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ABSTRACT Coronavirus disease 2019 (COVID-19) is a highly communicable viral infection caused by the
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), which has spread rapidly throughout the
world. From a computer science point of view, research efforts have focused on the use of approaches such as
machine learning and curve fitting to predict or simulate disease behavior. However, the mathematical char-
acterization of the spread of COVID-19 is a topic that has not yet been explored by these techniques. In this
work, we propose a novel metaheuristic framework called META-COVID19, which merges the Generalized
Boltzmann distribution and the family of Jacobi polynomials to automatically characterize the COVID-19
spread without prior knowledge of the data and without involving a human expert. In general terms, the
algorithm receives as input a time series of daily reported cases and the output is a polynomial mathematical
model. Our framework only needs a single parameter, which is the number of Jacobi polynomials to analyze
during the iterative process, and it is capable of proposing polynomials whose adjustment error is close to
1E-3. Finally, we show the applicability of the polynomial models found by META-COVID19, through a
theoretical mathematical analysis in order to know attributes of the spread of COVID-19 in different periods
of time, allowing to generate better strategies to face it in the future.

INDEX TERMS COVID-19, epidemic spread characterization, generalized boltzmann distribution, Jacobi
polynomials, metaheuristic.

I. INTRODUCTION
Historically, humanity has dealt with different pandemics that
have taken the lives of millions of people. For example, in the
14th century, the ‘‘Black Death’’ spread across Euroasia and
North Africa, causing an estimated 75–200 million deaths,
while in the 20th century, 50–100 million people died in
Europe and North America due to the ‘‘Spanish Flu’’ [1].
In December 2019, a novel virus called SARS-CoV2 that
causes the Coronavirus disease 2019 (COVID-19) emerged
in Wuhan, China [2]. In March of 2020, the World Health
Organization (WHO) declared the COVID-19 as a pandemic.
However, unlike the pandemics mentioned above, globaliza-
tion caused the virus to spread rapidly on all five continents
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in approximately three months. Unfortunately, it has claimed
the lives of many people around the world.

From a mathematical and computational point of view,
several works have been proposed in the state-of-the-art to
understand the behavior of an epidemic. One of the most
known tools is the SIR deterministic model, which tries to
describe the behavior of an epidemic based on three main fac-
tors: the Susceptible population, the Infected population, and
the Recovered population [3], [4]. However, the SIR model
and its variants, have shown difficulties in modeling the
real behavior of the recent pandemic caused by COVID-19,
due to its non-deterministic nature and the large number
of factors and parameters to consider [5]–[10]; in addition,
highly specialized knowledge is needed for its correct imple-
mentation. That is why in various investigations, researchers
have chosen to use non-deterministic tools such as machine
learning, to provide a rapid and approximate overview of
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the behavior of the pandemic, since this type of approach
has shown adequate performance in modeling the behavior
of other epidemics, such as Ebola, Zika, H1N1 Flu, and
Dengue [11]–[15].

After an extensive search on the state-of-the-art, to the
best of our knowledge, there are no studies using
non-deterministic tools to mathematically characterize the
spread of COVID-19. Instead, research efforts have focused
on real-time forecasting, computationally simulating the
spread of COVID-19, and study regions of possible new
outbreaks [16]–[19]. In [20], there was an in-depth discussion
of why various methods attempting to forecast COVID-19
have not worked properly, this due to poor data entry, lack
of incorporation of epidemiological characteristics, incor-
rect modeling assumptions, lack of transparency, among
others. Likewise, the journal Nature published a manifesto
to avoid the bad practices of the prediction approaches for
COVID-19 [21]. That is why the contribution of our work
is not about forecasting. Instead, we focus on performing a
characterization.

In general terms, we conceptualize characterization as
a way of representing a phenomenon through a model
from which attributes can be obtained. To characterize the
COVID-19 spread, a data-driven analysis of daily reported
cases, either infections or deaths can be conducted. The cor-
responding data is made up of two independent variables that
form a curve (time series) with a non-linear and somewhat
stochastic behavior [22], which can be represented math-
ematically by means of a polynomial curve-fitting. How-
ever, choosing the family of polynomials and their respective
parameter settings is a very difficult task, since it is desirable
that the polynomial be compact, suitable for evaluation, and
invariant to small changes in data. It is worth mentioning that,
like machine learning, research efforts using curve-fitting to
deal with COVID-19 issues have focused on forecasting and
not characterization [23]–[28].

Currently, there is a growing trend in the use of statistical
mechanics to address computational problems. For exam-
ple, fluid simulation through Lattice Boltzmann Methods
(LBM) [29], [30], which incorporate theMaxwell-Boltzmann
distribution, or computational optimization, where an objec-
tive function is represented through the Boltzmann distri-
bution [31], [32], and more recently, the use of Boltzmann
for COVID-19 forecasting purposes [33], [34]. Although
there is a close mathematical relationship between the
Maxwell-Boltzmann and Boltzmann distributions, they are
different. The Maxwell-Boltzmann distribution gives the
probabilities of particle speeds or energies in gases (where
the governing equations need to be defined) while the Boltz-
mann distribution gives the probability that a system will
be in a certain state as a function of that state’s energy (in
Section II we go deeper into this aspect). The Boltzmann
distribution is a powerful mathematical tool that has been
used successfully in the field of computational optimiza-
tion, thus creating a research branch of Boltzmann-based
metaheuristics.

In this paper, we address the problem of characterizing
the spread of COVID-19 from a computational optimization
perspective. We propose a novel metaheuristic framework
that merges the Generalized Boltzmann distribution [35] and
the class of orthogonal Jacobi polynomials [36] (more details
will be given in Secction II), specifically designed to automat-
ically perform a polynomial fitting of COVID-19 time series
of different countries, without prior knowledge of the data,
and without involving a human expert. Generally speaking,
the framework input is a COVID-19 time series, either of new
confirmed infections or deaths. Subsequently, an iterative
process is started, in such a way that the framework performs
an automatic search using two simple Selection Operators,
which encapsulate the benefits of the Generalized Boltzmann
distribution (see Section II-A), on a Characterization Space
(Section II-B) where the existence of a Jacobi polynomial
that fits with a minimum error to the COVID-19 time series is
guaranteed, all this without having prior knowledge about the
curve behavior and even for a limited amount of data. Finally,
the output is an explicit mathematical model based on the
adjusted Jacobi polynomial, which encapsulates the behavior
of the non-linear curve; in this way, it is possible to carry out a
subsequent mathematical analysis to know specific attributes.

It is important to mention that other polynomial families
such as Zernike, Legendre, Gegenbauer, and Chebyshev are
special cases of the Jacobi polynomials [36]. Furthermore,
under spectral theory, mathematical guarantees are known
about the existence of a polynomial function that fits the time
series [36]. Because of this mathematical generalization, the
study by hand for the selection of the polynomial family that
best fit the curve as well as the tuning of its parameters is
avoided with our framework. Likewise, the Jacobi polynomi-
als have a large number of mathematical properties [36], that
is, from a single polynomial model, it is possible to obtain
multiple information that can have an important impact from
a statistical inference point of view, which is a cornerstone
of epidemiology [37]–[40]. In Section V, three examples of
the application of formal mathematical analysis are detailed.
However, analyzing all mathematical properties is something
that is beyond the scope of the article, and we have framed it
as a future job.

The mathematical models found by our metaheuristic
framework may be a starting point for other researchers
interested in studying the COVID-19 spread. This is of
utmost importance, since as anticipated, a new outbreak of
COVID-19 (or even new pandemics) may reach the world
shortly, so having useful information about the past and
present behavior of the pandemic, based on the decisions
made at that time, will allow generating better strategies to
face it in the future.

The rest of this paper is organized as follows. In Section II
the related concepts and the proposed methodology are
described. Section III details the algorithmic implementa-
tion of the metaheuristic framework. Section IV contains the
experimental design, the datasets description, the parame-
ter settings, a discussion, and the results. The mathematical
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FIGURE 1. META-COVID19 schematic diagram: 1) Daily reported cases of SARS-CoV2; 2) COVID-19 data obtained
by country; 3) Characterization Space bounded to the problem domain; 4) Boltzmann-based Selection Operators
to sample new solutions; 5) Solutions that best fit the COVID-19 time series by country.

model application of the polynomials proposed by our meta-
heuristic framework is shown in Section V. Finally, our
conclusions and directions for future work are offered in
Section VII.

II. MATERIALS AND METHODS
The general methodology scheme that we followed to build
our proposed metaheuristic is shown in Figure 1. As a first
step, we obtained the SARS-CoV2 data available by country.
Then, we established the problem domain, focused on the
characterization of COVID-19 time series y(t) (description
is provided in Section IV-A). Subsequently, we proposed a
Characterization Space (Section II-B) bounded to the prob-
lem domain, in such a way that a sample of promising solu-
tions based on orthogonal Jacobi polynomials (dotted blue
circle) can be selected automatically by our metaheuristic in
order to fit the time series. As a four-step, we mathematically
proposed the Selection Operators µ and ν (Section II-A)
based on Boltzmann, which are capable of being iteratively
refined to sample better and offer better solutions. Finally,
we obtained the adjusted Jacobi polynomials that best fit
the COVID-19 time series by country. Next, we will give a
detailed description of the previously exposed methodology,
as well as the theoretical and experimental implications that
we found during the development of this research.

The metaheuristic optimization algorithms have been
widely used to solve modern problems in various
research areas such as applied engineering, biology, com-
puter vision, data science, physics, and other areas of
knowledge [41]–[45]. In general terms, these algorithms have
been designed to find approximate solutions to optimization
problems in which deterministic techniques are excluded due
to the characteristics of the problem.

In general, metaheuristics can be classified according
to the type of search they perform, either exploitation or
exploration. In the context of the search by exploitation,

a diversification of the proposed solutions is generated in the
domain of the local neighborhood, while in the search by
exploration the previous information of the solutions found
is used to generate a new set of optimal solutions [46], [47].
Particularly in the latter approach, the use of the Boltzmann
distribution has been proposed [32], [48], [49] since this
distribution guarantees that the probability of finding a new
set of solutions that performs worse than the previous set of
solutions is approximately zero, which is desirable in a search
by exploration scheme.

Broadly speaking, Boltzmann-based metaheuristics build
explicit probabilistic models that are iteratively refined to
produce increasingly better solutions for a particular problem.
These approaches employ an approximation to the Boltzmann
distribution through a Gaussian distribution with µ and ν
parameters, in order to establish a random number generation
mechanism that is used to sample new promising solutions,
this is because it is difficult to sample random numbers
directly with the Boltzmann distribution. The approximation
is generally derived from the minimization of a divergence
measure, calculated between the Gaussian and Boltzmann
distributions [32], [48], [49]. However, these types of meta-
heuristics use the original Boltzmann distribution, which was
developed to treat thermodynamic problems by means of sta-
tistical mechanics following a set of restrictions of the system
under study [35], but it is possible to find problems that,
due to their characteristics, are outside the proposed analysis
restrictions in said distribution, for example, the stochastic
behavior of a COVID-19 time series [22].

In this paper, we propose to use the Generalized Boltzmann
distribution to power the search for the best Jacobi polyno-
mial, in order to automatically characterize the COVID-19
time series effectively. However, like the previously men-
tioned Boltzmann-based approaches, to achieve this, we must
mathematically obtain the parameters µ and ν, derived from
the minimization of a divergence measure between the Gaus-
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sian and Generalized Boltzmann distributions. As far as we
know, this is something that has not yet been explored by any
Boltzmann-based approach.

In the next section, we explain in detail how we obtained
mathematically the minimum difference between the Gaus-
sian and the Generalized Boltzmann distribution using a
divergence measure, in order to demonstrate the mathemati-
cal origin of the Selection Operators (µ and ν) that we simply
apply in our metaheuristic framework (see Section III).

A. SELECTION OPERATORS
The Generalized Boltzmann distribution for a system is
defined in the following equation [35]:

P(x) = Px =
1
Z
g(fx) exp(βfx). (1)

Given the particular problem of characterizing the
COVID-19 spread, we will describe the terms of (1) in the
context of the problem to be addressed. That said, we have
that fx (a shorthand notation for f (x)) is the error of adjust-
ment between a Jacobi polynomial and the COVID-19 time
series (this is described in detail in Section III), β = 1

T ,
where T could be considered as the characteristic temperature
of the COVID-19 time series of each country analyzed, Z is
the system partition function, and finally g(fx) is a function
dependent on fx .
In general terms, by using (1), it is possible to find a set

of Jacobi polynomials that fit the COVID-19 time series.
To achieve this, there must be a random number gener-
ation mechanism with which the Jacobi polynomials can
be selected from a Characterization Space (Section II-B).
Asmentioned in the previous section, it is well-known that (1)
does not have a theoretical estimate that guarantees the gen-
eration of random numbers. Therefore, we propose a way
to estimate the minimum difference between the Gaussian
and the Generalized Boltzmann distributions by using the
parameters µ and σ 2

= ν, since the Normal distribution
has mathematical guarantees in the estimation of random
numbers. To carry out the aforementioned, we use Jeffrey’s
Divergence equation (2), which is a divergence measure
between two probability distributions:

DJ (Qx ||Px) =
∫
x
Px

(
Qx
Px
− 1

)
log

(
Qx
Px

)
dx. (2)

To estimate a minimum difference between the distribu-
tions, we propose Theorem 2.1, which is the partial derivative
with respect to the parameters µ and ν of (2).
Theorem 2.1: IfQx andPx are theGaussian and theGener-

alized Boltzmann distributions respectively, and θi = [µ, ν],
then the derivative of the measureDJ (Qx ||Px) with respect to
θi is given by (3):

∂DJ (Qx ||Px)
∂θi

= −

∫
χ

Px
Qx

∂Qx
∂θi

dx

+

∫
χ

[
1+ log

(
Qx
Px

)]
∂Qx
∂θi

dx. (3)

Proof of Theorem 2.1: Deriving (2) with respect to θ we
have (4):

∂DJ (Qx ||Px)
∂θi

=

∫
x

(
∂Qx
∂θi
−
∂Px
∂θi

)
log

(
Qx
Px

)
dx

+

∫
x
(Qx − Px)

∂Qx
∂θi

1
Qx

dx

−

∫
x
(Qx − Px)

∂Px
∂θi

1
Px
dx. (4)

Due to the fact that the Boltzmann function does not
depend on the θi parameter, then ∂Px

∂θi
= 0; therefore,

Theorem 2.1 is proved.
From Theorem 2.1 we can estimate the µ parameter that

has the minimum difference with respect to the behavior
of the Generalized Boltzmann distribution, so we establish
Theorem 2.2.
Theorem 2.2: If Qx and Px are the Gaussian and the Gen-

eralized Boltzmann distributions respectively, and µ is the
Gaussian mean, then the minimum µ with respect to Px is
given by (5):

µ =

∫
χ
Pxxdx +

∫
χ
log[g(fx)]Qxxdx + β

∫
χ
fxQxxdx

1+
∫
χ
log[g(fx)]Qxdx + β

∫
χ
fxQxdx

. (5)

Proof of Theorem 2.2: Given the result of Theorem 2.1 for
the parameter µ and taking the fact that ∂Qx

∂µ
, we obtain (6):

∂DJ (Qx ||Px)
∂µ

= −
1
ν

∫
χ

Px(x − µ)dx

+
1
ν

∫
χ

Qx(x − µ)dx

+
1
ν

∫
χ

Qx log(Qx)(x − µ)dx

−
1
ν

∫
χ

Qx log(Px)(x − µ)dx. (6)

Substituting the results log(Qx) = log( 1
√
2πν

)− (x−µ)2
2ν and

log(Px) = − log(Z )+ log[g(fx)]+ βfx in (6), we get (7):

∂DJ (Qx ||Px)
∂µ

= −
1
ν

∫
χ

Px(x − µ)dx +
1
ν

∫
χ

Qx(x − µ)dx

+
1
ν
log(

1
√
2πν

)
∫
χ

Qx(x − µ)dx

−
1
2ν2

∫
χ

Qx(x − µ)3dx

+
log(Z )
ν

∫
χ

Qx(x − µ)dx

−
1
ν

∫
χ

log[g(fx)]Qx(x − µ)dx

−
β

ν

∫
χ

fxQx(x − µ)dx. (7)

The result of (7) can be simplified by the central moments
of the Gaussian distribution given by

∫
χ
Qx(x − µ)dx = 0,
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∫
χ
Qx(x − µ)3dx = 0, and equating ∂DJ (Qx ||Px )

∂µ
to zero,

we obtain (8):

µ

[∫
χ

log[g(fx)]Qxdx + β
∫
χ

fxQxdx
]
−

∫
χ

Pxxdx

−

∫
χ

log[g(fx)]Qxdx − β
∫
χ

fxQxxdx = 0. (8)

Finally, solving for µ, we obtain the result of Theorem 2.2,
thus being demonstrated.

The second important parameter is the estimation of vari-
ance ν since it provides diversification of the search for
polynomials that best fit the COVID-19 time series, so the
minimum variance is estimated from Theorem 2.1, resulting
in Theorem 2.3.
Theorem 2.3: If Qx and Px are the Gaussian and the Gen-

eralized Boltzmann distributions respectively, and ν is the
Gaussian variance, then the minimum ν with respect to Px
is given by (9):

ν =

∫
χ
Px(x − µ)2dx +

∫
χ
log[g(fx)]Qx(x − µ)2dx

+β
∫
χ
fx(x − µ)2Qxdx∫

χ
log[g(fx)]Qxdx + β

∫
χ
fxQxdx

. (9)

Proof of Theorem 2.3: We take the result of Theorem 2.1
with respect to the parameter ν, and considering that ∂Qx

∂ν
=[

(x−µ)2

2ν2
−

1
2ν

]
, we get (10):

∂DJ (Qx ||Px)
∂ν

= −
1
2ν2

∫
χ

Px(x − µ)2dx +
1
2ν

∫
χ

Pxdx

−
1
2ν

∫
χ

Qxdx +
log

(
1
√
2πν

)
2ν2

·

∫
χ

Qx(x − µ)2dx −
log

(
1
√
2πν

)
2ν

∫
χ

Qxdx

−
1
4ν3

∫
χ

(x − µ)4Qxdx

+
1
4ν2

∫
χ

(x − µ)2Qxdx

−
log(Z )
2ν2

∫
χ

(x − µ)2Qx +
log(Z )
2ν

∫
χ

Qxdx

−
1
2ν2

∫
χ

log[g(fx)](x − µ)2Qxdx

+
1
2ν

∫
χ

log[g(fx)]Qxdx

−
β

2ν2

∫
χ

fx(x − µ)2Qxdx

+
β

2ν
dx
∫
χ

fxQxdx. (10)

Using the results of the central moments for the Gaussian
distribution

∫
χ
(x − µ)2Qxdx = ν,

∫
χ
(x − µ)4Qxdx = 3ν2,

and ∂DJ (Qx ||Px )
∂ν

= 0, (10) can be reduced to (11), so that

solving for ν (9) of Theorem 2.3 is proved:

ν

[∫
χ

log[g(fx)]Qx + β
∫
χ

fxQxdx
]
−

∫
χ

Px(x − µ)2dx

−

∫
χ

log[g(fx)]Qx(x − µ)2dx − β
∫
χ

fx(x − µ)2Qxdx = 0.

(11)

The results of Theorem 2.2 and 2.3 are the theoretical ele-
ments of the Selection Operators proposed in our metaheuris-
tic framework and will be connected to the Characterization
Space to find the optimal fitting polynomial.

B. CHARACTERIZATION SPACE
From the set of Jacobi polynomials, which are described as
a class of orthogonal polynomials from which other poly-
nomials widely studied in the state-of-the-art are included,
such as the Zernike, Legendre, Gegenbauer, and Chebyshev
polynomials, it is possible to find, with certain mathematical
guarantees, a Jacobi polynomial that fits the COVID-19 time
series.

The Jacobi polynomials in their general form are defined
as follows:

P(α,β)n (z)=
(
n+α
n

)
F
(
−n, n+α+β+1;α+1;

1− z
2

)
(12)

where F(·) is the hypergeometric function [36]. It should
be mentioned that due to the nature of the COVID-19 time
series, in this proposal we only use the real part of the Jacobi
polynomials (as shown in (13)) to characterize the curves,
whose result has its domain at [−1, 1] for α and β > −1.

P(α,β)n (x) =
(−1)n

2nn!
(1− x)−α(1+ x)−β

·
dn

dxn
[
(x − 1)α+n(1+ x)β+n

]
. (13)

Some properties of the Jacobi polynomials that are used in
the present work are listed below [36]:

1) The weighting function:

wn(x) = (1− x)α(1+ x)β . (14)

2) The boundary values:

Pα,βn (−1) = (−1)n
(
n+ β
n

)
(15)

Pα,βn (1) =
(
n+ α
n

)
. (16)

3) The derivative:

d
dx

[Pα,βn (x)] =
1
2
(n+ α + β + 1)Pα+1,β+1n−1 (x). (17)

In this work, we propose a Characterization Space, which
is defined by the product of modulating coefficients with
respect to the Jacobi polynomials of degree n, as shown
in (18):

F (t;α, β) = 6∞i=1aiP
(α,β)
i (t). (18)
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We have changed the variable x by t for the Jacobi poly-
nomials due to the time variable we are studying. Likewise,
the ai coefficients in (18) are calculated in a deterministic
way by evaluating the input data (i.e., the COVID-19 time
series) in the Jacobi polynomial. Subsequently, the result is
orthogonalized using the Gram-Schmidt method, thus gen-
erating a new orthogonal space. In this space, the COVID-19
time series is approximated using the least squares technique,
resulting in the adjustment coefficients in the orthogonal
space. However, these coefficients are not associated with the
orthogonal Jacobi base; therefore, they must be mapped to
this base to obtain the polynomial mathematical model [50].
It is important to note that the α, β, and n parameters in (18)
belong to an infinite space of combinatorial possibilities.

In the next section, we present our metaheuristic approach
in which the Selection Operators (proposed in Section II-A)
and the Characterization Space interacts in order to search a
Jacobi polynomial that best fits the COVID-19 time series.

III. METAHEURISTIC FRAMEWORK
In this section, we will describe in detail the elements of our
proposed metaheuristic approach called META-COVID19,
specifying the discrete mathematical model of the theoretical
results presented in Section II, the connection between the
Selection Operators and the Characterization Space, as well
as the algorithm description.

We start from the Characterization Space, as mentioned in
the previous section, its parameters belong to an infinite space
of combinatorial possibilities, which in computer practice
leads to infinite execution times. To deal with that, we define
an approximation of this space as shown below:

F̂ (t;α, β, n) = 6n
i=1aiP

(α,β)
i (t). (19)

Thus, the space is constrained by the fundamental param-
eters α, β, and n (denoting the polynomial degree); in this
way, different Jacobi polynomials can be selected from the
Characterization Space by setting these parameters. To know
how good the fit of each Jacobi polynomial F̂ (t;α, β, n) is
with respect to the COVID-19 time series y(t), we use (20) as
evaluation function.

fx =
1
2

(
y(t)− F̂ (t;α, β, n)

)2
. (20)

Regarding the Selection Operators µ and ν ((5) and (9)
respectively), they must be discretized because the results
of Theorems 2.2 and 2.3 involves continuous spaces, which
cannot be computationally treated without an approxima-
tion. There exist different techniques for the integral approx-
imations; however, we used the Monte-Carlo method as
in [45], [49].

The approximation of the µ parameter using the Monte-
Carlo method, weighed by Qx , is presented below:

µ≈

b−a
m

∑m
i=1

[
1
Z g(fxi ) exp[βfxi ]xi+log[g(fxi )]xi+βfxixi

]
1+ b−a

m

∑m
i=1

[
log[g(fxi )]+ βfxi

]
(21)

where fxi is the performance of the ith Jacobi polynomial
whose fundamental parameters xi = (α, β, n) are in the
domain [a, b], m is the number of Jacobi polynomials, and
β = 1

fxbest
[45]. Applying the same criteria of the previous

equation, it is possible to approximate the ν parameter as
shown below:

ν ≈

∑m
i=1

[
1
Z g(fxi ) exp[βfxi ](xi − µ)

2

+ log[g(fxi )](xi − µ)
2
+ βfxi (xi − µ)

2
]∑m

i=1
[
log[g(fxi )]+ βfxi

] .

(22)

To clarify and avoid confusion, note that the Jacobi poly-
nomial notation involves the use of a β parameter; this param-
eter is different from the β parameter of the generalized
Boltzmann distribution from which the discretized Selection
Operators ((21) and (22)) are derived.

Generally speaking, in our metaheuristic framework, the
fundamental Jacobi parameters xi = (α, β, n) are set with
random numbers sampled from a distribution with µ and ν
parameters. Then, during the iterative process, µ and ν are
updated using (21) and (22) respectively. Note that in the cal-
culationm Jacobi polynomials are needed, these polynomials
should be the top-ranked at each iteration; in this way, the
convergence of the algorithm is guaranteed, thus allowing the
selection of new Jacobi polynomials whose adjustment will
be increasingly closer to the behavior of the COVID-19 time
series.

A. ALGORITHM
At the start of the algorithm, an initial Jacobi subset J ij is
selected from the Characterization Space, this subset is made
up by j = 0, 1, . . . , S Jacobi polynomials F̂ (·) with different
α, β and n parameters, which are initially set using uniform
random numbers U(µ0, ν0), where µ0

= 0 and ν0 = 1.
Then, each Jacobi polynomial from J ij is evaluated using (20)
and sorted in decreasing order (to reduce computational cost)
according to their performance; note that the first element J i0
of the sorted Jacobi subset, is the best polynomial F̂best at
iteration i, whose performance is fxbest . Subsequently, m Top-
ranked Jacobi polynomials from J ij are chosen, thus creating
the subset T i, and with these, the Selection Operators are
updated via (21) and (22) respectively. Finally, a New Jacobi
subset J i+1j is selected from the Characterization Space by
setting the parameters α, β and n with Gaussian random
numbers N (µi+1, νi+1). The META-COVID19 algorithm
remains in this converging cycle until a stopping condition is
met or a predefined number of iterations is reached. Figure 2
shows the META-COVID19 flowchart, and the complete
pseudocode is presented in Algorithm 1.

IV. EXPERIMENTAL SETUP
This section describes the experimental setup followed in this
work to test the effectiveness of our metaheuristic framework,
including the datasets and parameter settings.
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FIGURE 2. META-COVID19 flowchart to automatically characterize
COVID-19 time series.

Algorithm 1META-COVID19 Pseudocode
Require: S: Jacobi subset size, y(t): COVID-19 time series
Ensure: F̂best : Best Jacobi
1: i← 0: Current iteration
2: J ij ← InitialJacobiSubset(S, µ0, ν0)
3: Evaluate(J ij , y(t))

4: F̂best ← J i0: Get Best Jacobi
5: while (fxbest ≤ ε) do
6: T i← Top-ranked (J ij , m)
7: µi+1, νi+1← UpdateSelectionOperators(T i)
8: J i+1j ← NewJacobiSubset(S, µi+1, νi+1)
9: Evaluate(J i+1j , y(t))

10: F̂best ← J i+10 : Get Best Jacobi
11: i← i+ 1
12: end while
13: return F̂best

A. DATASETS
We used the compilation of datasets presented by Ortiz-
Ospina et al. (2020) maintained by Our World in
Data, and posted at https://github.com/owid/covid-19-data/
tree/master/public/data. It is updated daily and includes data
on daily confirmed cases, deaths, hospitalizations, testing,
and vaccinations as well as other variables of potential
interest [51].

For this work, we will focus on the time series of daily
confirmed cases reported in nine countries: the United States
of America (USA), Spain, United Kingdom (UK), India,
Chile, Peru, Brazil, Russia, and Mexico. However, reported
data of deaths, hospitalizations, tests, and vaccinations, can
also be characterized by our framework. The only restriction
is that the data must be time series.

It is worth mentioning that the experimentation was carried
out using the data available at the date of creation of this arti-
cle (May 2021), but it can be applied with the data collected at
any time. In Figure 3 are shown some examples of time series

of new daily cases confirmed as positive to SARS-CoV2,
which for research purposes will offer a better perspective
on the behavior of the disease, and will show the power of
our proposal to characterize time series; allowing adequate
decision-making by the health, economic, and social sectors.

B. PARAMETER SETTINGS
The settings of the META-COVID19 parameters are shown
below, to carry out the corresponding experimentation. The
Jacobi polynomial subset is made up of S = 50 elements.
To compute the Selection Operators µ and ν, we recom-
mend that the subset T i be at least 40% of the size of the
subset J i, since this allows conducting the search for the
best polynomial in an adequate way. Using 100% of subset
J i is possible; however, this leads to higher computational
cost. On the other hand, if less than 40% were used, the
convergence of the algorithm would be slower. Specifically,
for these experiments m = 20 top-ranked polynomials are
contained in T i. In order to delimit the size of the Charac-
terization Space to be explored, the following domains are
established: n = [1, 60], α = [−1, 1] and β = [−1, 10].
It should be noted that the α and β domains were established
from the mathematical explanation in Section II-B. Likewise,
after a stage of meticulous experimentation, it was observed
that polynomials of degree greater than n = 60 imply an
expensive computational cost, and the adjustment obtained
with respect to others of a lesser degree is not significant.
In every experiment, the convergence criterion is set to ε ≤
1×10−3, and the number of iterations is set to 50. Therefore,
the limit of function calls is 2500.

To ensure the consistency of the experimental results,
each experiment is executed 31 times independently, and the
best Jacobi Polynomial found each time is recorded. Finally,
the median and standard deviation of these 31 experiments
are reported in Table 2. The experimentation was carried
out on a conventional computer with an Ubuntu operat-
ing system, an Intel i5 processor, and 8GB of RAM. The
META-COVID19 was developed in the Python programming
language under a non-parallel programming paradigm. The
following section shows the results obtained under these
parameter settings.

C. RESULTS
Table 1 shows the best parameters of the Jacobi polynomial
whose performance was the median of the 31 experiments,
as well as their corresponding fit value fx for each country.
As can be seen, the degree of all Jacobi polynomials did not
surpass 60. Likewise, the polynomial found for India was the
greater with 59, and the smallest was for Chile with a degree
of 21. Finally, for these experiments, the best polynomial
found was for India with a fit value of 1.20E-2.

To graphically exemplify the performance of the proposed
metaheuristic, we have selected two representative exam-
ples reported in Table 1. Figure 4 shows the average fit of
31 independent experiments (orange line) found by META-
COVID19 for the USA (Figure 4a) and India (Figure 4b),
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FIGURE 3. Time series of new daily cases confirmed as positive for
SARS-CoV2, over a period of more than 400 days, reported in different
countries.

in contrast to the time series of daily confirmed cases (line
shaded in blue) for each country, respectively; likewise, a sub-
plot of the area of greatest variability of the experiments

TABLE 1. The best polynomial parameters and their fit value fx for each
country.

carried out is shown (shaded yellow region). As can be
seen, the solutions found by the metaheuristics show a precise
fit for the two scenarios presented, even for India, which
has a considerable change of direction between the first and
second waves of infection. In general, the results presented
in Figure 4 show that our metaheuristic approach is capable
of achieving an adjustment in each of the time series used
in this study. However, it is worth mentioning that due to
the different data capture processes in the health departments
of the countries, the information presented directly influ-
ences the result of the approximation. Based on the presented
results, it can be said that the Selection Operators proposed
Theorems 2.1 y 2.2, were able to automatically find suitable
Jacobi polynomials for the characterization of COVID-19
spread.

D. STATISTICAL CONTRAST AGAINST ARTIFICIAL NEURAL
NETWORKS
To evidence the performance of META-COVID19,
we present a statistical contrast between our proposal and
a methodology for time series fitting: Artificial Neural Net-
works (ANN). The ANN was applied on the data described
in Section IV-A, with an architecture of 4 hidden lay-
ers, 100 neurons in each layer, a ReLU (Rectified Linear
Unit) activation function, and to train the Neural Network,
Adam’s optimization algorithm was used (sequentially) with
1000 epochs. The implementation was carried out in Keras,
which is an open-source software library that provides a
Python interface for ANNs.

For a comparison with META-COVID19, 31 experiments
were performed independently; the median and standard
deviation of these 31 experiments are reported in Table 2. The
experiments ran on a computer with the following character-
istics: Ubuntu operating system, Intel i7 processor, and 16GB
of RAM.

Table 2 presents the median fit errors for 31 independent
experiments, as well as their corresponding standard devia-
tion; the best results in the table are highlighted in a bold type-
face, whenever two or more algorithms produced the same
median value, the result with the smallest standard deviation
is highlighted. We can see that META-COVID19 and ANN
coincide in obtaining results in the order of 1E-2. Regarding
the reported standard deviation for META-COVID19, we can
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FIGURE 4. Average fit of 31 independent experiments (orange line) found
by META-COVID19 for the USA and India, in contrast to the time series of
daily confirmed cases (lineshaded in blue) for each country.

TABLE 2. Median ± Standard Deviation of the fit errors obtained by
META-COVID19 and ANN for 31 independent experiments.

observe values close to or equal to 0; this means that our
metaheuristic approach is able to consistently find a Jacobi
polynomial whose performance is similar in all 31 experi-
ments.

In Figure 5, we provide the graphical results obtained by
META-COVID19 and ANN in a single experiment. Figure 5a
shows the fit for the USA time series, while Figure 5b
shows the case for India. We observe that both methodologies
achieve a similar smoothed approximation of the time series

FIGURE 5. Comparison of time series adjustment of daily confirmed
cases in the USA and India. The blue line represents the original data, and
the orange and green lines show the fit of ANN and META-COVID19
correspondingly.

of daily reported cases, suggesting that META-COVID19
could be as good as an ANN for time series fitting purposes.

To determine if there are differences in the performance of
META-COVID19 and ANN in terms of the fit error obtained,
we carried out a Wilcoxon signed-rank test [52]; this is a
non-parametric test to compare the mean rank of two related
samples and determine if there are significant differences
between them [52].

We performed a two-tailed Wilcoxon signed-rank test on
the data presented in Table 2, using n = 8 non-zero differ-
ences, at a significance level of α = 0.05. The null hypothesis
H0 is that META-COVID19 and ANN perform equally, and
the alternative hypothesis H1 is that they perform differently.
The test was carried out in RStudio, through the wilcox.test
function available in the stats package, obtaining a Wilcoxon
test statistic: W = 17, a critical value for W : CW = 3, and
finally, a p-value= 0.945313. SinceW > CW at n = 8,W is
in the 95% acceptance region. This can be corroborated with
a p-value > α, therefore H0 is accepted. This means that the
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probability of a type I error (i.e., rejecting a correct H0) is
high: 0.9453 (94.53%).

From the results obtained by the Wilcoxon signed-rank
test, we can conclude that for this experimental design,
META-COVID19 and ANN have similar performance for
time series fitting. However, META-COVID19 is capable of
finding polynomial models that allow us to design propaga-
tion indicators for COVID-19 and other types of diseases: in
Section V, we present some examples of application; while
in Section IV-E the advantages of our proposal in contrast to
other methodologies are discussed.

E. DISCUSSION
It is essential to emphasize that the objective of this
work is to mathematically characterize the COVID-19 time
series through an explicit polynomial model, thus providing
descriptive information on the spread of the pandemic.

In Section IV-D, we compared META-COVID19 with
ANN, concluding that for the proposed experimental design,
they have similar performance. However, there are differ-
ences between them in terms of the information obtained.
META-COVID19 generates Jacobi polynomial models that
have known mathematical properties (see Section II-B),
which allows offering analytical descriptions. In contrast,
attributes such as the derivative can be obtained with an ANN
(such as Sparse Functional Multilayer Perceptron, and Long
Short-TermMemory) [53], and a specific network could even
be trained to calculate differential equations [54]; however,
to obtain more mathematical or statistical information about
the time series, specific neural networks would have to be
trained, which implies programming time and computational
cost, not to mention multiple hyperparameters need to be
configured for the approach to work properly. Therefore,
we consider that an ANN is an excellent tool to perform time
series fitting, but it might not be the appropriate technique to
mathematically characterize an epidemic spread, this is where
our proposal has its main advantage.

In addition to ANNs, we identify other two main
approaches to perform time series fitting.
• Numerical: Regression and interpolation methods
[55], [56].

• Symbolic regression: Genetic Programming (GP)
approaches [57], [58].

Regarding regression and interpolation methods, they can
offer an explicit analyzable function. However, there is
the problem that the parameters for each method must be
known [55], [56], which would imply carrying out an exhaus-
tive study by hand, and that is precisely what we are avoiding
with our proposal, by implementing a metaheuristic frame-
work capable of finding a polynomial on a Jacobi space that
fits the time series automatically. Therefore, we consider that
benchmarking against those methods is inappropriate.

On the other hand, Symbolic Regression with GP
approaches involves metaheuristic algorithms, can be applied
to time series, and offers an explicit function. It is well
known that these approaches work well for noise-free and

low-information synthetic time series, but their performance
decreases considerably when dealing with real-world time
series. To address this issue, in [57] the time series is divided
into windows to adjust each of them independently, and
in [58], a scalable chromosome encoding scheme that is
capable of representing multiple solutions simultaneously is
used. However, these approaches lead to excessive computa-
tional cost (up to 2 million fitness evaluations [58]) and the
construction of several explicit mathematical models whose
mathematical guarantees might not be known, so obtaining
useful information from them can be complicated. Further-
more, there is an inherent problem of methods based on
GP called ‘‘Bloat’’ [57], exhausting computer resources, not
counting the large number of hyperparameters that must be
configured. The computational cost of our proposal is con-
siderably low, in this experimentation the maximum limit of
fitness evaluations was 2500, reaching an error close to 1E-3.
Therefore, we consider that GP might not be an adequate
technique to characterize an epidemic spread.

This discussion intends to show the strengths that our pro-
posal has in contrast to other state-of-the-art methodologies.
META-COVID19 only needs a single parameter, which is
the size of the subset of the Jacobi polynomials, unlike the
symbolic regression with GP approaches and ANNs, where
multiple hyperparametersmust be tuned, which implies either
empirical experimentation or a priori knowledge of the prob-
lem. Furthermore, it is important to mention that with the
polynomial models shown in Section IV-C, multiple infor-
mation can be inferred without the need to perform the time
series fitting again. In the next section, we show three appli-
cation examples, which show how information that charac-
terizes the epidemic spread can be extracted mathematically.

V. MATHEMATICAL MODEL APPLICATION
To show the applicability of the polynomial mathematical
models proposed by our metaheuristic framework, in this
section different examples are carried out, where useful infor-
mation can be known.

A. EXAMPLE OF APPLICATION
1) EXAMPLE 1
We have chosen the mathematical model for the USA, as it
shows three waves of contagion and allows us to extract rele-
vant information. In Appendix, we show the complete Jacobi
polynomial (summarized in (23)) derived from the fundamen-
tal parameters reported in Table 1 which were obtained by
META-COVID19.

F̂ (t; 0.0612,−0.0002, 51). (23)

As a direct application, we can calculate the derivative
of this mathematical model with respect to time, using the
derivative property of Jacobi polynomials shown in (17).
The derivative of F̂ provides descriptive information about
the change of propagation of new cases with respect to the
elapsed time. In Figure 6, we show the derivative of (23)
respect to t .
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FIGURE 6. Derivative of F̂ with respect to t in the domain of [1,400].

TABLE 3. Results of the derivative of F̂ with respect to t for the USA,
showing the different slope changes.

In the solid orange line, we observe the zeros of the deriva-
tive, which represent the resulting maxima and minima in our
mathematical model. If we focus on the two regions (dotted
lines) above and below the origin, these regions provide the
information of the amplitude of change of new cases with
respect to time—In the particular case of the USA, under
the mathematical model a slightly greater amplitude in the
negative region was found compared to the positive one—
which in general terms allows us to observe that the social and
political behavior has led the new cases downward against the
propagation. Likewise, it is interesting to note that when the
blue line coincides with the solid orange line, for a certain
time, it can be said that this epidemic cycle has ended.

Figure 7 shows different scenarios of the change of direc-
tion by means of the slope of the tangent line to the curve
of new cases per day. In Table 3, we present the results of
these slopes on representative days. Note that, Figure 7a has
a negative slope, which is a desirable value in mitigating the
spread of SARS-CoV2, while in Figure 7b, the direction of
the slope is positive, alerting of an increase of new cases per
day; the magnitude of the slope is a parameter of information
about the rate of increases of daily reported cases per day.
Finally, Figure 7c shows a case where the slope tends to be
horizontal, resulting from a plateau daily contagion spread;
such plateau is synonymous with partial control of the spread
of the virus.

Examples 2 and 3 show the advantages of using our
proposal since different mathematical analyzes can be per-
formed using Jacobi polynomials properties [36]. Particu-
larly, we focus on elements of the statistical inference, which
is essential in the study of pandemics spread [39], [40].

FIGURE 7. Example of the behavior of the derivative of F̂ with respect to
t for the USA, at different changes of direction.

2) EXAMPLE 2
We start from a model F̂ (t, α, β, n) proposed by META-
COVID19. If this model is normalized by (24) to (25) in the
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domain t ∈ [c, d], then (26) gives the Probability Distribution
Function of the time series:

A
∫ d

c
F̂ (t, α, β, n)dt = 1 (24)

A =
1∑

i ai
∫ d
c P

α,β
n (t) dt

=
1∑

i ai
∫ d
c P

α,β
n (t) dt

=
α + β + n

2
∑

i aiP
α−1,β−1
n+1 (t)

∣∣d
c

(25)

PDF(t) =
α + β + n

2
∑

i aiP
α−1,β−1
n+1 (t)

∣∣d
c

F̂ (t, α, β, n) (26)

where:∫ b

a
Pα,βn (t)dt =

2Pα−1,β−1n+1 (t)
∣∣b
a

α + β + n
, for α, β, n 6= 0.

A direct application of (26) is to calculate the cumulative
probability P̂ given by (27) in the domain f , g ∈ [c, d],
where clearly P̂(f ≤ t ≤ g) provides probabilistic informa-
tion of contagions in a given period, thus generating quan-
titative information from the model without involving extra
processing:

P̂(f ≤ t ≤ g) =
∫ g

f
PDF(t)dt

=

∑
i aiP

α,β
n (t)

∣∣g
f∑

i aiP
α−1,β−1
n+1 (t)

∣∣d
c

. (27)

3) EXAMPLE 3
One of the most important statistical elements is the expected
value, which we can calculate for a given time window t ∈
[c, d] of the virus spread. From (26) the expected value is
calculated in terms of the model found by META-COVID19
and in (28) we show the mathematical result:

E[t] =
∫ d

c
t · PDF(t)dt

=
α + β + n

2
∑

i P
α−1,β−1
n+1

∣∣b
a

∑
i

ai

∫ d

c
t · Pα,βn (t)dt (28)

where:

∫ d

c
t · Pα,βn (t)dt =

2

[
t · Pα−1,β−1n+1 (t)

∣∣d
c −

2Pα−2,β−2n+2 (t)
∣∣b
a

α+β+n−1

]
α + β + n

.

(29)

Therefore, (30) estimates the expected value of daily con-
tagion spread:

E[t] =

∑
i aitiP

α−1,β−1
n+1 (t)

∣∣d
c − 2

Pα−2,β−2n+2 (t)
∣∣d
c

α+β+n−1∑
i aiP

α−1,β−1
n+1 (t)

∣∣d
c

. (30)

Equations (26), (27) and (30) are examples of quantitative
estimators obtained from the model fitted with our method-
ology and provide descriptive information about the virus

spread. Finally, from this analysis, the assumptions can be
deepened to generate more inferential statistics and support
assertive decision-making with mathematical foundations,
which could be combined and strengthened with other com-
putational models in favor of society.

VI. LIMITATIONS OF THE STUDY
In this research, the mathematical analysis was limited only
to the polynomial models found by META-COVID19, which
were adjusted to the time series available at the date of
creation of the article (but it can be applied with the data
collected at any time). Likewise, our proposed metaheuristic
is bound to the Jacobi polynomial family because it includes
other polynomials widely studied in the state-of-the-art, such
as Zernike, Legendre, Gegenbauer, and Chebyshev.

For the experimentation, the time series of new daily cases
confirmed as positive for SARS-CoV2 were used since they
show greater variability of the temporal data compared to the
time series of deaths, which allows us to show the efficacy of
our proposal. It is worth mentioning that due to the different
data capture processes in the health departments of the coun-
tries studied, the information presented directly influences the
result of the approximation.

Finally, the objective of our proposal is not the explicit
treatment of information to predict the short-term spread of
COVID-19. Instead, we focus on a mathematical characteri-
zation that allows us to obtain information to generate better
strategies for decision-making and thus prevent the future
spread of this and other diseases.

VII. CONCLUSION
A novel metaheuristic framework called META-COVID19
that merges the Generalized Boltzmann distribution and the
orthogonal Jacobi polynomials were proposed to automati-
cally perform a data-driven mathematical characterization of
the spread of COVID-19, without prior knowledge of the data
and without involving a human expert. We use our framework
to characterize the time series of new daily cases confirmed
as positive for SARS-CoV2, over a period of more than
400 days, reported in nine countries. The results presented
in Section IV-C show that our metaheuristic approach is
capable of adjusting to the time series with slight variability,
reaching an error close to 1E-3 with a standard deviation less
than 6E-5.

META-COVID19 only needs one fundamental parameter,
which is the number of Jacobi polynomials to be analyzed
at each iteration, providing an algorithm with simplicity in
its technical treatment. Furthermore, the Selection Operators
proposed in Section II-A, allows finding Jacobi polynomials
at a low computational cost since only 2500 function calls
are needed to perform the search in the proposed Characteri-
zation Space. In this sense, our metaheuristic framework can
be used in low-resource computer architectures.

According to the Wilcoxon signed-rank test performed in
Section IV-D, our proposal is as good as other state-of-the-
art techniques such as Artificial Neural Networks (ANNs)
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for time series fitting purposes. However, it is important to
note that ANNs might not provide an explicit mathematical
model from which more information can be obtained. On the
other hand, methodologies such as symbolic regression with
Genetic Programming approaches can build explicit mathe-
matical models, but these might not have known mathemati-
cal guarantees, and their construction implies a computational
cost much higher than that of META-COVID19. Finally,
we have shown in Section V the applicability of the poly-
nomial mathematical models found by META-COVID19,
where the assumptions can be deepened to generate more
inferential statistics and support assertive decision-making
with mathematical foundations.

As future work, we will carry out a study on the time
series of more countries, performing a segmentation by
cities in different time windows. Likewise, we will study in
more detail the properties of the polynomial models found.
A new outbreak or even new pandemics may reach the world
shortly. Therefore, having useful information on the prop-
agation behavior provided by different approaches such as
META-COVID19, will allow generating better strategies for
decision-making.

APPENDIX
ORTHOGONAL JACOBI POLYNOMIAL OF USA
The complete Jacobi polynomial found by META-COVID19
that characterize the USA time series for t = 422 days, with
an approximation error of g(fx) = 4.83E-2, is shown in (31).

F̂ (t, 0.0612,−0.0002, 51)

= 0.2398919806P(α,β)0 + 0.19580159P(α,β)1

−0.1840274078P(α,β)2 − 0.2836806116P(α,β)3

−0.1918465289P(α,β)4

+0.1273633146P(α,β)5 + 0.1383303565P(α,β)6

−0.0347301828P(α,β)7

−0.3676392751P(α,β)8 − 0.2709421146P(α,β)9

−0.0799113774P(α,β)10

−0.0777634871P(α,β)11 − 0.1771552104P(α,β)12

−0.0997154247P(α,β)13

−0.2160231213P(α,β)14 − 0.1752544954P(α,β)15

−0.2412128278P(α,β)16

−0.1634194009P(α,β)17 − 0.230539758P(α,β)18

−0.0961695459P(α,β)19

−0.1919655918P(α,β)20 − 0.2306250073P(α,β)21

−0.2769133376P(α,β)22

−0.1617292943P(α,β)23 − 0.1840142091P(α,β)24

−0.1315583219P(α,β)25

−0.209756872P(α,β)26 − 0.1777921369P(α,β)27

−0.2271212321P(α,β)28

−0.1438255534P(α,β)29 − 0.1727163355P(α,β)30

−0.1186929923P(α,β)31

−0.1448777975P(α,β)32 − 0.145347906P(α,β)33

−0.1683693389P(α,β)34

−0.1029743957P(α,β)35 − 0.071850483P(α,β)36

−0.0449190244P(α,β)37

−0.1284396092P(α,β)38 − 0.1532636351P(α,β)39

−0.1297923669P(α,β)40

−0.0405234397P(α,β)41 + 0.0052702233P(α,β)42

−0.0359805926P(α,β)43

−0.1199310014P(α,β)44 − 0.1315914891P(α,β)45

−0.051470919P(α,β)46

+0.0279153584P(α,β)47 + 0.0094849109P(α,β)48

−0.050232562P(α,β)49

−0.0807345798P(α,β)50 − 0.0499763644Pα,β51 . (31)
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