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ABSTRACT Current anomaly detection methods for video surveillance find anomalies effectively enough;
however, it comes at a high computational cost and specific hardware resources demanding. In counterpart,
other video analysis tasks such as video action recognition now employ techniques that reduce the need for
higher computational cost. Some of those techniques can be helpful for video anomaly detection. Therefore,
this paper explores the effectiveness of the potential concepts of distillation and joint spatiotemporal training,
adapted to two novel convolutional autoencoder architectures for anomaly detection in video surveillance.
Our experimental results show the feasibility of reducing the computational resources requirements with
smaller architectures (only 6K trainable parameters), competing and outperforming current methods in
challenging benchmarks.

INDEX TERMS Anomaly detection, spatiotemporal features, video surveillance.

I. INTRODUCTION
Video surveillance is a popular tool in private and pub-
lic security systems worldwide. Nowadays, video moni-
toring systems generate a high amount of data requiring
an automatic analysis that intelligent surveillance systems
could perform. Among other tasks, those intelligent sys-
tems should detect anomalies automatically. Anomalies are
unusual context-dependent situations. In some cases, anoma-
lies in surveillance videos could be harmless scenarios; for
instance, someone bumping into another person or walking
in the wrong direction. However, anomalies could be in life-
threatening situations, like a severe accident or a violent
crime. In the last few years, intelligent video surveillance
anomaly detection has been influenced by deep learning.
Autoencodermodels have been a constant in this area because
of their semi-supervised training capacity. Their reconstruc-
tion loss is used as an anomaly score when the system
is trained with normal data. Autoencoders and other deep
learning architectures have significantly improved the accu-
racy of anomaly detection systems (e.g. [1], [2], and [3]).
Moreover, there exist different public datasets helping in the
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generalization ability of anomaly detection methods. Figure 1
shows some examples of anomaly datasets.

Nevertheless, most proposed architectures have enormous,
prohibitive, or inadequate response times for systems with
limited computational resources. Therefore, the motivation
of this paper is the need for more efficient models that
can achieve satisfactory results for the anomaly detection
task in video surveillance. That is the main reason for ana-
lyzing current models for detection and other recognition
tasks to propose improvements in efficiency without sac-
rificing accuracy in anomaly detection. For instance, some
proposals in video action recognition task achieve outper-
forming results to extract spatial and temporal features poten-
tially useful for anomaly detection. Such is the case of
the ST-AE [8], the S3D-G [9], and the D3D [10] models.
The ST-AE model uses parallel spatiotemporal autoencoders
trained with grayscale frames. The S3D-G combines 2D
with 3D convolutional layers with good accuracy results
and less computational resources than only using the 3D
convolutional layers of the popular I3D model [11]. The
S3D-G model uses two networks to extract spatiotemporal
features correctly. In counterpart, the D3D model uses the
Knowledge Distillation technique to train a single network
model to extract spatiotemporal features accurately from
videos.
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FIGURE 1. Examples of frames with anomalies in different public
datasets. (a) and (b) are anomalies in the UCSD Ped1 and Ped2
datasets [4], both contain frames in grasycale with lower definition.
(c) An anomaly in the CUHK Avenue dataset [5]. (d) A biker is an anomaly
in the ShanghaiTech Campus dataset [6]. (e) Example of an anomaly in
the StreetScene dataset [7].

The S3D-G and D3D designs are helpful to improve the
speed-accuracy ratio for video analysis models. However,
those ideas have not been applied to the anomaly detec-
tion task or as an auxiliary for autoencoder architectures
in intelligent video surveillance. In accordance, this paper
examines different strategies to design an autoencoder archi-
tecture suited for the anomaly detection task in video surveil-
lance. Thus, the analysis of autoencoders’ design focuses on
ideas that have worked in similar video analysis problems.
In particular, the evaluation comprises three different known
strategies:

• A combination of 2D and 3D convolutional layers of a
Top-Heavy model, similar to the S3D-G approach, com-
paring it versus only typical 3D convolutional layers.

• The incorporation of a distillation process to train a
network to extract spatiotemporal features, inspired by
the D3D model.

• The joint of two networks in the training process extract-
ing spatial and temporal features in a single network as
observed in the ST-AE model.

This paper’s innovation is the presentation of two novel
techniques based on the concepts of S3D-G, D3D, and
ST-AE. Two custom training losses are presented with novel
techniques for their training. Two architectures were pre-
sented to test the novel presented techniques. Convolu-
tional autoencoders are used as the base of the presented
architectures.

The benefit of using a convolutional autoencoder relies
on its simplified structure using a semi-supervised training
process suited to detect anomalies in surveillance videos.

The organization of this document is the following. The
related work for video analysis techniques is presented in
Section II. Section III describes the models for the assess-
ment. After, Section IV discuss the examination results, and
finally, Section VI contains the reached conclusions.

II. RELATED WORK
Deep Learning techniques have been a constant for analyzing
images and videos in the past decade. In the case of images,
2D convolutional layers demonstrated to be appropriate for
extracting characteristics that help computer algorithms to
understand the image content. Nevertheless, in videos, 2D
convolutional layers obtain relevant characteristics only for
the current framewithout considering the temporal relation of
past and future frames. Therefore, researchers started apply-
ing 2D convolutions to a set of consecutive frames instead of
filtering individual frames to solve this problem. An example
of this is the model R2D presented by Tran et al. in [12].
However, R2D is not remarkably effective as consecutive
frames, treated as image channels, collapse after the first con-
volution. Therefore, Ji et al. in [13] added a third dimension
to the convolutional layer to consider the temporal changes of
the frames with application in video action recognition task.
Then, Zhao et al. in [8] employed 3D convolutional layers
for video anomaly detection task. Although a third dimension
has advantages in their results, it also increases the models’
complexity and requires more training epochs.

2D convolutional layers were not completely discarded,
and they were applied for the Two-Stream approach for video
action recognition by Zisserman and Simonyan [14]. The
use of two networks for analyzing video is an idea that
comes from biological motivations, and that was observed
long ago by researchers [15]. Because of its experimental
results, the Two-Stream approach gained popularity in video
analysis tasks, mostly in video action recognition (e.g. [9],
[11], [16]) and video surveillance anomaly detection (e.g. [1],
[2], [17]). Two-Stream approach is combined with other
techniques to improve its results, such as Gaussian Mixture
in GMFC-VAE [1] and GMM-DAE [17]. Appearance and
Motion DeepNet (AMDN) [18] used a third stream of pixel
early fusion to increase the model’s detection accuracy. How-
ever, the Two-Stream approach has two main drawbacks: the
use of more than one network for inference and the need for
a pre-processing technique, like optical flow, which could be
costly for real-time applications.

Carrera and Zisserman improved the 2D convolutional
layers of the Two-Stream model into the Inflated 3D model;
that is, the I3D model [11] for action recognition. Although
this model is accurate for action classification, it needs a lot of
training data to achieve the desired accuracy. In cases like the
implicit two-path AutoEncoder (ITAE) [19], the Two-Stream
idea has been applied using two encoders and different frame
update ratios to obtain spatial and temporal features. Pos-
teriorly, Xie et al. [9] used the I3D as a base for two test-
ing models, Top-Heavy I3D and Bottom-Heavy I3D. Those
consist of I3D models that combine 2D convolutional layers
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FIGURE 2. The 3D autoencoder and top-heavy autoencoder structures in the assessment.

with 3D convolutional layers in different orders. The first
layers are 2D convolutions in the Top-Heavy model, while
the last layers are 3D convolutions. In Bottom-Heavy, 3D
convolutional layers come first, ending with 2D convolutions.
Top-Heavy I3D obtained better results than Bottom-Heavy
and closer results to the original I3D, so it was used as base
for their S3D-G model [9]. However, S3D-G had difficulties
to extract spatiotemporal features by using a single network.
Therefore, the Two-Stream approach improved the results of
S3D-G in video action recognition. The S3D-G ideas can
be used in architectures that use 3D convolutions to process
spatio-temporal features.

Moreover, to improve the feature extraction problem,
Stroud et al. [10] presented the D3Dmodel. D3D is an action
classification model based on the S3D-G architecture, and
it uses the Knowledge Distillation technique for its training.
The design of Knowledge Distillation transmits knowledge
from large size networks to smaller size networks. In D3D,
the distillation goes from the temporal stream knowledge
to the spatial stream. As a result, a single network extracts
spatiotemporal features similar to a Two-Stream network.
For training a D3D model, the temporal network has to be

pre-trained; that is, an S3D-G model with the optical flow
is used normally for the temporal stream learning. Then,
the fitted Temporal S3D-G becomes an auxiliary for the
Spatial S3D-G stream training. The learning process of the
spatial network uses its misclassification error combined with
the misclassification error of the already trained Temporal
S3D-G. Finally, in the inference process, only the Spatial
S3D-G is used. Even D3D model demonstrates that the dis-
tillation procedure can be applied to train spatiotemporal
models, it has not been applied to other video tasks besides
the action recognition.

A. VIDEO SURVEILLANCE ANOMALY DETECTION
To adapt the Two-stream approach from video action recog-
nition task to anomaly detection in video surveillance, works
in the state-of-the-art use autoencoder structures instead of
Convolutional Neural Networks (CNNs). Using autoencoders
allows training them using only the normal data, which is
essential due videos with anomalies are scarce. More com-
plex techniques try to improve the stochastic understanding
of the video surveillance data, such as Variational Autoen-
coders [1]; but these might also present some difficulties for
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their training [20]. Other generative methods, like the Adver-
sarial Discriminator [2], use a pair of Generative Adversarial
Networks (GANs) that learn to generate optical flow frames
from RGB color scale frames and RGB frames from optical
flow frames. The anomalies in the surveillance videos are
found when the models are unable to correctly generate the
optical flow or the RGB color scale frames. Although Adver-
sarial Discriminator’s approach obtains close to 1 AUC-ROC
results for the UCSDPed 1 and 2, training two complete
GANs in parallel demands a high computational resources
availability. More recent techniques for video surveillance
anomaly detection include the use of social interaction for
generating the temporal stream [21] and the use of heatmaps
to improve result analysis [22].

The potential strategies presented in S3D-G, Top-Heavy
model, and in the D3D distillation technique have not been
proved in video surveillance anomaly detection nor in com-
bination with autoencoders. Nevertheless, a similar approach
to the D3D was tested by Zhao et al. in the Spatiotemporal
Autoencoder (ST-AE) model training [8] for video surveil-
lance anomaly detection. Their ST-AE model learned using
a parallel training: a reconstruction and a predictive stream.
ST-AE uses one encoder and two decoders. It is expected that
the decoder learns to extract both type of features and only
one of the ST-AE streams is used for inference. The training
used in ST-AE model was not tested for other configurations
like optical flow and grayscale streams combination.

III. DESCRIPTION OF DISTILLATION AND JOINT
SPATIOTEMPORAL TRAINING CONCEPTS
This work explores and adapts concepts with outperforming
results in other video analysis tasks by two assessments:
1) analyzing the convenience of a Top-Heavy design, includ-
ing a combination of 2D and 3D convolutional layers against
only 3D convolutions in autoencoder architectures. 2) Com-
paring two different training processes, the one that uses a
novel distillation technique with the anomaly score versus
the one that incorporates two autoencoders with the spatial
and the temporal features specialization. In the following
subsections, we include a description of each strategy and its
consequent incorporation in the autoencoder design.

A. THE TOP-HEAVY DESIGN
The base of the Top-Heavy autoencoder design in this assess-
ment is the Top-Heavy I3D model tested by Xie et al. [9].
A Top-Heavy autoencoder includes 2D and 3D convolutional
layers in the encoder and 3D and 2D transpose convolutional
layers in the decoder. The benefit of combining the different
dimensions of convolutions is to obtain better results while
needing less training data, which is essential as video surveil-
lance anomaly datasets are smaller than the ones available
in other tasks, like video action recognition. Also, 2D con-
volutional layers are faster than 3D convolutional layers and
less prone to overfit. Therefore, the Top-Heavy autoencoder
is easier to train, faster, and smaller than a standard 3D
autoencoder. The architecture in this study is smaller than the

observed in the Top-Heavy I3D. Figure 2 shows the structure
of the 3D autoencoder and the Top-Heavy autoencoder. First,
the Top-Heavy encoder contains two 2D convolutional layers
and two 3D convolutional layers. Then, the decoder includes
one 3D transpose convolution layer and two 2D transpose
convolutional layers. Leaky ReLU is the activation function
for the convolutional and the transpose convolutional layers.
At the end of the decoder, there is a 3D convolutional layer
with the sigmoid function as activation. Finally, a batch nor-
malization layer is applied to reduce the training time. The
full description of the Top-Heavy autoencoder is in Table 1.

B. ANOMALY SCORE DISTILLATION IN TRAINING
D3D model can not be applied to detect anomalies in surveil-
lance videos. The reason is the difference between the output
of CNNs and Autoencoders. The video action recognition
task is a multiclass classification, where the CNNmust output
the correct class for any input that represents the same frame
in any color model. According to that idea, the misclassifi-
cation error of a CNN trained with the optical flow helps to
train a networkwith grayscale inputs. That is, the input frames
are the same, and only their pre-processing differs. However,
the case is different in the anomaly detection task; there-
fore, this paper presents a distillation procedure for training
Autoencoders that can extract spatiotemporal features from
video data, which we call Anomaly score distillation. The
architecture was designed to apply the proposed distillation
technique. The Anomaly score distillation procedure is illus-
trated in Figure 3.

The designed architecture includes two novelties:
1) Combination of 2D and 3D convolutional layers in

an Autoencoder model. The Top-Heavy order of the
convolutional layers is applied.

2) A novel distillation procedure for Autoencoder archi-
tecture training. The Anomaly score distillation proce-
dure uses Autoencoder reconstruction loss instead of
misclassification error.

As observed in Figure 3, the temporal network is trained
using optical flow of consecutive video frames. The trained
temporal network obtains the temporal reconstruction loss
for each of the optical flows in the database. The temporal
reconstruction loss, Lt , is defined by Equation (1), which is
the mean absolute error between the original optical flow
frames x(i) and the reconstructed optical flow frames of the
temporal stream ft (x(i)).

Lt (θ ) =
1
n

N∑
i=1

∣∣∣ft (x(i))− x(i)∣∣∣ (1)

The temporal reconstruction loss contains information
on the data’s temporal characteristics. Frames with high
temporal reconstruction loss contain numerous anomalous
temporal characteristics; low temporal reconstruction loss
indicates that temporal characteristics are behaving as
expected. Therefore, the temporal reconstruction loss is an
index of a temporal anomaly for each frame to help the

VOLUME 10, 2022 6211



E. Cruz-Esquivel, Z. J. Guzman-Zavaleta: Examination on Autoencoder Designs for Anomaly Detection in Video Surveillance

TABLE 1. The top-heavy autoencoder network structure: Convolutions and MaxPooling layers configuration in encoder and decoder.

FIGURE 3. Anomaly score distillation procedure. First step: the teacher
network is trained using optical flow. Second step: the trained teacher
network distills knowledge to the student network. Third step: student
network can extract spatiotemporal features in the inference.

spatial network training. Thus, the anomaly score transfers
the temporal knowledge to the spatial stream. According
to Equation (2), the anomaly score s(θ, x(i)) is the squared

difference between the temporal reconstruction loss Lt and
the spatial reconstruction loss Ls in the dataset x(i).

s(θ, x(i)) = (Lt (x(i))− Ls(x(i); θ ))2 (2)

The anomaly score increases when there exists a substan-
tial difference between the spatial and temporal reconstruc-
tion loss. The highest values of the anomaly score are when
the temporal network considers a frame highly anomalous,
but the spatial network considers it normal, or when the
temporal network considers a frame normal and the spatial
network considers it highly anomalous. The anomaly score,
s, changes according to the temporal reconstruction loss and
the spatial reconstruction loss. Therefore, the anomaly score
is an absolute anomaly measure, including the temporal and
spatial characteristics of the video.

The total loss or distilled loss for the spatial network, L(θ ),
is calculated by adding the spatial reconstruction loss and
the anomaly score according to Equation (3). The purpose
is to train the system to detect anomalous temporal character-
istics in the spatial stream. The loss of the spatial network,
Ls, is updated with the back-propagation procedure. The
anomaly score, s, changes according to the temporal recon-
struction loss and the spatial reconstruction loss. In contrast,
the temporal reconstruction loss is fixed for each of the frames
in the training iterations.

L(θ ) =
N−1∑
i=0

(Ls(x(i); θ )+ s(x(i); θ )) (3)

C. JOINT SPATIOTEMPORAL TRAINING
Zhao et al. trained their ST-AE model using an auxiliary pre-
diction decoder [8]. The ST-AE combines an encoder and two
decoders, one for reconstruction and another for prediction.
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The prediction decoder is for the training stage exclusively;
the adjustment of the model weights employs the reconstruc-
tion loss of both reconstruction and prediction branches. The
spatial stream is directly affected by the temporal stream each
iteration, but the temporal stream also receives feedback from
the spatial stream. Both branches learn the spatiotemporal
features in the process. Finally, with the ST-AEmodel trained,
only the spatial branch is used for inference.

In this work, we present the Joint spatiotemporal Training
technique. The novelty of the Joint spatiotemporal Training
technique is a loss function that teaches a single-stream net-
work the extraction of optical flow and grayscale features.
The proposed loss function updates spatial and temporal
streams in parallel. Although both streams are trained to
obtain spatiotemporal features, the spatial stream is preferred
for inference because of the lack of pre-processing of its
input.

The Joint spatiotemporal Training technique was applied
it to train two complete Top-Heavy autoencoders, a tempo-
ral and a spatial one. The spatial network receives either
grayscale or RGB color frames as input, while the temporal
network receives optical flow frames. First, the reconstruc-
tion loss of both autoencoders was combined and used to
update both networks’ weights simultaneously. Then, the
spatial Top-Heavy autoencoder is used for inference as it does
not need pre-processing its input. Figure 4 shows the Joint
spatiotemporal training in combination with the Top-Heavy
architecture.

L(θ1, θ2) = Ls(θ1)+ (Ls(θ1) ∗ Lt (θ2)) (4)

Equation (4) shows the total loss, L(θ1, θ2), for the Joint
spatiotemporal training technique. The loss of the spatial
network, Ls(θ1) and the temporal network, Lt (θ2), are mul-
tiplied. The multiplication of both reconstruction losses is
added to the spatial reconstruction loss. Therefore, the spatial
reconstruction loss has more weight than the temporal recon-
struction loss. Both losses are updated for each iteration using
back-propagation.

IV. DATASET AND METRICS IN THE ASSESSMENT
This Section describes the datasets for training and testing
for the proposed architecture and its variances. Additionally,
we present the evaluation metrics to validate the results.

For our experiments, we used four open datasets for
anomaly detection: UCSD [4], CUHK Avenue [5], Shang-
haiTech Campus [6], and StreetScene [7]. Figure 1 shows
some frame examples from the datasets. The description of
those datasets are as follows, but summarized in Table 2:

• UCSD dataset contains two different scenarios, Ped1
and Ped2, divided into video clips from pedestrian walk-
ways. The anomalies included in this context are mainly
unknown objects such as bikes and small cars. Ped1 con-
tains 6,800 training frames and 7,200 testing frameswith
a 238×158 pixels resolution. Ped2 contains 2,550 train-
ing frames and 2,010 testing frames with a 360× 240

FIGURE 4. Joint spatiotemporal training process. First step: temporal and
spatial network are trained simultaneously. Second step: spatial network
is used for extracting spatiotemporal features in the inference.

pixels resolution. Ped1 and Ped2 are available only in
grayscale.

• CUHK Avenue dataset is also a pedestrian dataset. The
anomalies in this context are mainly unexpected pedes-
trian behavior and some unknown objects like bikes. The
Avenue dataset has 15,328 training frames and 15,324
testing frames with a resolution of 640× 360 pixels.

• ShanghaiTech Campus dataset contains 13 different
scenes with different camera angles and lighting con-
ditions. This dataset has pedestrian paths, and anoma-
lies are mostly non-pedestrians like bikers or someone
pushing a stroller. The ShanghaiTech dataset contains
274,515 training frames and 42,883 testing frames with
a resolution of 856× 480 pixels.

• StreetScene dataset has one single scene with different
daylight conditions, a double-direction lane with two
pedestrian paths. Cars, bikes, and pedestrians are con-
sidered normal. Anomalies are strange behavior of the
objects in the scene. This dataset contains 56,847 train-
ing frames and 146,445 testing frames with a resolution
of 1280× 720 pixels.

We combined the four training datasets to alleviate over-
fitting and imbalanced data problems induced by an insuf-
ficient number of videos [23]. Based on the formats of
the videos, we separate these datasets into two groups:
grayscale and RGB. We kept clips from different datasets in
separate subfolders for fair comparisons between different
benchmarks. Nevertheless, those subfolders are considered
part of the more extensive dataset. The grayscale training
dataset combines the four provided grayscale datasets (USCD
with scenarios Ped1 and Ped2, Avenue, ShanghaiTech, and
StreetScene) and the grayscale versions of the testing fold-
ers of Avenue, ShanghaiTech, and StreetScene. Video frame
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TABLE 2. Number of training, testing and total frames for the selected
datasets.

preprocessing includes downsizing to 128× 128 pixels’ res-
olution apart from the grayscale conversion. The combined
grayscale dataset has 356,040 frames in total. The RGB
training dataset combines the training folders from only three
datasets (Avenue, ShanghaiTech, and StreetScene) contain-
ing 346,690 frames with a resolution of 128 × 128 pixels
in the RGB color model. Both training datasets include data
augmentation using a horizontal flip. In sum, the grayscale
training dataset contains 712,080 frames, while the RGB
training dataset contains 693,380 frames.

Additionally, we created a TV-L1 Optical Flow [24] ver-
sion of the existing Grayscale and RGB datasets. For each
pair of frames (skipping the first frame for each clip), the
TV-L1 obtained a pair of frames (u, v). The TV-L1 optical
flow version has 1,422,392 frames for the grayscale dataset
and 1,385,184 frames for the RGB dataset. The summarized
description of the four final pre-processed datasets is in
Table 3. We used the hold-out strategy for the evaluation
of the trained models, using the specific frames’ sets of
training and test provided by each dataset. For this, each
dataset kept testing folders separated. We employed the same
pre-processing techniques for training and test datasets with
the temporal matching between the video frames and their
corresponding TV-L1 optical flow frames.

TABLE 3. Number of total frames for the generated training datasets.

A. EVALUATION METRICS
The models’ evaluation uses four metrics: AUC-ROC, EER,
inference time, and trainable parameters. The Area Under
the Curve Receiver Operating Characteristic (AUC-ROC) is
a binary classification evaluation metric that measures the
performance of the video anomaly detection task. The ROC
curve has the True Positive Rate in the y axis and the False
Positive Rate in the x axis. The best result for the AUC
is 1, meaning all the inputs were classified correctly, while
0.5 means the classifier is acting randomly. The Equal Error
Rate (EER) is the point where false positives and false nega-
tives are equal. The lower the EER, the better the performance
of the system. The inference time helps us to measure the
model speed. We present the average inference time per 1000
frames for each model. Parameters modified and defined

by backpropagation during training are considered trainable;
thus, the number of trainable parameters is the metric for the
model size. The model size will directly affect the memory
requirements but not necessarily inference time or capacity.

V. ARCHITECTURES’ DESIGN COMPARISON
According with the description in Section III, two architec-
tures are part of this proposed examination: 1) a 3D autoen-
coder and 2) a Top-Heavy autoencoder. Table 4 lists the
number of training parameters and inference time for the
methods in our assessment. As expected, the 3D autoencoder
is bigger than the Top-Heavy autoencoder that uses 2D convo-
lutional layers. Additionally, there is no substantial difference
in size between the grayscale and RGB architectures. The
only difference is the number of channels of the input layer,
but then the channels from the RGB collapse, so it becomes
precisely the grayscale frame’s architecture. The difference
in the inference time for the Top-Heavy Autoencoder and the
3D Autoencoder, is 0.06 ms. The training of the models was
using a Nvidia Tesla V100. The inference time was measured
using a system with an Nvidia GeForce RTX 2070 SUPER
GPU card. The smaller GPU card is used for inference to
test the behavior in commercial systems. The inference time
includes the frame pre-processing without the costly optical
flow generation; it took as long as 10 ms for processing a pair
of images.

TABLE 4. Comparison of trainable parameters and inference time of the
different architectures.

A. EXPERIMENTAL SETUP
The architectures and the datasets of the previous sections
were developed using Tensorflow 2.1.3 and OpenCV 3.4.8.
Learning rate was fixed at 0.00001 with an Adam Optimizer
for all the models. All the architectures were trained with 30
epochs. Models were trained using a Nvidia Tesla V100
card with CUDA 10.2. The inference times were calculated
using an Nvidia GeForce RTX 2070 SUPER GPU card with
CUDA 10.2.

B. ARCHITECTURES’ PERFORMANCE COMPARISON
The comparisons ran as follows. First, we compare the
Top-Heavy autoencoder versus the 3D autoencoder. Then,
the results in the first comparison guide us to evaluate the
best autoencoder using two different training methods, the
Anomaly Score and the Joint spatiotemporal training.

1) TOP-HEAVY VS. 3D CONVOLUTIONS AUTOENCODERS
The comparison of the Top-Heavy autoencoder versus a
3D autoencoder included both grayscale and RGB datasets.
Each input in the assessment corresponds to a video clip
of 16 frames. Hence, the input size is 16 × 128 × 128 ×
1 for the grayscale dataset, while 16 × 128 × 128 × 3
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TABLE 5. AUC-ROC and EER results of the 3D vs. top-heavy autoencoders
for each dataset.

for the RGB dataset. Table 5 presents the measurements
using AUC-ROC and EER for each dataset. The Top-Heavy
autoencoder slightly outperforms the 3D autoencoder in
three datasets (UCSD Ped2, ShanghaiTech, and StreetScene).
However, the difference in the results of the 3D autoencoder
and Top-Heavy autoencoder models is minimal. The average
absolute difference of the AUC-ROC between both models in
grayscale and RGB datasets is 1.2. Moreover, the Top-Heavy
autoencoder uses only 57% of the trainable parameters than
the 3D autoencoder uses, as observed in Table 4. Therefore,
it is possible to substitute a 3D Autoencoder with the lighter
Top-Heavy Autoencoder without largely affecting the final
results.

2) ANOMALY SCORE DISTILLATION VS. JOINT
SPATIOTEMPORAL TRAINING
We selected the Top-Heavy autoencoder due to its perfor-
mance. Then, using the same dataset, we compared the two
developed training techniques: the Anomaly score distillation
and the Joint spatiotemporal. Regarding the results using the
Grayscale dataset and its TV-L1 Optical Flow, the Top-Heavy
spatial autoencoders received as input a clip of frames with
the shape of 16 × 128 × 128 × 1; dropping the first frame
of each folder to match the number of frames of the optical
flow dataset version. The temporal Top-Heavy autoencoders
received as input a clip of optical flow frames, u and v frames,
with the shape of 16× 128× 128× 2. One pair of temporal
and spatial networks were trained using the Anomaly score
distillation technique. The second pair of temporal and spatial
networks were trained using the Joint spatiotemporal training
technique.

The same procedure was repeated with the RGB dataset.
Two spatial Top-Heavy autoencoders were trained using as
input the RGB dataset frames, 16×128×128×3. Two more
Top-Heavy autoencoders were trained using the optical flow
version of the RGB dataset. These temporal networks had
input frames with the shape 16× 128× 128× 2. Spatial and
temporal networks were separated into two pairs, one trained
with the Anomaly score distillation technique and the other
with the Joint spatiotemporal training technique.

Table 6 shows that the training technique Anomaly score
has better results in most of the cases. The only exception

TABLE 6. AUC-ROC and EER results of the top-heavy autoencoder for
each dataset using two training techniques: the anomaly score and the
joint spatiotemporal.

is with the UCSD Ped1 dataset, where Joint spatiotemporal
training beats the Anomaly score. The difference between
both training methods AUC-ROC has an average of 1.12,
concluding that the training process with the Anomaly score
is a better option when not many available computational
resources are available.

C. COMPARISON OF THE ANOMALY SCORE TRAINED
AUTOENCODER DESIGN AGAINST RELATED WORKS
Completing the assessment in this paper, we include a
comparison of the proposed design with related works
using the Grayscale dataset in the Table 7. The Grayscale
dataset version was selected to include the popular UCSD
Anomaly detection dataset in the comparison. Table 7 lists
the AUC-ROC results of the proposed design, our Top-Heavy
autoencoder using the Anomaly Score in the training step for
grayscale frames (AS GS, for short in the table) against other
generative techniques for video anomaly detection task. The
related methods in the table reported results with the same
benchmarks as our assessment in their papers, those are:

1) AMDN: The Appearance and Motion DeepNet
model [18] uses Autoencoders combined with a mod-
ified Two-Stream Network that adds an auxiliary third
stream to help improve detection results.

2) HOG-HOF CAE: Histrogram of Oriented Gradients-
Histogram of Optical Flow Convolutional Autoen-
coder [23] uses an Autoencoder and the Two-Stream
Approach for its model and it is important to use as
comparison as it uses older Hand-crafted techniques,
HOG and HOF.

3) STAE-grayscale: The SpatioTemporal Autoencoder [8]
is constructed with one encoder and two decoders of
3D convolutional layers, it uses a parallel training of
the decoders which is important to compare against
distillation technique.

4) OF-ConvAE-LSTM: The Optical Flow Convolutional
Autoencoder Long Short Term Memory model [25]
uses Long Short Term Memory network for the extrac-
tion of temporal features, which has been used for
extracting temporal information in some other tasks
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TABLE 7. Comparison of AUC-ROC and EER values of the proposed autoencoder design against related works using different datasets.

like Time-Series analysis [26], [27], and it is also a
recurrent tool for video anomaly detection models.

5) Adversarial D.: The Adversarial Discriminator model
[2] has obtained the best results in the UCSD dataset
and it has a robust Two-Stream architecture using Gen-
erative Adversarial Networks.

6) GMFC-VAE: The Gaussian Mixture Fully Convolu-
tional - Variational Autoencoder [1] keeps the standard
Two-Stream Network approach and it uses a Varia-
tional Autoencoder to improve its feature extraction
capacity.

7) GMM-DAE: The Gaussian Mixture Model - Deep
Denoising Autoencoder [17] uses two-stream approach
as base. To improve the late fusion of both streams,
a GaussianMixture Model is applied to the latent space
of each autoencoder.

8) ITAE + GM: The implicit two-path autoencoder +
GenerativeModeling [19] uses different frame rates for
each of the streams, appearance or motion. To learn
normality an explicit likelihood generative model is
added.

9) Temporal Cues: The Temporal Cues from Socially
Unacceptable Trajectories for Anomaly Detection [21]
uses social interaction to develop temporal stream to
improve the spatial stream results.

10) Spatio + temporal: The Anomaly Detection in Videos
Using Two-Stream Autoencoder with Post Hoc Inter-
pretability [22] uses two-stream approach to obtain spa-
tiotemporal features and analyzes the obtained features
using heat maps.

In sum, the results for our model in UCSD Ped1 and UCSD
Ped2 are the lowest compared to the previous work. This
is related to the poor extraction of temporal features in the
system. As observed in the testing, UCSD Ped1 contains
more anomalies that can only be extracted by learning the
normal temporal features. Skateboards in UCSD Ped1, for
example, are hard to be identified by the human eye by
their shape but are noticed because of skaters’ movement
pace. The difference between UCSD Ped1 and Ped2 in all
cases is higher than 15%. The result difference between both
UCSD sets can be explained by the differences in the datasets.
The models presented in this work need some improvements
to perform better with datasets that contain more temporal

anomalies (UCSD Ped1 and StreetScene). The best results
were obtained in the datasets with a higher quantity of spatial
anomalies and their results were improved with the appli-
cation of the presented techniques (UCSD Ped2, Avenue or
Shanghaitech).

The anomalies in the Avenue dataset happen closer to the
camera, making them easier to identify by spatial feature
extraction. Even better, the results of our proposed model
with the ShanghaiTech dataset outperform the results of all
the related works. This is because the characteristics of the
anomalies found in the ShanghaiTech dataset are evident and
therefore detected by correct spatial feature extraction.

Even though our proposed model does not have high
AUC-ROC results in UCSD and Avenue dataset, we need
to highlight some essential characteristics. First, the pro-
posed model does not need optical flow computations for
the inferences and requires smaller memory resources than
related works. Second, the proposed design has fewer train-
able parameters than the related works. For instance, the clos-
est model in size to our proposed model is the GMM-DAE;
however, that model needs optical flow pre-processing and
dynamic flow frames creation, taking more processing time
than ours.

VI. CONCLUSION
In this work, we evaluated potential concepts adapted for the
anomaly detection task for intelligent video surveillance. The
examination included the comparison of a Top-Heavy design
versus 3D convolutional layers in autoencoders. Our experi-
mental results showed that the Top-Heavy Autoencoder uses
only the 57% of the trainable parameters compared to the 3D
autoencoder. We found an average absolute difference of the
AUC-ROC between both models of 1.2. The reduced number
of trainable parameters of the Top-Heavy autoencoder design
improved the AUC-ROC results compared to the 3D autoen-
coder results. Then, this examination also aimed to select
the best training strategy between the methods Anomaly
Score and Joint spatiotemporal. The AUC-ROC difference
between Anomaly Score and Joint spatiotemporal training
methods has an average of 1.12. The results show a slight
improvement in the temporal features extraction. Therefore,
the best method for training depends on the need for the
specific project due to the necessity of joint training models
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simultaneously or training the teacher model first and then
the student. Finally, the extraction of more defining temporal
features must be addressed for future work.
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