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ABSTRACT Disabled patients using brain computer interface (BCI) applications have a more convenient
life. The present study implements an electroencephalogram (EEG)-based signal processing algorithm for
controlling a wireless mobile vehicle through imagination. The aim is to improve the filtered common
spatial pattern (CSP) algorithm for BCI applications. The proposed method is a combination of the CSP
projection with a Modified Secondary Projection of the filtered Common Spatial Pattern (MSPCSP). With
this algorithm, distinctive differential features are obtained from the combination of the MSPCSP and CSP
projection eigenvalues to identify four classes: moving-forward-for-pause, stop-for-pause, moving-forward-
continuously, and stopped-continuously. The second contribution is the design of a task to produce clear
imaginary movement patterns. The task is a combination of brain stimulation by viewing red and yellow
sketches of the right hand that indicate opening the hand and making a fist. Eighteen subjects participated in
the experiment for wireless control of a mobile vehicle in offline and real-time modes. The results were then
evaluated through an accuracy and paired t-test statistical analysis for offline and real-time signal processing.
The results based on the MSPCSP projection showed significant improvements in accuracy in comparison
with the CSP projection: 82.16±9.04%with p < 0.05 and 70.83±8.27% for offline and real-time processing,
respectively. In addition, the MSPCSP projection attained higher accuracies of 14.72% and 13.33% for
offline and real-time processing, respectively. It was concluded that the MSPCSP projection generates more
discriminant differential features than the filtered CSP projection. Further, the MSPCSP projection with the
thresholds extend the limitation of CSP-based methods from two- to four-class identification.

INDEX TERMS Brain computer interface (BCI), remote vehicle control, common spatial pattern, feature
extraction, threshold classifier.

I. INTRODUCTION
Control of assistant robots for paralyzed patients is a part
of brain computer interface (BCI) studies. One method used
to identify human imaginary movements for robot control
is automatically identifying the event-related desynchroniza-
tion (ERD) patterns in EEG signals [1]. ERDs are patterns
that appear in an EEG signal when a subject intends to
move, causing a decrease in the rhythmic activity within
the localized amplitude; in addition, the time, intention, and
subject’s action synchronized through event related synchro-
nization (ERS) appear, causing an increase in the rhythmic
activity within the localized amplitude [2], [3]. The same
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ERD patterns with some amplitude alterations are also
observable when the subject intend to move in their imagina-
tion [4]. Different algorithms have been developed to detect
evoked related potentials [5] and the imaginary movement
features based on ERD patterns, such as a common spatial
pattern (CSP) [6], wavelet [7], and chaos theory [8], [9].
The present study focuses on enhancing the CSP method for
controlling wireless mobile vehicles. In definition, the CSP is
a transformation function with the property of perpendicular
data projection for two classes. As the first CSP-based con-
straint, CSP-based methods are highly affected by noise, and
several methods have been developed to reduce the effects
of such noise, including a common sparse spectral spatial
pattern (CSSSP) [10], filter bank CSP (FBCSP) [6], FBCSP
with an adaptive system [11], sliding window discriminative
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CSP (SWDCSP) [12], and FBCSPwith kernel linear discrim-
inant analysis (LDA) [13]. As the second CSP constraint,
CSP-based methods are limited to two classes of identi-
fication, of which several studies have been published to
overcome the limitation of controlling multiclass CSP motor
imagery (MI) applications [14].

In a key series of initial studies, Ang et al. [6] developed an
FBCSP projection that includes a combination of a filter bank
and CSP with a mutual information feature selection algo-
rithm. During the procedure, several feature selection func-
tions are applied, of which the ‘‘mutual information based
best individual’’ method is known as the best feature selection
approach. Features are then classified using different clas-
sifiers, of which the Naïve Bayes Parzen Window method
has achieved the best results. Next, Ang et al. [15] integrated
a method obtained in a previous study [6], using online
adaptive learning with a semi-supervised learning algorithm
to improve the accuracy results, which was effective.

In the next level of studies, novel algorithms have
recently been published for enhancing the precision of
the CSP algorithm in the MI applications. For example,
Hekmatmanesh et al. [9], [13] combined the FBCSP projec-
tion with a discriminative sensitive learning vector quantiza-
tion algorithm to weigh the CSP coefficients, and features
were then selected using the KPCA/KLDA feature selection
algorithms. The features obtained were then classified using
the K-nearest neighbor (K-NN), neural network, and a sup-
port vector machine (SVM) with different kernels, and the
best results were obtained by the SVM with the generalized
radial basis function (GRBF) kernel.

In a series of studies, Zhang et al. [16] developed an algo-
rithm for optimizing the utilized filter bands and signal seg-
mentation ranges of the CSP algorithm, which is called the
temporally constrained sparse group spatial pattern. With this
algorithm, the EEG signal is first filtered using a band-pass
filter, and the spectrum of the EEG signal is then computed.
Next, several sub-series are extracted from the signal spec-
trum, and then a joint sparse optimization algorithm with a
temporal smoothness procedure is applied to optimize the
CSP features. Finally, the optimized features are classified
using an SVM classifier that increases the results slightly.
Next, Wang et al. [17] enhanced the CSP projection coeffi-
cients for MI applications using a regularization algorithm
developed for solving a generalized eigenvalue problem. The
principal of the modified CSP is to obtain the optimum gen-
eralized eigenvalue by solving a minimization problem. The
proposed method for the minimization problem is a singular
value decomposition with the least squares algorithm. The
regularized CSP results showed a significant increase in CSP
efficiency.

In the next step, Guo et al. [18] developed an enhanced
CSP method called component regularized CSP (RCSP).
With this algorithm, the EEG signal is decomposed into
components using a wavelet packet technique. The key RCSP
features obtained using the regularization of the covariance
matrices in the CSP algorithm and the best features were then

selected using the minimal redundancy maximal relevance
procedure. The features were then classified using the LDA
algorithm, and the results increased significantly in compari-
son with the traditional methods.

Despite the above-mentioned CSP constraints, the CSP
algorithm was developed for two-class identification. Several
algorithms have been implemented to extend the two-class
CSP to multi-class identification [19], [20]. Through basic
attempts, a two-class CSP was extended to a three-class CSP
using a one-versus-rest classification technique [11]. Next,
Grosse-Wentrup et al. [21] used the joint approximate diago-
nalization (JAD) method to compute independent component
features, and maximum mutual information values were then
obtained and classified using a logistic regression algorithm.

Recently, Meisheri et al. [22] extended Grosse-Wentrup’s
method [21] using the Self-Regulated Interval Type-2
Neuro-Fuzzy Inference system approach, which was not
successful. Therefore, Jafarifarmand et al. [23] improved the
previous method [22] for multiclass CSP identification using
an adaptive theory concept for real-time MI applications.
With this algorithm, the JAD feature extraction is fused with
a self-regulated supervised Gaussian fuzzy adaptive system,
Art, as a multi-classifier that achieves a higher accuracy.
In another recent study, Chacon et al. [24] developed a novel
feature using the CSP principal that enables a classifier to
diagnose different states of mind. In the algorithm, spectrum
images of the ERD patterns related to the three types of imag-
inary movements were plotted in red-blue-green mode. The
correlation features between states were then computed and
classified using the SVM classifier, and the results showed
significant improvements. In our last survey, a comprehensive
review on the Brain controlled vehicles and aerial vehicles for
more details is available in [25], [26]. Also, employed meth-
ods and sensors for identifying patterns is considered in [27].
In another study, Holm et al. [28] designed two algorithms
based on the traditional deep learning with the convolutions
and FBCSP. Methods applied on the he BCI competition
IV dataset and accuracy results showed that the proposed
improved FBCSP has more accurate results, but the presented
results are not suitable for real-time experiments.

The CSP algorithm has been improved in different stud-
ies, for example, Jin et al. [29] improved the CSP algorithm
using a fusion algorithm with respect to the Dempster–Shafer
theory. The algorithm is applied to optimized the CSP fea-
tures that affects the distribution of the features. This study
compared different improved CSP method with the proposed
fusionmethod, named traditional CSP, Lasso-CSP, FCSP, and
DRL1-CSP. Results showed that the CSP features distribu-
tion based on the fusion caused the best accuracy results.
In another study, et al. [30] improved the CSP using a regu-
larization method. In the algorithm the EEG channels are first
selected using a correlation-based channel selection method.
The classified results based on the SVM with the RBF kernel
obtained more accurate result.

In another recent study, Lee et al. [31] implemented the
CSP method with the LDA algorithm to control a drone

6166 VOLUME 10, 2022



A. Hekmatmanesh et al.: Combined Projection for Remote Control of Vehicle Based on Movement Imagination

swarm. In the approach, themain contributionwas using three
different stimulator’s task for brain for generating more dis-
tinctive patterns (features) includes: speech imagery, visual
imagery and motor imagery. The LDA is a binary classi-
fier which is used for four classes identification, that the
accuracy results showed this could be the cause of high
error rate. Batres et al. [32] developed a method based on
the improved Quaternion-based Signal Analysis algorithm
for feature extraction and controlling a hexapod robot. In the
algorithm, four EEG signals are employed and significant
results obtained for offline and real-time classification.

In the present study, our contribution is to implement
a weighting projection based on the CSP principals for
imaginary pattern recognition, called the modified sec-
ondary projection of the filtered common spatial pattern
(MSPCSP). The second contribution is computing four dis-
criminating thresholds based on the MSPCSP coefficients to
identify four mind states for controlling a wireless mobile
vehicle in real-time mode: ‘‘Moving-forward,’’ ‘‘Stop-
for-pause,’’ ‘‘moving-forward-continuously,’’ and ‘‘stopped-
continuously.’’ The remainder of this paper is organized as
follows: Section 2 describes the designed experimental task
for recording an EEG signal, Section 3 details the proposed
method, Section 4 presents the obtained results, Section 5 dis-
cusses the achievements, and finally, Section 6 provides some
concluding remarks regarding this study.

II. EXPERIMENTAL SETUP
In imaginary-based BCI experiments, the employed tasks
in an experimental setup play an important role, which is
producing relative patterns to the imagination of movement.
In our experiment, a visionary-imagination task of opening
a hand and making a fist was designed to produce relative
patterns with respect to the regulations shown in Figure 1 a.
A total of 18male volunteers (S1 to S18) participated in the

experiment at Lappeenranta University of Technology. The
task is implemented in the following four steps: (1) Display-
ing a fixation cross for 500 ms at the center of a black screen,
(2) displaying an image of a hand opening or making a fist
for 1000 ms, (3) removing the image and displaying a black
screen to let the subject imagine a movement represented by
the displayed image (or opening the right hand or making
a fist) for 2500 ms, and (4) displaying a black screen to
let subjects rest for a random period of 3500 to 4000 ms,
Figure 1 a. The reason for using the cross sign at the center
of a black screen is attracting the subject’s attention at that
location. In addition, the reason for using the black screen is
because other colors produce specific frequencies relative to
the displayed color in the EEG. In other words, colors such
as red and yellow produce significant patterns in the EEG.
With respect to our scientific experiences from our previous
projects to determine how color and negative emotions affect
afternoon sleep and learning [33]–[37], we used red and
yellow colors for making hand fist and opening hand, respec-
tively. Stimulating brain with two stimulators simultaneously
(imaginary movement and color imagination) could have

potential of producing different stronger patterns which could
be used in the BCI applications [31].

Before the experiment, subjects practiced opening their
hands and making a fist 10 times to help them imagine the
feeling of movements close to such motions. The imaginary
task was repeated for 150 trials on individual subjects. The
recorded signals are then used to train a classifier in offline
mode. For the real-time mode experiment, the task was exe-
cuted for 20 trials individually to control a real mobile vehi-
cle connected to a computer with a wireless XBee chipset,
as shown in Figure 1 b. More details on the task and applica-
tions are presented in our previous studies [38], [39].

In the real-time experiment, the subjects were asked to
imagine the displayed image once and throughout the entire
2500 ms period. In total, two tasks were conducted during
the real-time experiment, i.e., imagining making a fist once
during the 2500 ms period, and similarly imagining opening
their hand during this same period. During the experiment,
a portable Enobio-32 amplifier with 32 dry electrodes (Shown
in Figure 2) was used for EEG data collection, in which
the sampling frequency rate was set to 500 Hz [40]–[42].
MATLAB-2017a software was used for signal processing in
offline and real-time modes.

III. METHODS
To control a wireless mobile vehicle, four steps are imple-
mented as follows: (1) data recording, (2) preprocessing,
(3) feature extraction, and (4) classification. In this section,
the procedure of EEG data processing is described as shown
in Figure 3 and started with preprocessing as follows.

A. PREPROCESSING
The preprocessing step is an initial principal procedure for
programming a model for real-time system identification.
As shown in Figure 1, our software sends a marker to the
EEG data to record the exact moment of imagination and
rest (Figure 1 a). In offline preprocessing, samples of marked
imaginary movement for 32 channels were first windowed
as follows: 200 ms before the visual stimulation (display of
images) until 2500 ms after the visual stimulation. The rest
of the signals were located after the imagination time, which
is called the resting time. Next, the windowed signals were
arranged in a matrix of [m × n × t], where m is the number
of trials, n is the number of channels, and t is the number of
samples in each window. In our experiment, 150 trials were
recorded for individuals, among which 75 trials belonged
to the moving-forward class and 75 belonged to the stop-
for-pause class. In addition, 75 resting trials were extracted
after displaying one movement more than twice. Therefore,
a matrix size of [150× 32× 500] was built.
The windowed 32-channel signals are then passed through

a sixth-order Butterworth band-pass filter with a frequency
range of 8-13 Hz, and the frequency range was determined
based on our previous publications [43], [44]. The applied
filters help visualize the ERDs (Figure 4) and illustrate the
skull map ERD spectrum for the 32 channels. The skull
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FIGURE 1. The experimental setup for recording EEG.

FIGURE 2. The utilized Enobio EEG device and the 32 sensors installation.

FIGURE 3. The concept of the algorithm.

map spectrum in Figure 5 is informative for considering the
employed frequency range, location, and quality of the neu-
ron’s activation during the task. In real-time preprocessing,
the EEG amplifier sends 500 samples at once with 100 ms
delay. Therefore, the input matrix dimensions for process-
ing are [1 × 32 × 500] and the same Butterworth filter is
applied to remove noise. In the next section, the algorithm

FIGURE 4. An obtained example of imagination pattern of right hand
making a fist from FC1 channels when making a fist with the right hand.
In similar experiments the ERD pattern appears from 800 to 1150 ms
because of the decreasing localized amplitude, and the ERS appears
from 1150 to 1400 ms because of the increasing localized
amplitude. [45]–[47]. The ERD/ERS patterns are observable in other
channels in which FC1 is an example.

for computing the MSPCSP projection and the threshold for
the classifier is described.

B. MODIFIED SECONDARY PROJECTION OF THE
COMMON SPATIAL PATTERN (MSPCSP)
To apply the MSPCSP projection to the EEG data, the tradi-
tional CSP with the above-mentioned filter function is first
applied for the 32 channels [9], [41]. To implement the tradi-
tional CSP, the preprocessed matrix is normalized, averaged,
and stored in matrices, denoted as CS (covariance for condi-
tion stop-for-pause) andCF (covariance for conditionmoving
forward) as follows:

CF =
1
m
(
m∑
i=1

(
ZF × ZFT

trace(ZF × ZFT )
)),

CS =
1
m
(
m∑
i=1

(
ZS × ZST

trace(ZS × ZST )
)), (1)

where ZF and ZS are parameters for the EEG signal under
moving-forward- and stop-for-pause for one second condi-
tions, respectively. In addition, m is the number of trials for
individual classes, which is 75 in our experiments, and T is
the transposed operator. To compute a whitening transform
function, the CF and CS matrices are combined in Eqs. (2),
and the whitening coefficients are then computed using Eq.
(3) as follows:

CT = CF + CS = A0δA0T , (2)

Tr =
1
√
δ
A0T , (3)

where A0, δ, and Tr are eigenvectors, the diagonal eigenvalue
matrix, and whitening matrix coefficients, respectively. The
CF and CS matrices are then transferred by utilizing the
whitening matrix:

GF = TrCFTrT GS = TrCSTrT . (4)

Here, GF and GS share common eigenvalues in Eq. (5). The
main objective of the CSP is to find a matrix labeled A, as in
Eq. (5), which satisfies Eq. (6). To check the computations,
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FIGURE 5. Spectrum scalp map of the power of the distributed neuron
activities for right hand making a fist between 8 and 13 Hz in the ERD of
the imaginary hand movement for subject 13.

the shared eigenvalue summation must be the unit matrix (I ),
as in Eq. (6).

GF = AγFAT , GS = AγSAT , (5)

GF + GS = I → γF + γS = I , . (6)

where the diagonal eigenvalue matrices for the moving-
forward- and stop-for-pause conditions are assigned to the
γF and γS symbols, respectively. By sorting the eigenvectors,
large and small eigenvalues are separated and placed in GF
and GS matrices, respectively. In addition, Wproj1 is then
defined to arrange the CSP projection coefficients as follows:

Wproj1 = ATTr . (7)

The computed Wproj1[32×32] matrix is the target CSP weight.
To obtain the first CSP projection, theWproj1 weight is applied
to the EEG data, as in Eq. (8):

Data[32×500] = Wproj1[32×32]EEG[32×500]. (8)

The Data[32×500] matrix was utilized as the input for the
second projection and Data[32×500] is the implemented tradi-
tional matrix, which is the basis of our further computations.
The MSPCSP (second) projection computation is defined by
Eq. (9).

CT
newF = (

1
m

m∑
i=1

(DataTF × DataF ))
T ,

CT
newS = (

1
m

m∑
i=1

(DataTS × DataS ))
T , (9)

where CT
newF and CT

newS are the transposed average covari-
ance matrices of the new projected EEG data with the
CSP weights of the moving forward (DataF ) and stop-
for-pause (DataS ) classes, respectively. Eqs. (2) to (7) are
then utilized to obtain the Wproj2[500×500] projection. Finally,

the two projections were applied to the EEG with the
given order in Eq. (10).

FProj[500×32] = (Wproj1[32×32]EEG[32×500])

×Wproj2[500×500]. (10)

The final transformation is the FProj matrix, which is based
on two complementary transformations. For feature extrac-
tion, the first and last rows of the decreasingly sorted trans-
formed matrix in the moving-forward class are subtracted
from the first and last rows of the stop-for-pause class, respec-
tively. The first and last rows contain the largest and smallest
classes, respectively. The extracted differential features are
then utilized to compute the thresholds for the threshold
classifier.

C. FEATURES AND CLASSIFIER
To classify the features, various approaches have been
employed, such as an SVM, GRBF, and neural networks [8],
[13], [36], [37], [48]. In the present study, a threshold
classifier is proposed to classify the MSPCSP and CSP
features.

1) DIFFERENTIAL THRESHOLD COMPUTATIONS
Various methods have been developed to classify the fea-
tures. In the present study, the idea is to compute differential
eigenvalue features by applying the projection FProj to the
movement and rest signals. The projection FProj enables
us to identify sub-classes, namely, stopped-continuously
and moving-forward-continuously. In the computations, two
types of EEG rest are defined: 1) rest after frequent imagi-
nation of one action and 2) rest after a single action. In our
algorithm, the rest of the EEG signal after the frequent imag-
ination of one action is employed. Therefore, the eigenvalues
of the remaining EEG signal are computed, and the FProj
matrix is then applied to obtain the altered projections.

To find the thresholds, the MSPCSP eigenvalue matrix
of the moving-forward class and stop-for-pause classes are
first sorted decreasingly. The average values of the first and
last rows are then computed and assigned to the PA and PB
parameters for the moving-forward class and stop-for-pause
main classes, respectively. To find the subclass thresholds, the
first and last rows of the decreasingly sorted eigenvalues of
moving-forward (main class) are subtracted from the first and
last rows of the decreasingly sorted rest eigenvalues, respec-
tively. Thereafter, the average of the eigenvalues is assigned
to PC1, which is called moving-forward-continuously (first
sub-class). The same procedure is applied to the stop-for-
pause eigenvalues and the remaining eigenvalues, and the
averaged value of the eigenvalues is assigned to PC2, labeled
stopped-continuously. Therefore, two differential eigenvalue
matrices were obtained, and the average values were assigned
to parameters PC1 and PC2. Hence, four thresholds are deter-
mined to develop a threshold classifier, namely, PA, PB, PC1,
and PC2. In the next step, the memory matrices and classifier
implementation using thresholds are explained.
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2) THRESHOLD CLASSIFIER AND COMMUNICATION WITH
MEMORY
Four states are defined to design a threshold classifier:
moving-forward, moving-forward-continuously, stop-for-
pause, and stopped-continuously. Because of the nonlinearity
of the EEG behavior, the thresholds are updated for each EEG
segment.

The attained thresholds are 1) PA, which is the first thresh-
old for the main class ‘‘moving-forward,’’ and 2) PB, which
is the second threshold for the main class ‘‘stop-for-pause.’’
The criterion decision for the classifier is set as follows:
1) if PB > PA, the vehicle will stop for a pause, 2) if
PB < PA, the vehicle will move forward and pause for one
second, as shown in Figure 6.a, and 3) the range between PC1
and PC2 is recognized as a continuous action (subclasses).
To determine how the decision-making is applied to the sub-
classes, a memory matrix is defined.

In the algorithm, a memory matrix is defined based on
zero values and one value (shown in Figure 6) to record the
previous conditions. Here, we demonstrate how the memory
and thresholds communicate. The initial conditions in the
memory are set to (0, 0), which means that the vehicle is
stopped. In the memory matrix, the first value describes the
previous condition, and the second value describes the present
condition. The decision tree shown in 6 is based on the
obtained thresholds and explained as follows: If the differen-
tial thresholds attained satisfy PB < PA, the vehicle condition
changes from stop to move-forward-for-pause, and the mem-
ory value changes to (0, 1). In the next trial, if the differential
value obtained satisfies PB > PA, the EEG state changes
and the vehicle is stops for a pause. Therefore, the memory
changes to (1, 0). Next, if the differential value obtained is
between PC1 and PC2, the EEG state remains unchanged,
and the previous state is continued or stopped continuously.
For instance, if the value obtained between PC1 and PC2
and the present state is (0, 1) (the vehicle move-forward-
for-pause), the memory changes to (1, 1). In this case, the
system recognizes that it should move forward continuously
to prevent an interruption. In the conceptual of view, moving
forward is identified, if in two frequent times the moving
forward class were identified, then the class state identified
as a moving forward-continuously automatically, until a stop
class is identified. If the previous state is zero and the recog-
nized present state is also zero, the memory is set to (0, 0),
and the vehicle remains stopped for the next trial (stopped-
continuously state). Stopped-continuously class happens if
two frequent times the moving forward class identified, then
the class state identified as a moving forward-continuously
automatically until a moving class is identified. As the main
limitation of the above-mentioned procedure, the use of other
classifiers is not applicable and requires further study.

IV. RESULTS
In this experiment, 18 male candidates with an average age
of 29.5 years participated in the control of a remote vehicle

TABLE 1. The evaluated accuracy (Acc) with standard deviation and
paired t-test for classifying the MSPCSP and CSP in offline and real-time
procedures for individual subjects.

by imagination. The participants did not have an addiction
to cigarettes, alcohol, or a history of drug consumption for a
long period. They were also asked not to drink caffeine for at
least 3 h prior to the experiment. A sample of the ERD/ERS
imagination pattern of the right hand making a fist and a scalp
map of 32 channels are shown in Figures 4 a and 5 b.

To consider the efficiency of theMSPCSP and CSP projec-
tions for offline and real-time processing, the accuracy of the
standard deviation and paired t-test evaluations are presented
in Table 1. The paired t-test is an evaluation that provides
information on the meaningfulness of changes between two
conditions in one group. If the changes in the extracted fea-
tures are meaningful, the obtained paired t-test has a p-value
of p < 0.05. If the feature changes are meaningless, the
obtained paired t-test has a p-value of p > 0.05. For real-
time processing, 20 trials were conducted, and the vehicle’s
information is given in Table 1. To investigate the efficiency
of the MSPCSP method in comparison with the CSP method,
the feature scattering of S13 is shown in Figure 7.

V. DISCUSSION
The aim of the present study is to implement the MSPCSP
projection to find discriminate features and employ them as
a threshold in a multiclass classification for controlling a
wireless mobile vehicle application. To control the mobile
vehicle, two main classes of ‘‘moving-forward’’ and ‘‘stop-
for-pause’’ are computed. Then, by using each main class,
two other subclasses are computed. In total, four classes are
identified: the ‘‘moving-forward’’ class with the sub-class of
‘‘moving-forward-continuously’’ and the ‘‘stop-for-pause’’
class with the sub-class of ‘‘stopped continuously.’’ Then,
the MSPCSP features were considered in two modes: offline
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FIGURE 6. a. Configuration of the utilized threshold-base classifier. b. Interpretation of remote vehicle conditions in classifier.

FIGURE 7. Scattering plot of the generated features using the projections.

and real-time classification processing. In the both modes,
the input signals were 32 EEG signals. In the next section,
we describe the implemented algorithms for identifying the
mind states during offline and real-time processing.

A. CONSIDERING CSP AND MSPCSP PROJECTIONS
In the algorithm, the preprocessed EEG signal is briefly
divided into two matrices of size [75 × 32 × 500], each
representing one of two classes: imagining the right hand
making a first and opening. In addition, one matrix with
the same size was computed for the remaining EEG signal.
In our BCI experimental application, imagining the right hand
making a fist and opening were the main classes, which
were translated into a moving-forward-for-pause and stop-
for-pause (brake) state for 1 s each. The complementary
explanation for computing the MSPCSP is as follows: First,
the traditional CSP projection is implemented using Eqs. (1)
to (7), which we refer to as Wproj1[32×32]. To compute the
CSP projection for imaginary signals, Eq. (8) is applied, and

the matrix Data[32×500] is obtained. Therefore, CSP changes
the signal projection toward two orthogonal directions in
a two-dimensional feature space that represents the main
classes using Data[32×500], which generates two values from
each segment. From a mathematical perspective, the CSP
projection differentiates the direction of classes by maximiz-
ing the variances for one class and minimizing the variances
for the second class, as shown in Figure 7 a. Most of the
traditional CSP error rates are computed from the area with
the overlap between the two classes, as shown in Figure 7 a,
which is intended to be reduced using the MSPCSP projec-
tion. The second projection is then applied to the prepro-
cessed EEG data using CSP. The projected EEG data were
first sorted decreasingly and then transposed. The covariance
of the modified projection (sorted and transposed) is then
computed as an update of the eigenvalues. Then, the new
orthogonal coefficients are computed by reusing Eqs. (1)–(9).
The MSPCSP projection includes an altered CSP with addi-
tive information (Wproj2[500×500]) in comparison with the
traditional CSP projection (Wproj1[32×32]). Finally, the EEG
data were transferred into a higher feature space using
Eq. (10), the second projection is called the MSPCSP. Then,
the MSPCSP is sorted decreasingly to find the largest and
smallest eigenvalues for computing the main classes thresh-
olds, and the eigenvalues are then employed for finding the
subclass thresholds. The computing procedure for the main-
and sub-class thresholds is repeated for every epoch of the
individual participants and updated automatically. To deter-
mine the number of projections that are informative, the
above-mentioned procedure is repeated individually because
the accuracy obtained reaches a constant value with fewer
fluctuations. In our experiment, the application of two pro-
jections reached a constant accuracy for individuals. In the
next discussion, the finding of sub-classes using CSP and
MSPCSP is described.

B. DIFFERENTIAL FEATURES AND SUB-CLASSES
This part begins with the following questions: Do the fre-
quent imaginations of making a fist generate frequent ERDs
(continual moving-forward)? If so, are they detectable? More
specifically, by making a fist once, one ERD pattern appears,
and the EEG background (signals with no actions) is the
dominant signal. By making a fist continuously or frequently,
a frequent number of ERD patterns do not appear in the EEG.
In other words, we do not know how long an action should be
continued, which has the potential for further consideration.
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By contrast, the imagination of frequent fist-making actions
is not applicable to the subjects. However, the imagination of
a movement more than once causes an interruption and delay
in the real-time system. For employing a real-time system,
the same procedure needs to be processed for updating the
thresholds for each new incoming data.

To solve the first problem, informative data are extracted
from the MSPCSP and CSP projections, leading to differ-
ential features for controlling continuous actions. In our
experiment, differential features are used to extract two
sub-classes from the main classes, namely ‘‘moving-forward-
continuously’’ and ‘‘stopped-continuously.’’ To classify the
states of the subject’s mind, a memory matrix is required,
as defined in Section III-C2. In addition, the interruption
problem (interruption) in real-time experiments for continu-
ous movements is solved using the memory matrix.

As described in Sections III-C1 and III-C1, computing
differential features using hand fisting-, hand opening-, and
rest- eigenvalues enable sub-class identification (moving-
forward-continuously and stopped-continuously). The key
point for identifying the sub-class algorithm was seeking a
range of informative values in the eigenvalues that differed
from the EEG-background and main classes. Experimentally,
averaged differential eigenvalues PC1 and PC2 were used
as separating thresholds, although the results were random.
Therefore, a range of values between PC1 and PC2 is selected,
which results in high variations. Experimentally, it is recog-
nized that some of the values between the ranges PC1 and
PC2 are instructive, and we could not find a rule between the
results and values because of the low number of features and
the non-linearity. Although this is solvable using optimizing
algorithms within the PC1 and PC2 range, but we solve it
using a memory matrix.

To consider the range between PC1 and PC2, the differen-
tial features for the main- and subclass scattering are depicted
in Figure 7 b, which is for S13. Figure 7 b shows that the
area between Feature 1 and Feature 3 is not outspread in the
feature space, and is limited within a range. For the other sub-
jects, Feature 1 and Feature 3 had a higher dispersion with an
overlap, but the trend was similar. In addition, Feature 2 and
Feature 4 show good separation with less overlap between the
main classes of stopped-continuously and moving-forward-
continuously. To identify the subclasses from the PC1 and
PC2 range of values and obtain a higher and constant accu-
racy, a memory matrix is defined. The memory matrix has
two advantages: 1) developing a method for recognizing the
sub-classes and 2) removing interruptions for real-time exper-
iments. The communication of the classifier and the memory
is explained in detail in Section III-C2. To use the memory
matrix in a real-time experiment, the following regulationwas
implemented: 1) updating thresholds are limited within the
range of the minimum and maximum values that are obtained
in the offline processing, and 2) if an undefined condition is
identified, then the previous state in the memory is repeated
and the mobile vehicle remains under the condition with
no changes. Limitations of the present study: The principal

communication of the memory with the thresholds for iden-
tifying classes explained in Section III-C2, and it is illus-
trated that the threshold computations, memory process, and
sub-class identification are sections of each other and cause
a limitation in using a threshold classifier, which has the
potential to be solved through the use of other classifiers.
In the real-time experiment, the same task and processing for
adjusting the tree decision algorithm is applied for the sub-
jects to find the accuracy results. Additionally, 32 channels
are employed for the real-time processing.

C. ANALYZING RESULTS
The experiment was conducted in both offline and online
modes. From Table 1, it can be seen that the classifier
with the MSPCSP features reaches an average accuracy of
82.16±9.04% and 70.83±8.10% for offline and real-time
processing, respectively. In addition, the CSP method has
an average accuracy of 67.44±8.10% and 57.508.63% for
offline and real-time processing, respectively. The results
showed that the MSPCSP projection increases the accu-
racy in comparison with the CSP by an average of 14.72%
and 13.33% for offline and real-time modes, respectively.
A paired t-test was applied to the CSP and MSPCSP fea-
tures separately to consider the significance of the right-hand
fist-making imagination (moving-forward) and hand opening
(stop-for-pause) with the sub-class results. Table 1 shows
that the paired t-test results based on the CSP approach were
insignificant for the two candidates, whereas there were no
insignificant paired t-test results with the MSPCSP feature
changes. Consequently, the values in Table 1 show that the
features extracted from the MSPCSP are more discriminated
and yield more accurate results.

VI. CONCLUSION
In the present study, a second projection using the CSP prin-
cipals was computed, called MSPCSP, and was used to iden-
tify four classes in real-time processing. The main MSPCSP
eigenvalues and the differential discriminative weights were
used for identifying two main classes and two sub-classes,
respectively. The differential weights were computed through
a differential operation between the eigenvalues in three
states: making a fist with the hand, opening the hand, and
at rest. The discriminative weights were used as features and
were helpful for further computations of the threshold values
of the classifier algorithm. The results obtained show that the
MSPCSP projection achieves an accuracy of 82.16±9.04%
with p < 0.05 and 70.83±8.27% for offline and real-time
processing, respectively. In addition, the MSPCSP method
increased the average results by 14.72% and 13.33% com-
pared to the CSP method for offline and real-time processing,
respectively. It was concluded that the computed projection
weights based on theMSPCSP projection aremore distinctive
than those of the CSP projection method. Moreover, the
algorithm for computing the thresholds effectively extended
the number of identifying classes in CSP from two to four
states.
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