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ABSTRACT The increase in the amounts of information used to analyze data is problematic since the
memory necessary to store and process it is getting quite big. The interval inverted index representation
was developed to reduce the required memory to store data, and Frag-Cubing is one of the most popular
algorithms. In this paper, we propose two new data cubing algorithms: 3iCubing and M3iCubing. 3iCubing
is a Frag-Cubing-based algorithm that uses the interval inverted index representation, while M3iCubing uses
both a normal and interval inverted index data representation. The algorithms were compared using synthetic
and real data sets in indexation and querying operations, both runtime and memory-wise. The experimental
evaluation shows that 3iCubing can considerably reduce the memory needed to index a data set, reducing
around 25% of the memory used by Frag-Cubing. Moreover, the results show that the interval inverted index
representation is dependent on the data skewness to reduce the memory consumption, having positive results

with highly skewed and real-world data sets.

INDEX TERMS Big data, data cube, inverted index, OLAP.

I. INTRODUCTION

In the last decades, information systems’ popularity has
grown exponentially, increasing the amount of collected data.
Services that used to be done in person are now done online,
and companies now attempt to give fully personalized ser-
vices by analyzing their customers’ data patterns. Also, sci-
entific research is done by analyzing massive amounts of
data. In order to be able to do data analysis, companies need
ever-increasing computing power since the amount of data
available has been rising for the last decades [1], [2].

The rise in the size of such data collections has been out-
growing the increase in both processing power and memory
size that a single system may have, resulting in the need to
have multiple computers to do a single analysis [3].

Consequently, there is a clear need for algorithms that use
less memory and can process data faster, which is quite hard
to get since, as a rule of thumb, there is almost always a trade-
off between speed and size [4].

The ability that some algorithms must ““‘consolidate, view
and analyze data according to multiple dimensions, in ways
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that make sense to one or more specific enterprise ana-
lysts” [5] is called OLAP (online analytical processing).
An algorithm needs to create a multiple-dimensional rep-
resentation of the data to perform such operations, usually
utilizing arrays, known as a data cube.

Before doing any kind of analysis, it is necessary to create
a data cube structure that can use gigabytes of memory.
Therefore, one of the main challenges to new algorithms is
reducing the memory necessary to create and process data
cubes.

In 2004, Frag-Cubing [6] was presented as a viable option
to perform OLAP. Frag-Cubing was the first OLAP algorithm
with a good runtime using an acceptable memory to index
the data sets. In addition, it used inverted index lists to create
the data cube and used iceberg cubing computation, presented
in [7], to compute queries.

An inverted index list is a way to represent data where,
instead of representing each tuple, a list with all its attributes
is stored; for each attribute, a list of the tuple IDs that contain
the attribute. An inverted index can be seen as a collection of
ordered natural numbers [8].

Many algorithms are based on the inverted index approach
presented in Frag-Cubing, introducing new operations to
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what Frag-Cubing already could do, such as qCube [9],
or changing its structure and type of memory usage to
improve memory consumption, such as bCubing [10].

In this paper, it is presented a new proposal to store
and represent the inverted index lists in memory, focusing
on reducing memory consumption. This proposal retains
an acceptable performance when doing operations over the
developed inverted index representation. It was studied how
our proposal affects runtime and memory consumption, com-
paring the Frag-Cubing algorithm with two variations of
the proposal: 3iCubing (Interval Inverted Index Cubing) and
M3iCubing (Mixed Interval Inverted Index). These proposals
use a new inverted index representation, where 3iCubing,
fully employs this new representation, while M3iCubing,
uses regular inverted indexes when doing some operations.

The experimental evaluation with natural and synthetic
data shows that the interval inverted index representation
(3iCubing) can considerably reduce the memory needed to
index a data set. For example, to index information set
with 130 million tuples, 30 dimensions, 2500 cardinality, and
skew of 5, 3iCubing used 22% of the memory that Frag-
Cubing needed.

The principal concepts present in data sets are dimensions,
cardinality, and skew. A dimension is one of the multiple
characteristics that a tuple can have in a data set, this being
the different values used to create a tuple. Cardinality is the
number of different values that are present in a data set for
each dimension. Skew is a probabilistic measure related to
the distribution of the attribute values. A skew of zero means
the distribution of values in a data set is uniform. The higher
the skew, the higher the tendency towards a central number,
following a mathematical normal distribution.

Operational runtime was also a concern when developing
new index structures. Therefore, all three algorithms were
tested with classic data cube searches such as point queries
and subcube queries. Point queries seek a list of tuples within
the data cube, while a subcube query does a study using
part of the data cube. A smaller data cube, named subcube,
organized by the part of the data cube being studied, is created
to answer a subcube query. The subcube can be composed of
typical inverted lists or our proposed interval inverted index
lists.

Experiments have shown that using interval inverted
indexes, both in the data cube and subcube, to answer subcube
queries can, in a worst-case scenario, be around four times
slower than typical inverted indexes. However, when interval
inverted index lists are used to create the data cube and
usual inverted index lists to create the subcube, the algorithm
takes twice the time necessary to complete subcube query
operations in a worst-case scenario.

The rest of the paper is organized as follows. Section II
presents some background and related work, such as OLAP
algorithms based on inverted index and bitmap. Section III
details the 3iCubing proposal, detailing its structure and most
relevant algorithms. Section IV describes the experiments,
compares the three algorithms created, and discusses the
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results. Finally, Section V presents the conclusions and point
out ideas for future work.

Il. BACKGROUND AND RELATED WORK

Due to the increasing amount of data being tracked and
stored, OLAP analysis is a rising problem created by tech-
nology nowadays. This problem can be divided into two
subproblems. The first one is creating the data cube structure
itself, which can use tens or even hundreds of gigabytes of
RAM. This first sub-problem is the data cube indexation. The
second subproblem is to quickly answer queries since both
extra memory and processing power are required to answer
queries.

Two main approaches are usually used to solve these prob-
lems. One is to implement a sequential high dimension cube
solution using a bitmap-based structure such as [11]-[13],
and the other is the use of an inverted index-based structure
(6], [91, [10], [14].

In this section, multiple different algorithms designed to
allow OLAP analysis are presented. The algorithms pre-
sented are bitmap-based, inverted index-based, and binary
three-based.

BitCube [11] is an algorithm that uses bitmaps to store and
identify tuple attributes in a data cube. BitCube sections a
data cube by its dimensions and then sections its dimensions
into attribute values. For each attribute value, a bitmap is
created; that is, for each attribute value, an array of binary
values (bitmap) with the number of tuples is created where
each value represents a tuple. In the bitmap, if the tuple has
the value represented by that bitmap, it stores the bit ‘1°.
Otherwise, it stores ‘0’. This approach is efficient for data
cubes with a low or moderate number of tuples. However,
as it is shown in this paper, when using bigger data sets, the
processing time and memory required can get quite high due
to having both memory and processing runtime increasing
exponentially with the growth of the number of dimensions
and cardinality.

Compressed Bitmap Index-Based Method [12] is an algo-
rithm where, as the name suggests, a data cube is represented
using bitmap arrays with compression. In this compression,
two different pointers are used to delimit the first and last
positions. The bit one appears in the bitmap, only represent-
ing the bitmap values whose positions are inside the interval
delimited by those to pointers. The tests have shown that this
algorithm is faster and uses less memory than Frag-Cubing
to process and store data sets with many dimensions and low
cardinality. However, the usual bitmap limitations with high
cardinality data sets are still present, whereas inverted index-
based algorithms, such as Frag-Cubing, do not suffer from
this problem.

Frag-Cubing [6] is a popular approach that uses inverted
index tables to store and process the data cube. Although
the data cube operator was great when solving the limitation
of the group by operator [15], Data Cube’s main flaw is of
exponential complexity both in runtime and memory con-
sumption. The main objective of Frag-Cubing was to reduce
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the exponential complexity problem related to the data cube
operator, which was done successfully by using a different
data hierarchy. The Frag-Cubing’s hierarchy divides the data
cube into smaller cubes (cuboids or Shell-Fragments) by dis-
tributing the cube’s dimensions into those cuboids, resulting
in a cuboid having one or more dimensions. Each cuboid is
treated as its data cube, storing the data using inverted index
lists.

Formally, a tuple, #,,, is described by their TID (Tuple IDen-
tifier) and the attribute values. To better understand Frag-
Cubing’s data structure let us see an example composed by
five tuples with 2 dimensions: t; = {1, al, bl}, t = {2, a2,
bl}, t3 = {3, a2, b2}, t4 = {4, al, b2} and t5 = {5, a3, bl}.
In Table 1, it is possible to see how a data set comprised
of these five tuples would be stored in Frag-Cubing’s data
structure when using a single dimension to each cuboid.

TABLE 1. Frag-cubing data hierarchy.

Dimension Attribute Value Inverted
|/ cuboid Index List
al 1,4
A a2 2,3
a3 5
B bl 1,2,5
b2 3,4

Queries can be done over dimensions that are processed in
different cuboids. To be able to answer such queries, Frag-
Cubing starts by obtaining the values from each cuboid and
then uses intersection algorithms to join the results obtained.

Frag-Cubing’s runtime and memory complexity grow lin-
early with the number of dimensions and tuples [6], [14], both
when creating the data cube and answering queries. Thus,
although Frag-Cubing’s undoubtable success in reducing the
data cube memory consumption while keeping fast opera-
tions, the increased data sets analyzed results in the need for
more powerful or less memory-hungry algorithms, such as
HFRAG qCube, and bCubing.

qCube [9] also uses inverted indexes to compute range
queries over high dimension data cubes. Based on Frag-
Cubing, its design uses sorted intersections and unions to do
OLAP computing and has a linear memory and runtime as
the number of attributes per tuples (dimensions) increases.
It also implements multiple operators, such as point, range,
and inquire.

H-FRAG [14] utilizes a hybrid memory system, distribut-
ing the tuples and TID lists smartly between main memory
and disk. When the data cube is first being created, H-FRAG
starts by deciding which cube fragments are stored in the
main memory and which ones are stored in disk. To do that,
H-FRAG scans the entire data set to obtain the frequency
of each attribute value for each dimension in the data set.
After that, the average frequency is calculated, attributes with
a frequency above the average are stored in the system’s
main memory while the others are stored in external memory.
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Another difference between Frag-Cubing and H-FRAG is
the fact that while Frag-Cubing only implements equal and
sub-cube query operators, H-FRAG also implements range
queries. The biggest problem in H-FRAG is the poor runtime
performance when processing small relations, compared with
main memory-based algorithms, such as Frag-Cubing.

bCubing [10] utilizes both main memory and disk to store
and process data, such as H-FRAG. However, the manage-
ment of the hybrid data is completely different. The main
difference between bCubing and most other Frag-Cubing-
based algorithms is its structure. While most algorithms have
a single array structure used to store and access the data cube,
bCubing uses two different array structures: one to store the
data cube itself and a second to map the first structure, so the
access is more efficient. The tuples are divided into blocks.
Each block is identified by its id, or, for a short bid. The blocks
have a maximum number of tuples, and, except for a single
last block, all blocks have that size. A first table, kept in the
disk, stores the tuple ids, and attribute values are also created,
dividing them by the blocks.

A second table, which is stored in the main memory,
is used to map the attribute values of each block, allowing
the program to know if the block contains an attribute before
accessing it. Compared to the Frag-Cubing approach, the
experiments show that bCubing becomes more efficient than
Frag-Cubing to process bigger data cubes, even allowing
processing and storing data sets with 10° tuples. However,
it also must be pointed out that this algorithm still suffers from
the same high-performance penalty when answering smaller
relations.

The work done in [16] is quite different from all the algo-
rithms explained above. In that paper, the authors create a
data cube using a binary search three, named Binary Search
Prefix Three (BSPT), to store the cuboids. To support the
BSPT table, the definitions of “prefix”” and suffix are created.
A prefix is a table value that comes before the value being
analyzed, and a suffix is a value that comes after the value
being analyzed. The structure used to build the BSPT tree is
composed by:

1. The attribute value that is represented in that object;

2. Two child attribute values that can only store other
attribute values of the same dimension;

3. A child attribute value that stores an attribute value of
the next dimension;

4. A list to store the tuple identifiers containing the attribute
values represented until that part of the tree.

It must be noted that only different dimensions’ attribute
values’ combinations (point 3) are stored in the BSPT tree.
This algorithm stores the BSPT table on disk. The author
proposes an algorithm similar to the ones used on binary trees
to answer any type of query. Unfortunately, the experiments
were done in the paper only considered this algorithm. There-
fore, it is not possible to make conclusions on its proficiency
and capabilities when compared with other algorithms.

Further improvements over the algorithm presented in [16]
have been made by the same author in [17]-[19], and [20].

8451



IEEE Access

M. Domingues et al.: 3iCubing: Interval Inverted Index Approach to Data Cubes

Another related work to ours is inverted index compression
algorithms. These algorithms are used to reduce the quantity
of memory. The survey [8] subdivides compression algo-
rithms into three groups: i) algorithms that compress a single
integer, ii) algorithms that compress many integers together,
and iii) algorithms that compress many inverted lists together.
Although the compression algorithms can reduce memory
consumption, we consider that most of them are not suitable
to keep a good performance when doing OLAP operations
since there is a need for heavy decoding operations.

Historically, the biggest problem related to the data cube
operator is its memory consumption. It is very clear the
objective of attempting to minimize the memory necessary
to create a data cube in the multiple algorithms presented
in this related work, being either by creating different data
representations [6], [11], [12], [16], using hybrid memory
[10], [14] or even distributing the data along with different
systems, avoiding runtime penalties as much as it is possible.

The objective of this work is to present a new data struc-
ture that is able to considerably reduce the memory nec-
essary to store a data cube while keeping an operational
runtime similar to the one found when using the normal data
representation.

IIl. THE 3iCubing APPROACH

As stated above, an inverted index is no more than a col-
lection of sorted natural numbers named TIDs (tuple IDs).
The usual representation of an inverted index is done using
a list of integers. The regular inverted index representation,
which stores every TID, will be called typical inverted index
representation.

Assuming an integer to be 4 bytes and a list with n ele-
ments, the memory needed to store a single inverted index list
with this data representation can be described as 4n bytes.

The interval inverted index representation is focused on
reducing the memory necessary to represent inverted lists.
However, in real-world scenarios, it is possible to see that
multiple TIDs in a list are common to be back-to-back inte-
gers. Therefore, the interval inverted index representation
exploits the occurrences of the following TIDs to reduce the
memory. Thus, to do that, our structure stores both TIDs and
TID intervals.

When the algorithm detects that three or more back-
to-back TIDs, it only stores the lower and higher integers,
treating those values as a TID interval. Otherwise, the algo-
rithm treats the TIDs as a non-interval integer.

Assuming an inverted list with » intervals of 3 or more
back-to-back integers, m values of integer, and an integer
to use 4 bytes of memory, the memory needed to store that
invented list can be described as 2n x 4 + 4m 2n x 4 4+ 4m
bytes.

To better understand the proposed new structure, let us
see an example. Assuming an inverted index list that can
be described by the array [1, 2, 3, 4, 5, 8, 19, 22, 23, 24,
27, 28, 30], this list is composed of 13 integers would need
4 x 13 = 52 bytes. With our structure, the inverted index list
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above would be transformed to [1-5, 8, 19, 22-24, 27,28, 30],
being necessary 2 x 2 x 4 4+ 4 x 5 = 36 bytes to store it.

Frag-Cubing is one the most relevant data cube algorithms,
and multiple other algorithms have been done having Frag-
Cubing as their base. Due to the popularity of this algorithm
and the fact that it uses typical inverted indexes to store the
data cube, it will be used as a base for our work.

As further explained in section IV, we used an implementa-
tion of Frag-Cubing done by us and our proposed algorithm,
3iCubing. The main difference between those two implemen-
tations is the inverted index representation used. While Frag-
Cubing uses the typical inverted index representation, which
stores every TID, 3iCubing uses our interval inverted index
representation.

Note that multiple implementations of Frag-Cubing have
been done before. The decision to implement our own comes
from the fact that, by fully controlling the code, we can
minimize any not intended differences between Frag-Cubing
and 3iCubing.

Using these different inverted index representations
requires changes in other implementations, such as differ-
ent indexation and intersection algorithms. Besides, we also
propose an algorithm that allows the update of the 3iCubing
data cube and presents the algorithms used to perform point
queries and subcube queries. All those algorithms are shown
in the remainder of this section.

A. 3iCubing INDEXATION ALGORITHM

When using the typical inverted index representation, index-
ing a data set by creating the data cube can be seen as
repeatedly adding the TIDs to the right inverted index lists
until the data cube is completed.

In the case of 3iCube’s inverted index lists, a new step
to create the intervals is needed. When adding a new TID,
the indexation algorithm does, by the expressed order, the
following steps:

1. Checks if it is possible to store the new TID into an
existent interval;

2. Checks if it is possible to store the new TID in a new
interval;

3. Stores the new TID outside an interval.

These three steps, when done in this order, allow us to
create the intervals. To better understand this algorithm, let
us see some examples.

In the first example, assume the interval inverted index
A =[1-4] and the new TID 5 to be added. Since the new TID
is the number after the highest value of the last interval, the
algorithm simply changed those TIDs, resulting in A = [1-5].

In the second example, let us assume the interval inverted
index B = [1-3, 7, 8] and the new TID 9. Although, in this
example, it is impossible to change the last interval’s highest
TID by the new TID. Therefore, the algorithm creates a new
interval using TIDs already in the list and the new TID.
Again, an interval is composed of a minimum of 3 or more
numerically followed TID. In this case, it is possible to create
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a new interval using the last two TIDs in the list and the new
TID, resulting in B = [1-3, 7-9].

The third example assumes an interval inverted index
C = [4] and a new TID 9. It is impossible to add the new TID
to an interval since no intervals are yet created. Furthermore,
itis also not possible to create a new interval since a minimum
of three TIDs to do that. Having that clear, the only remaining
option is to add the new TID outside any intervals, resulting
in C = [4], [9].

The algorithm’s pseudocode can be seen in Figure 1.

Input: new TID nT;

Output: none;

1. ifnT—1 equal last TID in last interval then:

2. last TID in an interval = nT;

3. elseif last two TIDs outside interval and nT are followed numbers
then:

4. creates new interval with n7T and the last two TIDs outside
interval;

5. else:

6. adds nT outside any intervals;

7. end

FIGURE 1. 3iCubing’s indexation algorithm.

From an implementation point of view, arrays were used
to represent the inverted index lists. Arrays have a fixed size.
Therefore, when an array would be full and needed to store
another TID, a new array with double the size of the old
array would be created, and the values would be copied to
the new array. This operation to increase the array size is
the slowest operation when indexing a data set. Therefore,
as shown, reducing the number of times, it is done is crucial
to have better indexation runtimes.

B. 3iCubing INTERSECTION ALGORITHM

The intersection algorithm is used to do the mathematical
intersection between two inverted index lists. This algorithm
is a core part of the OLAP capabilities since most of the
runtime necessary to process the queries will be inside the
intersection algorithm.

Until this point, the interval inverted index lists has been
treated as a single array capable of strengthening both a TID
and a TID interval. However, from a practical point of view,
that is not the case.

In our implementation, an interval inverted index list is
composed of three arrays. One array stores the TIDs outside
any intervals, while the other two arrays store the lower and
higher interval’s TIDs.

Unlike the typical inverted index list, this way to represent
data does not allow instantaneous access to the next integer in
the list. To access the next lower TID in the list, this algorithm
must decide between the lower TID interval and the lower
TID outside an interval.

Due to this difference in structure compared to the typical
inverted index representation, a new intersection algorithm
was created.
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The 3iCubing
in Figure 2.

intersection algorithm can be seen

Input: Interval Inverted Index 4 and Interval Inverted Index B;
Output: Interval Inverted Index C, storing the result;

1.  While A and B have TIDs to intersect do:

2 nA = chosen TID interval or TID outside interval from A;
3. nB = chosen TID interval or TID outside interval from B;
4 Adds to Cthe result of nA N nB;
5 end

FIGURE 2. 3iCubing’s intersection algorithm.

Although not being possible to represent in the pseu-
docode, it must be noted that the intersection with intervals is
far more complicated than when using only numbers. There-
fore, there is a runtime penalty related to the intersection of
intervals. It must be pointed out that, in some circumstances,
the interval inverted index intersection algorithm can be faster
than the normal inverted index one since it can process inter-
vals at once.

C. 3iCubing UPDATE ALGORITHM

Although not usual, there are multiple instances where a need
to update the data cube may exist. However, since this opera-
tion is quite simple and doesn’t necessarily have a permanent
effect on a complete re-indexation of the data cube, it is not a
viable operation due to the runtime cost.

Having that in mind, we developed a structure that allows
the update of such data cubes. To better understand how the
update works, we must better understand the data hierarchy.

A data set, a file composed of all the tuples, is used to create
the data cube. The tuples in the data set are composed by their
attributes. All the tuples have the same number of attributes.
Each of those attributes is used to represent the value of the
tuples in a dimension. Therefore all the tuples have the same
number of dimensions.

Inside the created data cube, each dimension stores its
different attribute values, and the inverted index lists all those
attribute values. Thus, when a tuple is updated, that tuple
must have a new and different attribute value for the updated
dimensions.

Since the update is done within a dimension, our update
structure/algorithm is done at that level. Our proposed struc-
ture includes two different lists for each dimension.

One of those lists is used to store the TID of tuple with
the modified attribute value, while the other is used to store
the new attribute value. It must be noted that these lists only
contain TIDs whose attribute value is different from those
stored in the inverted index lists.

The algorithm to update the attribute value of some TID
can be seen in Figure 3.

As shown in Figure 3, the update algorithm receives the
tuple being updated and its new attribute value. Therefore, the
first step is to obtain the updated TID’s value in the inverted
index lists/ data cube (Figure 3, line 1). Then, the algorithm
verifies if the new attribute value is the same as the original
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Input: TID being updated n7, new attribute value nV, list that stores
the updated TIDs ¢List and list that stores the new attribute values to
the modified TIDs vList;
Output: none;
1. dataCubeValue = getAtribute(nT).
if nV equal dataCubeValue then:
seachAndRemove(nT, tList, vList);
else:
updateModifiedTid(nT, nV, tList, vList);
end

SAbh Wb

FIGURE 3. 3iCubing’s update algorithm.

one (Figure 3, line 2). If so, the algorithm searches and
removes the updated TID from the list that stores the modified
TIDs and their updated value since this tuple could have been
modified before (Figure 3, line 3).

If the new attribute value and the original attribute values
are different, the algorithm needs to store this update in the
lists (Figure 3, line 5).

This kind of update algorithm makes the retrieval of the
inverted index lists have extra steps. Before, the access was
instantaneous when looking for the inverted index list with the
TIDs that contain some attribute value. With these changes,
the same process’s time complexity is linear with the number
of TIDs stored in the list of updated TIDs.

In Figure 4, it is possible to see the retrieval algorithm’s
pseudocode.

Input: attribute value a/ whose inverted index list is being searched
for, list that stores the updated TIDs ¢List and list that stores the new
attribute values to the modified TIDs vList;
1.  Output: inverted index list with TIDs that contain the attribute
value V;
iList = getInvertedIndexList(aV);
for each TID in tList do:
if TID € tList then:
removeTIDandValue(7ID, iList);
else if 7/D’s related value in vList equal aV then:
add(TID, iList),
end
end
0. end

SeRIAN A WD

FIGURE 4. 3iCubing’s retrieval algorithm.

The retrieval algorithm obtains the inverted index list
related to the attribute value received (Figure 4, line 1). Then,
it needs to change the list taking into account the updated
tuples. If a TID is both in the modifies TIDs list and in the
inverted index list obtained, the TID is removed from the
inverted index array. Otherwise, the modified TID’s attribute
value is verified. If the updated attribute value is equal to
the one whose inverted index list is retrieved, then the TID
is added to the index list. It must be noted that the inverted
index’s structure rules must be kept intact. This is, the inter-
vals must be changed accordingly, and the TIDs must be
added in the right order.
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D. POINT QUERY ALGORITHM
Point queries are used to retrieve the list of TIDs whose tuples
contain all the values instantiated by the equal operators.
When doing a point query, two different operators can
be used to indicate the tuple’s values being searched to a
dimension:
« Aggregate operator: used to indicate that a specific value
is being searched for.
« Equal operator: used to instantiate the attribute value that
all returning tuples must-have.
The point query’s algorithm may be seen in Figure 5.

Input: query g,

Output: inverted index list with the result rList;

1.  for each equal operator eq in g do:
addToList(iLists, getInvertedIndexList(eq))

end

rList = iLists[0];

for each /ist in iLists do:
rList = intersect(rList, list)

end

N hwWN

FIGURE 5. Point query algorithm.

The point query’s algorithm starts by storing all the
inverted index arrays for the instantiated attribute values in a
list (Figure 5, lines 1 and 2). Then it intersects all the inverted
index lists stored before (Figure 5, lines 5 and 6). This simple
algorithm allows us to obtain a list comprised of the TIDs in
common in each instantiated attribute value’s inverted index
lists.

This kind of querying algorithm is shared between both
Frag-Cubing and 3iCubing. Therefore any differences in
operational runtime and memory consumption can only be
related to the intersection operation.

E. SUBCUBE QUERY ALGORITHM
Subcube queries are operations used to analyze part of the
data cube.

Besides the operators presented in subsection III.D,
in order to create a subcube query, it must be used at least
one inquire operator. This is because inquired operators are
used to studying how the subcube is composed by varying
the values of the inquired dimension.

The subcube query’s algorithm can be seen in Figure 6.

Input: query ¢, verbose option v;

Output: none;

1.  subcube = create_subcube(q);

2.  for each combination of subcube query sq do:
3 result = point_query(subcube, sc);

4.  if verbose is true then:

5 show_result(result);

6. end

FIGURE 6. Subcube query algorithm.

The subcube query’s algorithm starts by creating a sub-
cube (Figure 6, line 1). It must be noted that the subcube is
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composed of the tuples that contain all the instantiated
attributes in the query. Next, the algorithm does every sin-
gle combination of point query in the subcube, varying
the attribute value in the inquired dimensions. Finally, the
query and result are stored in a list named result (Figure 6,
lines 2 and 3). The algorithm also receives a verbose option
that is used by the program to decide if the subcube query’s
results is shown or not. This option was created for testing
purposes. The last step done by the algorithm is to decide if
the result is shown or not.

IV. EXPERIMENTS

Multiple tests were done to compare how the interval inverted
index approach compares against the usual inverted index
approach, both runtime and memory consumption during the
indexation process and query operations.

Three different approaches were implemented: Frag-
Cubing, 3iCubing, and M3iCubing.

Frag-Cubing utilizes the usual inverted index lists both in
the data cube and subcube during subcube queries.

3iCubing utilizes interval index lists both in the data cube
and subcube during subcube queries.

The M3iCubing approach uses a mix of both lists. This
algorithm utilizes interval inverted indexes in the data cube
and usually inverted indexes to compose the subcube during
subcube queries. It must be noted that this algorithm only
differs from 3iCubing during subcube queries. Thus, it was
not utilized during other tests.

All the algorithms were implemented in Java (version 16)
and, as stated above, were written as similarly as possible,
minimizing any differences other than the inverted index
approach. The source code to the implementations used can
be found in the following online repositories:

o Frag-Cubing -  github.com/Blaldas/Frag-Cubing_

Javac_Simplified;
« 3iCubing — github.com/Blaldas/3iCubing;
o M3iCubing — github.com/Blaldas/M3iCubing.

A. EXPERIMENTAL SETUP

All the tests were run on an AMD Epyc processor system, vir-
tually reduced to 4 cores, 32 gigabytes of RAM, and 256 giga-
bytes of the disk.

The Java command “Xmx30g” was also used in all the
tests. This command indicates that the programs can use
a maximum of 30 gigabytes of memory. It was necessary
since the Java programs would not use more than 8 gigabytes
of memory without it. The value of 30 gigabytes was used
since using more than that would often make the system use
swap operations or even kill the Java process due to lack of
resources.

In order to create the synthetic data sets, a generator
provided by the IlliMine project was used. This program
allows to change parameters such as the number of tuples,
the number of attribute values per tuple, which will be named
the number of dimensions, cardinality of each dimension, and
the general skew of the data set.
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For the remainder of this section, T is the number of
tuples, D is the number of dimensions, C is the cardinality
of the dimensions, which, for practical reasons, is equal to
the biggest attribute in a dimension, and S is the skew of
the attributes, were S = 0 means that the distribution of the
attributes is uniform along the data set and, as S becomes
greater, the data gets more skewed towards a random central
value.

The tests obtained the speed to index the data cube, its
size in memory after the operation is completed, the runtime
of different query operations, and the memory used by the
algorithm to process such operations.

To obtain the results, an industry-standard procedure was
used: five different queries were done, the lower and higher
values were removed, and the result was an average of the
remaining three values. The result obtained is the value that
will represent the metrics explained below. It must be noted
that the different queries were always the same when doing
the same tests with varying sets of data.

Finally, the verbose option explained in subsection IIL.LE
was kept false. Therefore, no results were printed on the
screen. Because showing the results is quite slow and unnec-
essary to this study, verbose was kept off.

B. INDEXATION RUNTIME AND STRUCTURE SIZE
Indexation tests are used to test the differences between
3iCube and Frag-Cubing algorithms when creating the data
cube. These tests are measured with two different metrics:

o Indexation Runtime: this metric is used to analyze the

time needed for both algorithms to create the data cube.

« Structure Size: this metric is used to analyze the amount

of memory necessary to keep the finalized data cube in
memory. Note that indexing a data cube can momentar-
ily consume more memory than the value obtained since
the last operation is done by the indexation algorithm is
deleting the space unused by the structure.

Regarding the indexation runtimes, both algorithms had
linear growth with the number of tuples, number of dimen-
sions, and cardinality. As it was expected, the 3iCubing algo-
rithm was, generally, slightly slower to index the data cube
when compared to Frag-Cubing, which is expected since it
needs to compute the intervals.

The only variable that seems to change the pattern of faster
indexation runtimes from the Frag-Cubing algorithm is skew.
In Figure 7, it is possible to see the evolution of the indexation
runtime varying the skew for both algorithms. As itis possible
to see, the increase of the skew is followed by a general
decrease in the gap between both programs.

The decrease in the indexation runtimes from 3iCubing,
when compared to the Frag-Cubing algorithm, happens due
to the fact that 3iCubing does fewer times the operation of
increasing the size of the inverted index arrays, which is the
lowest operation, as explained in subsection III.A.

Regarding structure size, tests show that changing the
cardinality does not seem to affect considerably the mem-
ory needed in both algorithms. Both algorithms had the
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FIGURE 7. Indexation runtime, in seconds, of a data set with T = 130M,
D=30,C=2500and S =0,0.5,1,1.5,2,25,3,3.5,4,4.5,5.

linear memory consumption increase following the increase
of dimensions and tuples. However, interesting results,
as expected, are obtained when changing the skew.

STRUCTURE SIZE

=== Frag-Cubing 3iCubing

=3

STRUCTURE SIZE (GIGABYTES)
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FIGURE 8. Structure size, in gigabytes, of a data set with T = 130M,
D =30,C=2500and S =0,0.5,1, 1.5,2,2.5, 3, 3.5, 4,4.5,5.

In Figure 8, it is possible to see the evolution of both
algorithms’ structure sizes varying the skew. When the skew
is above 1.5, the compression can be done more effectively,
and the 3iCubing algorithm starts using considerably less
memory than Frag-Cubing. Notably, when the S = 5, the
3iCubing algorithm utilizes around 25.6% of the memory that
Frag-Cubing needs. The higher the data set skew, the higher
the chances of the same attribute values being repeated in
the following tuples. The more the same attribute value gets
repeated in the following tuples, the better 3iCubing’s interval
algorithm works, hence these results.

An unrelated test was made using a data set with T = 500
million, D = 30, C = 2500, and S = 5. 3iCubing index such
data set with an indexation runtime of 16.4 minutes and a
structure size of 11.99 Gigabytes. Unfortunately, the Frag-
Cubing algorithm could not index the same data set using
the 30 gigabytes of main memory available in our system.
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C. POINT QUERIES

Some tests comparing both Frag-Cubing and 3iCubing

answering point queries were done. To these tests, we created

used a data set with T = 130 million, D = 30, and C = 2500.
The point queries made had 30 equal operators and used

the most common values so that the point queries done would

have the biggest runtime possible.

POINT QUERY RUNTIME
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FIGURE 9. Point query runtime varying the Skew with T = 130M, D = 30,
30 Equal Operators and C = 2500, S =0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5 and 5.

As it can be seen in Figure 9, in general, 3iCubing is slower
than Frag-Cubing to answer point queries. Notably, when
S =2, Frag-Cubing was more than twice as fast as 3iCubing.
This result comes from the fact that 3iCubing’s intersection
algorithm needs to choose the TIDs to be compared before
making the comparison, as stated in subsection III.C. On the
other hand, the Frag-Cubing intersection algorithm does not
need to do that step.

Another remarkable result is when S = 5, where 3iCubing
is slightly faster than Frag-Cubing. This is the result of high
levels of compression that allows the algorithm to process
multiple TIDs in a single comparison.

Finally, when S > 2, the runtimes of the Frag-Cubing
algorithm grow approximately linear, while the runtime of
the 3iCubing algorithm, while also tending to grow, does it
quite inconsistently. For example, with S = 3, 3.5, and 4, the
3iCubing runtimes are approximately the same, while, with
Frag-Cubing, the runtime of the point query when S = 4 was
almost double the runtime when S = 3. This behavior from
3iCubing is the result of the success the algorithm had when
creating intervals during the data set indexation.

D. SUBCUBE QUERIES
Subcube query tests were used to assess 3iCubing perfor-
mance when compared with the Frag-Cubing algorithm. Two
metrics were made to make such comparisons:
o Query Runtime: this metric is used to analyze the time
needed for both algorithms to answer a query being
made.
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o Query Memory Usage: this metric analyzes the amount
of memory necessary to answer a query being made. The
value here presented includes the value of the structure
size plus the memory used to store the query and any
secondary structure created and used to that effect.

3iCubing, M3iCubing, and Frag-Cubing have an approx-
imately linear growth following the number of dimensions
and tuples. The cardinality does not seem to change the query
runtime in both algorithms.

Like in the indexation runtime of the data cube, the only
character that seems to differentiate 3iCubing from Frag-
Cubing is the dimensional skewness.

SUBCUBE QUERY RUNTIME
VARYING THE SKEW
=== Frag-Cubing 3iCubing M3iCubing
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QUERY RUNTIME(SE
)
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FIGURE 10. Subcube query runtime varying the skew with T = 130M,
D = 30, C = 2500, 1 equal operator, 2 inquire operators and S = 0, 0.5, 1,
1.5,2,2.5,3,3.5,4,4.5 and 5.

In Figure 10 and Figure 11, it is possible to see the query
runtimes and query memory usage, respectively, varying the
data set skewness. The data set had the following characteris-
tics: T = 130 million, D =30 and C = 2500. The skews tested
ranged between 0 and 5, with increments of 0.5. The subcube
queries had two inquire operators and one equal operator,
where its value uses one of the most recurrent attributes.

As it is possible to see in Figure 10, all the algorithms
have higher runtime when S = 2. When S = 0, all the
three algorithms have approximately the same runtime, which
suggests that, when compression is minimal, the algorithms
have the same behavior.

It is clear from the data that the 3iCubing’s intersection
algorithm is considerably slower than the Frag-Cubing’s
intersection algorithm. It must be noted that the M3iCubing
algorithm is still considerably showered than Frag-Cubing,
even though it uses the same intersection algorithm. This
result is caused because creating the subcube, necessary to
subcube queries, is still a shower operation when using the
interval inverted index lists. Thus, showing that, in general,
all operations done in the implemented algorithms are shower
when done over interval inverted indexes.

Most of the time, the 3iCubing algorithm was around 3 to 4
times slower than Frag-Cubing to complete the queries. The
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M3iCubing algorithm was around 1.5 to 2 times slower than
Frag-Cubing.

SUBCUBE QUERY MEMORY
USAGE VARYING THE SKEW
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FIGURE 11. Subcube query memory usage varying the skew with
T = 130M, D = 30, C = 2500, 1 Instantiated Operator, 2 Inquire
Operators and S = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5.

Regarding memory usage during the realization of point
queries, as shown in Figure 11, the increase in the data set
skewness resulted in a decrease in the memory consumption
by the 3iCubing algorithm.

Although not reducing memory consumption as much as
3iCubing, the M3iCubing algorithm still managed to have a
lower memory consumption than Frag-Cubing.

It must be noted that most of the memory saved in both
3iCubing and M3iCubing was obtained from the data cube
size.

E. TESTS WITH REAL-WORLD DATASETS

Tests with real-world data sets were also made. This section
will exhibit the results of indexation tests and subcube queries
to Frag-Cubing and 3iCubing, using real-world data sets.

1) DATA SETS USED

In our real-world tests, we decided to use data sets with
different sizes and cardinalities. We wanted to represent small
data sets, medium-size data sets, and big data sets relative to
the data set sizes. Relatively to the cardinality, we wanted to
represent three kinds of data sets: one with low cardinality,
another with high cardinality, and the last one to represent a
mix of both cardinalities.

We understand that concepts such as “big” or “small,”
used above to categorize the data sets, are abstract. How-
ever, the technique used to define those values was based on
empiric observation of the available data sets.

The “Connect-4” [21] data set represented small data sets
with low cardinality. This data set contains positions in the
game ‘“‘connect-4”, it is composed of 67557 tuples with
42 dimensions, of which one has a cardinality of 4, and all
the remaining have a cardinality of 3.

The “Forest Covertype’ [22] data set was used to represent
medium-sized data sets with mixed cardinality. This data set
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has 512.012 tuples with 54 dimensions with the following
cardinalities: 3858, 361, 67, 1398, 801, 7118, 255, 255, 255,
7174, 7, and 43 dimensions with a cardinality of 2.

The “Exame” [23] data set represented large data sets with
high cardinality. It was composed of a combination of several
similar COVID-19 data sets from five different hospitals in
Brazil. This data set comprises 26651926 tuples with nine
different dimensions with the cardinalities: 562943, 975188,
425,97, 1986, 2355, 63778, 105, and 2064.

2) DATA SET FOREST COVERTYPE

When indexing the “Forest Covertype” data set, the aver-
age Indexation runtime of Frag-Cubing was 1976 millisec-
onds, while the 3iCubing algorithm indexed the data set
in 1779 milliseconds. In addition, its structure size was,
in Frag-Cubing, 143 Mbytes, while, using the 3iCubing algo-
rithm, it was 42.7 Mbytes.

Data Set Covertype Indexation
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FIGURE 12. Forest Covertype data set average indexation runtime and
indexation structure size.

Figure 12 shows a graphical representation of the results
obtained from the indexation process for both algorithms.

The data sets Forest Covertype contains 40 dimensions
with a very high skew and low cardinality. These dimen-
sions provide conditions that allow the interval inverted
index structure to considerably reduce the memory necessary.
Besides, the indexation runtime was also lower using the
3iCubing algorithm, resulting from the reduced number of
times that the process to increase the integers lists was done,
as explained in subsection IIL.A.

Three different subcube queries were done using the Forest
Covertype data set.

The first subcube query inquired three dimensions, with 2,
2, and 7, respectively. As it can be seen in Figure 13, the
Frag-Cubing algorithm needed 152 milliseconds and used
172.3 MBytes of memory to answer it, while 3iCubing
needed 179 milliseconds and used 64.6 MBytes of memory.

This first query made was quite small, both in runtime and
memory usage, indicating that Frag-Cubing has a slightly
better runtime to answer this kind of subcube query. Also,
3iCube needed only almost one-third of the memory used by
Frag-Cubing to do that operation.

The second query also inquired about three dimensions,
with cardinalities of 3858, 1398, and 801, respectively. Again,
Frag-Cubing needed 22 seconds and used 8.53 Gigabytes of
memory to answer it, while the 3iCubing algorithm required
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FIGURE 13. Forest Covertype data set average subcube query runtime
and subcube query memory usage.

35 seconds and used 8.21 Gigabytes of memory, as can be
seen in Figure 14.
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FIGURE 14. Forest Covertype data set average subcube query runtime
and subcube query memory usage on three dimensions with C = 3858,
1398, and 801.

This second subcube query saw 3iCubing need almost
double the runtime Frag-Cubing used to answer the query.
In this case, the memory used was almost the same. This
query shows a situation where 3iCubing can have a poor
runtime performance, most likely due to only having small
intervals, resembling the test case where the skew was equal
to 2, seen in the subsection IV.D. It is also possible to see that,
to both algorithms, the query memory usage was multiple
times bigger than the memory used to store the data cube.
This happened due to the massive number of possibilities
queried in the subcube query, reducing the relative difference
in memory usage between both algorithms.

Data Set Covertype Subcube Query
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FIGURE 15. Forest Covertype data set average subcube query runtime
and subcube query memory usage on three dimensions with C = 3858,
1398, 2, and 2.

The third query inquired four dimensions, with cardinal-
ities of 3858, 1398, 2, and 2, respectively. Again, Frag-
Cubing needed 190.6 seconds and used 12.15 Gigabytes of
memory to answer it, while the required 3iCubing algorithm
156.1 seconds and used 11.99 Gigabytes of memory.
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This third query joined low and high cardinality dimen-
sions. In this query, 3iCubing had a runtime around 20%
smaller than Frag-Cubing, caused by the big advantage
when intersecting the low cardinality and high skew inquired
dimensions. The conclusions obtained from the memory con-
sumption in this query are the same as the one obtained from
the second query.

3) DATA SET EXAM

The indexation of the “Exam” data set into a data cube took,
for Frag-Cubing, 16.4 seconds and used 1037 megabytes,
while 3iCubing took 17.7 seconds and used 616 megabytes.
These results can be seen graphically represented
in Figure 16.

Data Set Exame Indexation Runtime
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FIGURE 16. Exam data set average indexation runtime and indexation
structure size.

In this case, the 3iCubing algorithm used almost half the
memory that Frag-Cubing needed to the data cube’s structure.
Since the data set has a great number of tuples, there are many
chances to create TID intervals, therefore reducing its size.
Relatively to the indexation runtime, as it was concluded by
the tests done in section IV.B, 3iCubing has a slightly higher
indexation runtime.

A subcube query with one equal operator, with the most
common value, in the dimension with 97 cardinalities and
two inquire operators in the dimensions with cardinal-
ity 1986 and 2355 was done. Frag-Cubing needed 108 sec-
onds and 2.34 gigabytes to answer it, while 3iCubing needed
436.4 seconds and 1.68 gigabytes to do the same operation.
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FIGURE 17. Exam data set average subcube to query runtime and query
memory usage with one equal operator, and two inquire operators.

The difference in memory usage when answering the sub-
cube query comes mostly from the initial structure size.
Nonetheless, 3iCubing increased that difference due to the
compression also used in the subcube created. 3iCubing’s
runtime, however, is more than four times greater than Frag-
Cubing. This result indicates that, although the compression
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did work, the intervals had, in general, a small size, which is
quite hurtful to the algorithm’s runtime.

4) DATA SET CONNECT-4

Tests showed that, to index the “Connect-4”" data set, Frag-
Cubing needed 269.67 milliseconds and 35.23 megabytes to
index and store the final data cube. In comparison, 3iCubing
needed 274.67 milliseconds and 26.44 megabytes to do the
same operation.

Data Set Connect-4 Indexation
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FIGURE 18. Connect-4 data set average indexation runtime and structure
size.

Although this data set is considered minor and with low
cardinality, the 3iCubing algorithm used around 25% less
memory than Frag-Cubing. This is possible due to the high
skew existent in some of the data set’s dimensions. Just like
in the tests before, the indexation runtimes of both algorithms
are almost the same.

The subcube query used to compare both algorithms with
this data set had one equal operator, using the most common
value, in the dimension with C = 4 and 10 inquire opera-
tors. Thus, Frag-Cubing used, on average, 4.75 seconds and
891.85 megabytes to answer that query, while 3iCubing used
8.87 seconds and 825.67 megabytes.
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FIGURE 19. Connect-4 data set average query runtime and query memory
usage with one equal operator and ten inquire operators.

The difference in structure size mostly causes the differ-
ence in memory usage. 3iCubing’s query runtime was almost
double the Frag-Cubing query time, which has been a general
rule throughout all the tests done.

V. CONCLUSION AND FUTURE WORK

The increase in the collected data increases the processing
power and memory necessary to analyze the data. Since the
in data availability is outgrowing the computer’s performance
increase, it is fundamental to invest and research data struc-
tures that allow lowering memory consumptions and opera-
tional runtimes.
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This paper proposes an interval inverted index represen-
tation focused on reducing the memory used to store and
process data cubes. Besides the memory saves, it is also
important that the representation allows for fast operations
over the data.

We run multiple tests using three different algorithms to
verify how the interval inverted index performs compared
to the normal inverted index representation in data cube
analysis.

In the tests, we used an OLAP capable algorithm that
uses the usual inverted index representation, Frag-Cubing,
an equivalent interval index implementation, 3iCubing, and,
in some tests, a mix of both implementations, M3iCubing.

In almost every case, the interval inverted index repre-
sentation was able to considerably reduce the memory con-
sumption. It must be noted that the main factor that decides
the efficiency of our structure is the data skewness. Since a
higher skewness creates a tendency for some values to repeat
themselves more, the interval inverted index structure can
create more intervals, therefore saving memory. For example,
in our tests with artificial data sets, when the skew was zero,
resulting in a data set where the data was evenly distributed,
the memory consumption of both 3iCubing and Frag-Cubing
was the same. When, however, the skew was five, resulting in
most tuples having the same attribute values, 3iCubing used
around one-quarter of the memory that Frag-Cubing used to
create the data cube.

Although the positive results, memory-wise, the interval
inverted index was slower than the usual inverted index repre-
sentation when answering queries. In our tests, we varied the
skew from zero to five with increments of.5. In none of the
tests, i3Cubing was faster than Frag-Cubing, and, on average
having 2.6 times higher runtimes.

The tests are done also used a mix of both inverted index
representations, M3iCubing. Although still slower than Frag-
Cubing, M3iCubing had around 1.6 times the runtime that
Frag-Cubing needed.

The memory consumption during queries is lower in both
3iCubing and M3iCubing, being most of the difference direct
from the data cube size. Furthermore, the M3iCubing algo-
rithm used more memory than 3iCubing, showing that a
memory/runtime trade-off is always present.

In general, the interval inverted index allows for lower
memory consumption, allowing systems to process larger
data cubes, with the trade-off being a higher query
runtime.

This kind of structure is not made to completely replace the
usual inverted index structure since the interval inverted index
is highly dependent on the tuple’s attribute values distribution
and a data set. Nonetheless, it showed potential in some of
the cases tested and can be a better choice in cases where
reducing memory consumption is a priority.

Although being a pilar of OLAP computation, Frag-
Cubing is a reasonably old algorithm. Newer algorithms
that better use the system resources, such as disk memory,
have been presented. An example of such algorithms can be
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bCubing, which, as explained in section II, is a hybrid OLAP
algorithm using both memory and disk.

As future work, we intend to combine the interval inverted
index with newer OLAP algorithms, verifying the implica-
tions of representing the data and evaluating the possibility of
further changes to the interval inverted index representation
respective algorithms.
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