electric efficiency ηjFC is essentially a nonlinear function
of the generated electric power. Denote ζ j as the part load
ratio (PLR) of the fuel cell at the j-th sampling interval, i.e.
ζ j = PjFC/P

max
FC , a fifth-order polynomial of ζ j is utilized to

approximate the nonlinear relationship between ηjFC and PjFC
as follows:

η
j
FC = a1

(
ζ j
)5
+ a2

(
ζ j
)4
+ a3

(
ζ j
)3
+ a4

(
ζ j
)2

+a5ζ j + a6, (24)

where a1 . . . a6 are the polynomial coefficients.
This paper adopts the fuel cell presented in [23]. Using

curve fitting to construct a mathematical function describing
the relationship between the electric efficiency and PLR of
the fuel cell, it is obtained that a1 = 0.9033, a2 = −2.9996,
a3 = 3.6503, a4 = −2.0704, a5 = 0.4623 and a6 = 0.3747.
Notably, these values are obtained by considering that the
fuel cell only operates within the operating region of PLR ≥
0.05. Different coefficients will be obtained when referring
to different fuel cells with different operating conditions. The
HEMS is designed to minimize the energy cost (including
the cost of electricity and natural gas). As the optimization
scheme searches for the optimal generated power PjFC of the
fuel cell in the DFCCHP system, the consuming rate ϕjFC
of natural gas to generate the required generated power is
calculated on the basis of (23) with the nonlinear electric
power efficiency ηjFC given in (24). In other words,

ϕ
j
FC = PjFC/(a1

(
ζ j
)5
+ a2

(
ζ j
)4
+ a3

(
ζ j
)3

+a4
(
ζ j
)2
+ a5ζ j + a6). (25)

It is shown in (25) that the natural gas consumption rate is a
nonlinear function of PjFC .

The byproduct of a fuel cell’s generated electric power is
the residual heat. The thermal efficiency r jFC is defined as the
ratio of the thermal power H j

FC to the fuel cell’s generated
power PjFC , calculated as follows:

r jFC = H j
FC/P

j
FC . (26)

The thermal efficiency r jFC is also a nonlinear function of the
generated electric power PjFC . A fourth-order polynomial of
PLR ζ j is utilized to approximate the nonlinear relationship
between r jFC and PjFC as follows:

r jFC = b1
(
ζ j
)4
+ b2

(
ζ j
)3
+ b3

(
ζ j
)2
+ b4ζ j + b5, (27)

where b1 . . . b5 are the coefficients of the polynomial in (27).
The residual heat of the fuel cell is utilized as part of
the thermal energy resources of the hot water storage. The
residual thermal power H j

FC of the fuel cell is proportional to
the generated power PjFC , i.e.,

H j
FC = PjFC (b1

(
ζ j
)4
+ b2

(
ζ j
)3
+ b3

(
ζ j
)2
+ b4ζ j + b5).

(28)

Using curve fitting to construct a mathematical function
describing the relationship between the r jFC and PLR of the
fuel cell, the following is obtained: b1 = 1.0785, b2 =
−1.9739, b3 = 1.5005, b4 = −0.2817 and b5 = 0.6838.
If the thermal power of the residual heat is not enough to

heat the water in the hot water storage so that the constraint
for the hot water temperature T jst in (17) is satisfied, the
auxiliary burner is designed to provide the additional thermal
power. The auxiliary burner’s thermal power at the j-th
sampling interval is denoted as H j

aux . An optimal H j
aux will

be searched for according to the constraints satisfying the
thermal balance equation in (15) and (17). Recall that the
auxiliary burner also uses natural gas as the fuel. Denote
ϕ
j
aux as the natural gas consuming rate for the auxiliary

burner, ηaux as the efficiency of the auxiliary burner. The
burner is a regular heating facility that heats inlet cold water
to a preset temperature satisfying the constraint in (17) by
directly burning natural gas. Different from the fuel cell
efficiency in (24), the auxiliary burner’s efficiency ηaux is
a constant because no chemical reaction is involved in the
heating process. There is a constant relationship between the
natural gas consuming rate ϕjaux and the generated thermal
power H j

aux for the auxiliary burner as follows:

ϕjaux = H j
aux/ηaux (29)

where ηaux is a constant.

VII. OBJECTIVE FUNCTION
The objective function for the nonlinear optimization in the
HEMS is to minimize the energy cost that is divided into
two parts (including the electricity cost and natural gas cost).
The day-ahead electricity prices and natural gas prices are
assumed in this paper. If ρj and υ j are the electricity price and
natural gas price at the j-th sampling interval, respectively,
the objective function for the optimization can be defined as
follows:

min
r ja,j=k,...,N−1,a∈Ac1∪Ac2∪Ac3
δ
j
a,j=k,...,N−1,a∈Ac2∪Ac3

Pjgrid ,j=k,...,N−1

Pjch,j=k,...,N−1

Pjdch,j=k,...,N−1

µ
j
ch,j=k,...,N−1

µ
j
dch,j=k,...,N−1

PjFC ,j=k,...,N−1

H j
aux ,j=k,...,N−1

N−1∑
j=k

ρjPjgridTs+υ
jϕ
j
FCTs+υ

jϕjauxTs

subject to (3),(4),(5),(9),(10),(11),(12),

(17),(18),(19),(20),(21),(22). (30)

Note that the proposed optimization in (30) is a real-time
optimization scheme. Both the thermal power and electric
power dispatch, as well as the load scheduling are planned
from the current k-th sampling interval to the end of day
(the N -th sampling interval). The same optimization scheme
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is conducted iteratively as time goes to the next sampling
interval, and so on.

The objective function to be minimized in (30) is the total
cost of energy including the electricity cost in the first term,
the fuel cell’s natural gas cost in the second term, and the
auxiliary burner’s natural gas cost in the third term. The
constraints for the loads are formulated in (3)-(5) while the
constraints for the battery are shown in (10)-(12). The hot
water temperature is constrained within a range as in (17),
the generated power from the fuel cell is constrained as in
(18)-(20). Finally, the grid power is constrained in (21), the
power balance equation as in (22) is also a constraint.

The optimization in (30) is a mixed-integer problem
because the optimization variables consists of both binary
and real variables. Additionally, the objective function and
some constraints are nonlinear. The optimization in (30) is
formulated as a MINLP problem.

VIII. SIMULATION RESULTS AND DISCUSSION
To perform the simulation, the proposed scheme is first mod-
eled in A Mathematical Programming Language (AMPL).
The commercial nonlinear solver KNITRO is then used
to solve the proposed scheme. KNITRO is a commercial
solver that solves large-scale MINLP problems by using a
nonlinear branch and bound algorithm [23]. It is widely used
in business and other industries because of its efficiency
and robustness. All the computer simulations are made on a
personal computer with Intel Core i7-3770 CPU @ 3.8 GHz
and 128 GB RAM.

A. SIMULATION SETTING
The entire scheduling horizon for the proposed scheme
to perform power dispatch is 24 h. The proposed scheme
performs power dispatch optimization at every sampling
interval in the scheduling horizon. The sampling interval is
set as Ts = 15minutes. Hence, 96 sampling intervals are in
the entire scheduling horizon.

The electric power from the power grid at every sampling
interval Pjgrid are bounded between Pmin

grid = −1.5kW and
Pmax
grid = 3.2kW. The electric power from the fuel cell at

every sampling interval PjFC are bounded between Pmin
FC =

0.3kW and Pmax
FC = 5kW. The lower and upper limits for

battery charging power at every sampling interval are set as
Pmin
ch = 0kW and Pmax

ch = 1.53kW, respectively. Similarly,
the lower and upper limits for battery discharging power at
every sampling interval are set as Pmin

dch = 0kW and Pmax
dch =

1.53kW, respectively. The SOC of the battery is bounded
between SOCmin

= 0.3 and SOCmax
= 0.9. The initial SOC

is set as 0.6. The battery capacity is set as Ebatt = 15.3kWh.
Of course, the battery capacity can also be reasonably reduced
due to cost concern.

The hot water storage temperature at every sampling
interval T jst are set to range between Tst,min = 60◦C and
Tst,max = 80◦C. Since the temperature of cold water entering
the hot water storage does not vary too much in a day, V j

cold is

FIGURE 2. The expected hot water demand.

FIGURE 3. Forecasted solar energy generation profile from PV panels.

set as 20◦C for the entire scheduling horizon. It is not unusual
to assume that the cold water temperature remains constant
throughout the entire scheduling horizon [37].

The total volume of the hot water storage, Vtotal , is set
as 150 L. The efficiency of the auxiliary burner ηaux is
set as 0.86 [37]. The specific heat of water is set as
0.001161 kWh/L·◦C [38]. The expected hot water demands
are shown in Figure 2. Two types of hot water demand
profiles including high demand and low demand are defined
in Figure 2 for simulation.

Figure 3 shows the day-ahead forecast of solar energy
generation profiles from the PV panels for both sunny
and cloudy days. Table 1 shows the parameters of electric
loads including their allowed operating time range, rated
power consumption, and the minimum operation duration
requirement.

B. SIMULATION RESULTS
Four cases are simulated as illustrated in Table 2.
Figures 4–7 illustrate the results of electric load scheduling
for these four cases. Figures 8–11 show the thermal power
dispatching results of the auxiliary burner for these four cases.
Detailed explanations to these Figures are as follows.

Referring to Table 2, the simulation settings for
cases 1 and 2 are the same except for the hot water demand
profiles. Similar insights are obtained when comparing
case 3 with case 4. The settings in cases 1 and 3 are the
same except for the weather type that leads to different solar
energy generation. By comparing case 1 with case 3, it is
noted that high solar energy generation helps a great deal
in reducing the energy cost of a residential house. This is
because solar energy is used to meet the need of residential
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TABLE 1. Paramters of electric loads.

TABLE 2. Simulation results.

FIGURE 4. The results of electric load scheduling – case 1.

FIGURE 5. The results of electric load scheduling – case 2.

load when it is available, rather than purchasing power from
the grid. Additionally, after the load is met, the DFCCHP
system can sell the generated electric energy to the power grid

FIGURE 6. The results of electric load scheduling – case 3.

FIGURE 7. The results of electric load scheduling – case 4.

FIGURE 8. Dispatching results of the auxiliary burner – case 1.

FIGURE 9. Dispatching results of the auxiliary burner - case 2.

FIGURE 10. Dispatching results of the auxiliary burner - case 3.

to maximize profits, resulting in a lower total energy cost in
case 3. Similar insights are obtained when comparing case 2
with case 4.

Although the optimal scheduling is conducted at every
sampling interval, the computational time presented in
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FIGURE 11. Dispatching results of the auxiliary burner - case 4.

Table 2 is the runtime of optimization conducted at the first
sampling interval of the day, i.e., k = 0, for the convenience
of comparison. It is seen that the computational time required
to solve the proposed optimization scheme is relatively high
in all cases due to the fact that the proposed scheme is an
MINLP formulation. However, the runtimes for all cases are
still much shorter than the sampling interval 15 minutes for
the optimization. In other words, HEMS can still has enough
time to run the optimization in (30) and control all loads
responding to the scheduling results. When solving all the
case studies at the subsequent sampling intervals of the day,
a shorter scheduling horizon is considered and therefore the
required runtime is also considerably reduced. Therefore, the
average runtime required to solve the case studies at each
sampling interval in the day will be much shorter than that
presented in Table 2.

Referring to Figures 4–7, in all cases, all the electric loads
are scheduled to operate within their respective allowable
operating windows. Additionally, all the electric loads satisfy
their respective constraints (implying that they are modeled
correctly). For instance, the power consumption of time-
varying load 1 in cases 1–4 does vary with operation cycle.
The uninterruptible loads in cases 1–4 operate continuously
for certain period of time without interruption once they
are started. The interruptible loads can be discontinued and
resumedwithin their respective allowed operation time range.
All these observations indicate that all the electric loads are
modeled correctly.

Figures 8–11 show the thermal energy optimal dispatching
results of the auxiliary burner according to the residual
thermal energy from the fuel cell and the variation of natural
gas prices. By comparing cases 1 and 2, it is clear that the
higher hot water demand in Figure 9 (compared with that in
Figure 8) leads to higher thermal power dispatch from the
auxiliary burner. Although the hot water demand occurs at
the interval with higher natural gas prices, the thermal power
dispatch of the auxiliary burner is optimized so that the burner
is allowed to operate at the sampling intervals with natural
gas prices are as low as possible. The same analysis applies
to case 3 in Figure 10 and case 4 in Figure 11. Although the
thermal power dispatch of the auxiliary burner corresponds
with the hot water consumption profile, the auxiliary burner
is not turned on as soon as the hot water consumption rises.
The HEMS optimizes the auxiliary burner’s thermal power
dispatch so that the residual thermal energy from the fuel cell
is fully utilized before the burner is turned on.

On sunny days, the fuel cell is not turned on as often as it
is on cloudy days because there is more electricity generated
from the PV panels on sunny days than on cloudy days. This
results in less residual heat from the fuel cell on sunny days
than cloudy days. Comparing Figures 9 and 11, it is observed
that the auxiliary burner is turned on more often for case 4 in
Figure 11 than for case 2 in Figure 9 despite the same thermal
power demand profile. Figures 12–15 respectively show the
electric power dispatch results from the grid, the fuel cell,
and the battery at every sampling interval for cases 1–4. The
dispatch results fulfilled all the imposed constraints in the
DFCCHP system.

Referring to case 1 in Figure 12, it is obvious that the
proposed scheme scheduled the electricity purchasing at the
time when electricity prices were relatively low (e.g., 3:00
to 5:00 and 17:00 to 19:00). Conversely, electricity selling is
scheduled at the time when electricity prices were relatively
high (e.g., 10:00 to 16:00 and 20:00 to 23:00). Hence,
the proposed optimization scheme achieves electricity cost
savings by purchasing power from the grid at the sampling
intervals with lower electricity prices and by selling it at
the sampling intervals with higher electricity prices. When
the natural gas prices are higher than the electricity prices,
HEMS schedules the fuel cell to deliver less electric power.
Conversely, when the natural gas prices are lower than the
electricity prices, the HEMS allows the fuel cell to deliver
more electricity. For example, the natural gas prices are
higher than the electricity prices at 00:00-09:45, therefore the
HEMS schedules the fuel cell to deliver minimum electric
power. Same situations are observed at 16:00-19:45 and
22:00-23:45 where the proposed scheme scheduled the fuel
cell to deliver minimum electric power due to the reason
that the natural gas prices are higher than the electricity
prices. At 10:00-16:00 and 20:00-22:00, the natural gas
prices are lower than the electricity prices and therefore
the HEMS allows the fuel cell to deliver more electric
power at 11:00-12:00, 13:00-14:00 and 20:00-21:00. These
observations indicate that the proposed optimization scheme
achieves electricity cost savings by not only optimizing the
electricity purchasing/selling, but also optimizing the fuel cell
power dispatch.

Referring to the Case 2 in Figure 13, it is seen that
most electricity purchasing is scheduled at the time when
electricity prices are low, e.g., 3:00-5:00 and 17:00-19:00.
Furthermore, most electricity selling is scheduled at the
time when electricity prices are high, e.g., 10:00-16:00
and 20:00-23:00. The fuel cell is scheduled to deliver
minimum power when natural gas prices are high, e.g.,
00:00-09:45 and 16:00-19:45. The fuel cell is allowed to
delivered higher electric power when natural gas prices are
lower than the electricity prices, as evidenced by the cyan
color humps at 11:00-12:00, 13:00-14:00, and 20:00-21:00.
These again indicate that the proposed optimization scheme
minimizes electricity cost by optimizing the electricity
purchasing/selling and the fuel cell power dispatch. The
insight obtained from analyzing Figure 12 and Figure 13 are
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FIGURE 12. The power dispatch results for the energy sources - case 1.

FIGURE 13. The power dispatch results for the energy sources - case 2.

FIGURE 14. The power dispatch results for the energy sources - case 3.

FIGURE 15. The power dispatch results for the energy sources - case 4.

also obtained in Figure 14 and 15. That is, the proposed
scheme scheduled the electricity purchasing/selling at the
time when electricity prices are low/high. The fuel cell

is scheduled to deliver minimum electric power when the
natural gas prices are higher than the electricity prices. The
fuel cell is allowed to deliver higher electric power when
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the natural gas prices are lower than the electricity prices.
All these indicate that the proposed scheme performs power
dispatch optimally regardless of the weather and hot water
consumption profiles.

Referring to Figures 12 and 14, these two cases have
the same simulation settings except for the solar energy
generation profiles used. By comparing these two figures,
it can be seen that on the sunny day in Figure 14, the proposed
scheme scheduled more electric loads to operate from 10:00
to 15:00 during which solar energy generation is abundant.
Moreover, the DFCCHP system sells more electric energy to
the power grid in Figure 14 than in Figure 12 because more
solar energy is generated from the PV panels. All these are
the evidences that the proposed optimization scheme in the
HEMS performs efficient energymanagement by considering
all available energy resources and by taking full advantage of
electricity price and natural gas price variations.

IX. CONCLUSION
This study proposed a comprehensive electric power and
thermal power dispatch scheme for a DFCCHP system that
integrates with the residential load scheduling mechanism.
Because of the nonlinear characteristics provided by the
fuel cell and the use of continuous and binary variables for
power dispatch and load scheduling, the proposed scheme
was an MINLP formulation with high nonlinearity. The
MINLP formulation was solved using a nonlinear branch and
bound algorithm. The computation time of this approach is
relatively high although the computation time is still very
much less than the optimization sampling interval. It is
possible to transform the nonlinear functions such as the
consuming rate of natural gas or the residual thermal power
of the fuel cell into a piecewise linear function for the future
work. With delicate arrangement of optimization range, these
piecewise linear functions can work in accordance with other
linear constraints of the optimization model. The nonlinear
optimization problem can be solved efficiently with a regular
mixed-integer linear programming formulation in order to
save computation time.

As most energy schemes, the proposed scheme performs
energymanagement with a day-ahead solar energy generation
profile and a hot water demand profile. Accurate, real-time
forecasts of solar energy generation and hot water demand
profiles could further enhance the power dispatch accuracy
in the proposed scheme in future work.

REFERENCES
[1] S. Ali, I. Khan, S. Jan, and G. Hafeez, ‘‘An optimization based power usage

scheduling strategy using photovoltaic-battery system for demand-side
management in smart grid,’’ Energies, vol. 14, no. 8, p. 2229, Apr. 2021.

[2] P. Halder, K. Azad, S. Shah, and E. Sarker, ‘‘Prospects and technological
advancement of cellulosic bioethanol ecofuel production,’’ in Advances
in Eco-Fuels for a Sustainable Environment. Sawston, U.K.: Woodhead
Publishing, 2019, pp. 211–236.

[3] M. Vohra, J. Manwar, R.Manmode, S. Padgilwar, and S. Patil, ‘‘Bioethanol
production: Feedstock and current technologies,’’ J. Environ. Chem. Eng.,
vol. 2, no. 1, pp. 573–584, Mar. 2014.

[4] L. Barelli, G. Bidini, F. Gallorini, and A. Ottaviano, ‘‘Dynamic analysis
of PEMFC-based CHP systems for domestic application,’’ Appl. Energy,
vol. 91, no. 1, pp. 13–28, 2012.

[5] F. Calise, M. Dentice d’Accadia, A. Palombo, and L. Vanoli, ‘‘Simulation
and exergy analysis of a hybrid solid oxide fuel cell (SOFC)–gas turbine
system,’’ Energy, vol. 31, no. 15, pp. 3278–3299, Dec. 2006.

[6] F. Accurso, M. Gandiglio, M. Santarelli, J. Buunk, T. Hakala, J. Kiviaho,
S. Modena, M. Münch, and E. Varkaraki, ‘‘Installation of fuel cell-based
cogeneration systems in the commercial and retail sector: Assessment
in the framework of the COMSOS project,’’ Energ. Convers. Manage.,
vol. 239, pp. 114202–114222, Jul. 2021.

[7] Z. Zakaria, S. K. Kamarudin, and K. A. A. Wahid, ‘‘Fuel cells as an
advanced alternative energy source for the residential sector applications
inMalaysia,’’ Int. J. Energy Res., vol. 45, no. 4, pp. 5032–5057, Mar. 2021.

[8] Z. Zakaria, S. K. Kamarudin, K. A. A. Wahid, and S. H. A. Hassan,
‘‘The progress of fuel cell for Malaysian residential consumption: Energy
status and prospects to introduction as a renewable power generation
system,’’Renew. Sustain. Energy Rev., vol. 144, Jul. 2021, Art. no. 110984.

[9] S. You, F. Marra, and C. Træholt, ‘‘Integration of fuel cell micro-CHPS on
low voltage grid: A Danish case study,’’ in Proc. Power Energy Eng. Conf.,
Mar. 2012, pp. 1–4.

[10] G. Gigliucci, L. Petruzzi, E. Cerelli, A. Garzisi, and A. La Mendola,
‘‘Demonstration of a residential CHP system based on PEM fuel cells,’’
J. Power Sources, vol. 131, nos. 1–2, pp. 62–68, 2004.

[11] M. J. Sanjari, H. Karami, and H. B. Gooi, ‘‘Micro-generation dis-
patch in a smart residential multi-carrier energy system considering
demand forecast error,’’ Energy Convers. Manage., vol. 120, pp. 90–99,
Jul. 2016.

[12] M. Bornapour, R.-A. Hooshmand, A. Khodabakhshian, andM. Parastegari,
‘‘Optimal coordinated scheduling of combined heat and power fuel cell,
wind, and photovoltaic units in micro grids considering uncertainties,’’
Energy, vol. 117, pp. 176–189, Dec. 2016.

[13] M. Houwing, R. R. Negenborn, and B. De Schutter, ‘‘Demand response
with micro-CHP systems,’’ Proc. IEEE, vol. 99, no. 1, pp. 200–213,
Jan. 2011.

[14] M. Houwing, R. R. Negenborn, M. D. Ilic, and B. De Schutter,
‘‘Model predictive control of fuel cell micro cogeneration systems,’’
in Proc. Int. Conf. Netw., Sens. Control, Okayama, Japan, Mar. 2009,
pp. 708–713.

[15] H. C. Jo, S. Kim, and S. K. Joo, ‘‘Smart heating and air conditioning
scheduling method incorporating customer convenience for home energy
management system,’’ IEEE Trans. Consum. Electron., vol. 59, no. 2,
pp. 316–322, May 2013.

[16] S. Sharma, A. Verma, Y. Xu, and B. K. Panigrahi, ‘‘Robustly coordinated
bi-level energy management of a multi-energy building under multiple
uncertainties,’’ IEEE Trans. Sustain. Energy, vol. 12, no. 1, pp. 3–13,
Jan. 2021.

[17] A. Anvari-Moghaddam, H. Monsef, and A. Rahimi-Kian, ‘‘Optimal
smart home energy management considering energy saving and a
comfortable lifestyle,’’ IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 324–332,
Jan. 2015.

[18] F. Barbir and T. Gomez, ‘‘Efficiency and economics of proton exchange
membrane (PEM) fuel cells,’’ Int. J. Hydrogen Energy, vol. 21, no. 10,
pp. 891–901, Oct. 1996.

[19] H. A. Abdelsalam, A. K. Srivastava, and A. Eldosouky, ‘‘Blockchain-
based privacy preserving and energy saving mechanism for electricity
prosumers,’’ IEEE Trans. Sustain. Energy, vol. 13, no. 1, pp. 302–314,
Jan. 2022, doi: 10.1109/TSTE.2021.3109482.

[20] A. U. Rehman, Z. Wadud, R. M. Elavarasan, G. Hafeez, I. Khan, Z. Shafiq,
and H. H. Alhelou, ‘‘An optimal power usage scheduling in smart grid
integrated with renewable energy sources for energy management,’’ IEEE
Access, vol. 9, pp. 84619–84638, 2021.

[21] E. M. Ahmed, R. Rathinam, S. Dayalan, G. S. Fernandez, Z. M.
Ali, S. H. E. Aleem, and A. I. Omar, ‘‘A comprehensive analysis of
demand response pricing strategies in a smart grid environment using
particle swarm optimization and the strawberry optimization algorithm,’’
Mathematics, vol. 9, no. 18, pp. 2338–2361, 2021.

[22] M. J. Sanjari, H. Karami, and H. B. Gooi, ‘‘Analytical rule-based approach
to online optimal control of smart residential energy system,’’ IEEE Trans.
Ind. Informat., vol. 13, no. 4, pp. 1586–1597, Aug. 2017.

[23] Y. Huang, J. Zhang, Y. Mo, S. Lu, and J. Ma, ‘‘A hybrid optimization
approach for residential energy management,’’ IEEE Access, vol. 8,
pp. 225201–225209, 2020.

[24] Y. Huang, W. Wang, and B. Hou, ‘‘A hybrid algorithm for mixed integer
nonlinear programming in residential energy management,’’ J. Cleaner
Prod., vol. 226, pp. 940–948, Jul. 2019.

5978 VOLUME 10, 2022

http://dx.doi.org/10.1109/TSTE.2021.3109482


L. Yao, J. C. Teo: Optimization of Power Dispatch With Load Scheduling for DFCCHP System

[25] M. K. Rafique, S. U. Khan, M. S. U. Zaman, K. K. Mehmood,
Z. M. Haider, S. B. A. Bukhari, and C.-H. Kim, ‘‘An intelligent hybrid
energy management system for a smart house considering bidirectional
power flow and various EV charging techniques,’’ Appl. Sci., vol. 9, no. 8,
p. 1658, Apr. 2019.

[26] H. Karami, M. J. Sanjari, S. H. Hosseinian, and G. B. Gharehpetian,
‘‘An optimal dispatch algorithm for managing residential distributed
energy resources,’’ IEEE Trans. Smart Grid, vol. 5, no. 5, pp. 2360–2367,
Sep. 2014.

[27] W. Violante, C. A. Cañizares, M. A. Trovato, and G. Forte, ‘‘An energy
management system for isolated microgrids with thermal energy
resources,’’ IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 2880–2891,
Jul. 2020.

[28] B. Borchers and J. E. Mitchell, ‘‘An improved branch and bound algorithm
for mixed integer nonlinear programs,’’ Comput. Oper. Res., vol. 21, no. 4,
pp. 359–367, Apr. 1994.

[29] S. Lee and H. kim, ‘‘Fast mixed-integer AC optimal power flow based
on the outer approximation method,’’ J. Electr. Eng. Technol., vol. 12,
pp. 2187–2195, Nov. 2017.

[30] H.-T. Roh and J.-W. Lee, ‘‘Residential demand response scheduling with
multiclass appliances in the smart grid,’’ IEEE Trans. Smart Grid, vol. 7,
no. 1, pp. 94–104, Jan. 2016.

[31] S. He, E. Prempain, and Q. H.Wu, ‘‘An improved particle swarm optimizer
for mechanical design optimization problems,’’ Eng. Optim., vol. 36, no. 5,
pp. 585–605, Oct. 2004.

[32] S. S. Rao and Y. Xiong, ‘‘A hybrid genetic algorithm for mixed-discrete
design optimization,’’ J. Mech. Des., vol. 127, no. 6, pp. 100–112,
Nov. 2005.

[33] J. Lampinen and I. Zelinka, ‘‘Mixed integer discrete continuous optimiza-
tion by differential evolution. Part 1: The optimization method,’’ in Proc.
5th Int. Mender Conf. Soft Comput., 1999, pp. 71–76.

[34] T. Niknam, M. Bornapour, A. Ostadi, and A. Gheisari, ‘‘Optimal planning
of molten carbonate fuel cell power plants at distribution networks
considering combined heat, power and hydrogen production,’’ J. Power
Sources, vol. 239, pp. 513–526, Oct. 2013.

[35] C. Ou, C. Xie, J. Xu, and F. Liu, ‘‘Time-of-use price decision model of
natural gas based on simulation and grey relationships,’’ in Proc. IEEE
Int. Conf. Inf. Manage., Innov. Manage. Ind. Eng. (ICIII), Nov. 2010,
pp. 176–179.

[36] C. Gong, K. Tang, K. Zhu, and A. Hailu, ‘‘An optimal time-of-use pricing
for urban gas: A study with a multi-agent evolutionary game-theoretic
perspective,’’ Appl. Energy, vol. 163, pp. 283–294, Feb. 2016.

[37] M. Tasdighi, H. Ghasemi, and A. Rahimi-Kian, ‘‘Residential microgrid
scheduling based on smart meters data and temperature dependent thermal
load modeling,’’ IEEE Trans. Smart Grid, vol. 5, no. 1, pp. 349–357,
Jan. 2014.

[38] A. Ouammi, ‘‘Optimal power scheduling for a cooperative network of
smart residential buildings,’’ IEEE Trans. Sustain. Energy, vol. 7, no. 3,
pp. 1317–1326, Jul. 2016.

LEEHTER YAO (Senior Member, IEEE) received
the Diploma degree in electrical engineering from
the National Taipei Institute of Technology, Taipei,
Taiwan, in 1982, the M.S. degree in electrical
engineering from the University of Missouri,
Rolla, in 1987, and the Ph.D. degree in electrical
engineering from the University of Wisconsin–
Madison, in 1992. Since 1992, he has beenwith the
Department of Electrical Engineering, National
Taipei University of Technology, where he is

currently a Chair Professor. He has held over 30 patents mostly in the
areas of power system monitoring and control, and industrial applications of
computational intelligence. His current research interests include intelligent
control, demand response, and computational intelligence. Hewas a recipient
of the Distinguished Electrical Engineering Professor Award from the
Chinese Society of Electrical Engineering, in 2011. Since 2015, he has been
the Academician of the Russia International Academy of Engineering.

J. C. TEO received the B.S. and Ph.D. degrees in
electrical and electronic engineering from UCSI
University, Kuala Lumpur, Malaysia, in 2014 and
2020, respectively.

He is currently a Postdoctoral Researcher
with the Department of Electrical Engineering,
National Taipei University of Technology, Taipei,
Taiwan. His current research interests include
home energy management systems and energy
management system of fuel cell.

VOLUME 10, 2022 5979


