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ABSTRACT In providing an accurate approximate analytical solution to the non-linear system of fractional-
order susceptible-infected-recovered epidemic model (FOSIREM) of childhood disease has been a chal-
lenge, because no norm to guarantees the convergence of the infinite series solution. We compute an
accurate approximate analytical solution using the optimal homotopy asymptotic method (OHAM). The
fractional differential equations operator (FDEO) is given as conformable derivative operator (CDO).
We show the basic idea of the proposed method, the CDO sense, equilibrium points, local asymptotic
stability, reproduction number, and the convergence analysis of the proposed method. Numerical results and
comparisons with other approximate analytical methods are given to validate the efficiency of the method.
The proposedmethod speedily converges to the exact solution as the fractional-order derivative approaches 1,
proved as an excellent tool for solving, and predicting the model.

INDEX TERMS Infectious childhood disease, non-linear model, approximate analytical solution, con-
formable derivative operator, SIR-model, reproduction number.

I. INTRODUCTION
The study of infectious diseases shows that childhood dis-
eases are the most grievous infectious disease which includes
tuberculosis, severe acute respiratory syndrome (SARS),
Lyme disease, infectious mononucleosis, salmonella infec-
tions, andmanymore. Lyme disease is a widespread infection
disease engendered by a bacterium transported by a particular
deer tick. When bitten by an infected tick, there is a chance
that the individual-level will develop the symptoms of Lyme
disease, including rash, fever, body aches, bull’s-eye rash,
and sometimes more severe symptoms involving the nervous
system and joints. Besides, the introduction and production
of vaccines for curing childhood diseases have been a gift to
humankind. It defends children from infectious diseases, the
main aim of the world health organization (WHO). Since vac-
cination is believed themost efficient technique against child-
hood diseases, forming a model that could predict the optimal
vaccine coverage level is required to contain the spread of the
diseases. The mathematical model plays a significant role in

The associate editor coordinating the review of this manuscript and

approving it for publication was Mark Kok Yew Ng .

apprehending the spread of childhood disease and provides
different methods to control its spread. Several authors have
studied childhood disease: for instance, the recent research
on childhood diseases vaccination [1]–[3]. In 2007 Makinde
proposed a standard Susceptible-Infected-Recovered model,
given as

dS
dt
= (1− p)π − β

si
n
− πs, (1)

dI
dt
= β

si
n
− (γ + π )i, (2)

dR
dt
= pπ + γ i− πr . (3)

The authors [4] rearranged model Eqs.(1-3) using the relation
s
n = S, in = I , and r

n = R in a new (SIR) model of the form:

dS
dt
= (1− p)π − βSI − πS, (4)

dI
dt
= βSI − (γ + π )I , (5)

dR
dt
= pπ + γ I − πR. (6)
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The SIR model is a standardized compartmental model
that describes several epidemiological diseases [5, 6]. The
medium by which many childhood diseases spread through
a population conforms to this model. The model has a sus-
ceptible group (S), an infected group (I), and a recovered
group (R), denoting vaccinated as well as recovered peo-
ple with permanent immunity. This model above shows that
vaccination is 100 per cent and the natural death rates π in
the classes are not equal to births, so the population size N
is realistic, not constant. Individuals are born at a constant
birth rate µ with a very low childhood disease mortality
rate. We denote the fraction of Individuals vaccinated at birth
each year as p (with 0 < p < 1) and considering that the
rest of the population is susceptible. A susceptible individual
will move into the infected group through contact with an
infected individual, approximated by an average contact rate
γ . An infected individual recovers at a rate βand enters the
recovered group. The recovered group also contains people
who are also vaccinated.

FIGURE 1. Flow chart for the SIR model.

The previous studies review that fractional calculus
provides more exact models of several applications and
shows the behaviour of the dynamic system in sciences
than traditional calculus [7]–[10]. A system of non-linear
fractional-order reaction-diffusion equations was used to
model the superdiffusive spread of modern epidemics
because compared with integer-order is well capable of
capturing the memory-like effect examined in the non-
linear dynamic system [11]. Other recent study includes
a fractional-order Brusselator reaction-diffusion model in
a triple collision and enzymatic reactions system [12],
fractional-order mathematical modeling of novel Corona
Virus (COVID-19) [13], and fractional-order analytical
and qualitative investigation of (COVID-19) mathemati-
cal model [14]. The motivation behind the usefulness
of fractional-order differential equations (FODEs) is that
FODEs are naturally related to systems that involve memory-
like effect which has applications in many systems. Also,
they demonstrate the actual behaviour of infection dis-
ease but at a prolonged rate. Studying the latest literature
review of the childhood disease model includes numerical
approximation technique for the FOSIREM [15], homotopy
perturbation method for FOSIREM [16], q-homotopy anal-
ysis transform method for FOSIREM [17], and solutions of
fractional-order model of childhood diseases with constant
vaccination strategy [18]. The previous approximate analyti-
cal solutions in literature do not possess a norm for the conver-
gence of the infinite series solution, which promptedMarinca
(2009) to introduced OHAM, which contains the criteria

for convergence of the series solution and is efficient for
solving non-linear model [19]. In OHAM, no perturbation or
linearization is required. OHAMmethod does not require any
additional parameters, which delay convergence and compu-
tational time. Recent articles include OHAM-least square for
solving non-linear fractional-order gradient-based dynamic
system from an optimization problem [20], an approximate
analytical solution of non-linear fractional-order constrained
optimization problem using OHAM [21], a new OHAM for
fractional optimal control problems [22], approximate solu-
tion of two-term fractional-order diffusion, wave-diffusion,
and telegraph models arising in mathematical physics using
OHAM [23]. We implement OHAM to solve and predicts the
model.

We arrange the rest of the paper as follows: Section II
discusses a brief introduction to the conformable derivative
operator. Section III describes the basic idea of the optimal
homotopy asymptotic method, the convergence analysis of
the technique, equilibrium points, reproduction number and
local asymptotic stability of the model. The numerical results
and discussion are presented in section IV. Finally, we present
the conclusion in section V.

II. PRELIMINARIES
A. CONFORMABLE DERIVATIVE OPERATOR
The earlier studies review that fractional calculus offers more
information about non-linear dynamic systems and shows
the behaviour of the dynamic system than traditional cal-
culus [24], [25]. There exist several definitions regarding
the fractional derivatives, and some basic definitions include
Riesz, Riemann–Liouville, Hadamard, Grünwald–Letnikov,
Caputo–Fabrizio, and Atangana–Baleanu in the literature.
Furthermore, many researchers studied new fractional oper-
ators with local, non-local, singular, and non-singular ker-
nels [26]–[30]. The conformable derivative operator was
introduced in [31] based on the concept of the local deriva-
tive with fractional components. This derivative allows for
many extensions of some fundamental theorems in cal-
culus (i.e., the product rule, Rolle’s theorem, chain rule,
mean value theorem). It can be found many authors focus
on using conformable derivative operator to solve a real-
life problem [32]–[35]. The CDO conserves many features
of classical-order derivatives [36]–[38]. We include here
more reasons for using fractional derivative and conformable
derivative operator.

(a) Fractional derivative operators gave a more use-
ful information of a non-linear real problem than
traditional-order.

(b) It has rendered a new dimension and gave information in
between two different integer-order.

(c) More also, as a non-local operator in sense, it considers
the fact that the future state not only depends upon the
present state but also upon all the history of its previous
states.

(d) We considered using conformable derivative operator,
because conformable derivative operator has not been
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formulated with OHAMapproach to study the SIRmodel
of infectious disease for behaviour, performance, and
mathematical representation.

(e) To help researchers/authors gain more information
on this powerful mathematical tool and widening its
application.

(f) The conformable derivative operator is employed to
enlarge the stability region of the non-linear dynamical
system.

(g) To give a better understanding of newly defined deriva-
tive and integral conformable derivative operator in frac-
tional calculus.

(h) To utilize the simplicity and effectiveness of the latest
conformable derivative operator.

(i) Conformable derivative operator appeared in more than
thousands plus articles and its gaining popularities till
today.

Definition 1: A (left) fractional derivative starting from s
of a function z:[s,∞)→ R of order α ∈ (m− 1,m),m ∈ N
is defined by

T αs z(t)= z
(α)(t)

= lim
∈→0

z(m−1)
(
t + ε(t − s)(m−α) − z(m−1)t

)
ε

, t>s,

(7)

T αs z(s)= lim
x→s+

T αs z(t), (8)

Provided the limits exist and z(t) is (m− 1)−differentiable at
t > s.
The (right) fractional derivative terminating at s of a func-

tion z : (−∞, s] → R of order α ∈ (m − 1,m),m ∈ N is
defined by

α
s Tz(t)= z

(α)(t)

= (−1)m

× lim
∈→0

z(m−1)
(
t+ε(s−t)(m−α)−z(m−1)t

)
ε

, t<s,

(9)
α
s Tz(s)= lim

x→s−
α
s Tz(t), (10)

Provided the limits exist and z(t) is (m − 1)-differentiable
at t < s.
If T αs z(t) exists on t > s, then we say that z is left

α−differentiable on t > swhereas z is right α−differentiable
on t < s if αs Tz(t) exist on t < s.
Definition 2: A (left) fractional integral starting from s a

function z : [s,∞)→ R of order α ∈ (m − 1,m),m ∈ N is
defined by

Iαs z(t) =
1

(m− 1)!

∫ t

s

(t−x)m−1z(x)
(x − s)m−α

dx, α>0, t>s,

(11)

I0s z(x) = z(x), (12)

and we can define the (right) fractional integral terminating
at s of a function z : (−∞, s]→ < of order α ∈ (m− 1,m),

m ∈ N as follows:

α
s Iz(t) =

1
(m− 1)!

∫ s

t

(x − t)m−1z(x)
(s− x)m−α

dx, α>0, t<s,

(13)
0
s Iz(x) = z(x). (14)

It is worth mentioning here that Iαs I
β
s z(t) 6= Iβs Iαs z(t) and

α
s I
β
s Iz(t) 6=

β
s Iαs Iz(t).

Lemma 1: If α ∈ (m− 1,m),m ∈ N and z:[s,∞)→ R is
(m− 1)-differentiable, then
(1) T αs I

α
s z(t) = z(t),

(2) Iαs T
α
s z(t) = z(t)−

∑m−1
k=0 z

(k)(s) (t−s)
k

k! , t > s.
Lemma 2: If α ∈ (m − 1,m),m ∈ N and z:[−∞, s)→ R

is (m− 1)-differentiable, then
(1) αs T

α
s Iz(t) = z(t),

(2) αs I
α
s Tz(t) = z(t)−

∑m−1
k=0 (−1)z(k)(s) (s−t)

k

k! , t < s.

III. BASIC IDEA OF OPTIMAL HOMOTOPY
ASYMPTOTIC METHOD
Using the conformable derivative operator system definition 1,
we have the following form:

T a( k (t))+ Nk ( k (t))+ Lk ( k (t)) = 0

t ∈ ϕi = 1, 2 . . .m (15)

with initial conditions

k (b) = ai. (16)

where T a is the CDO, Lk is a linear operator, Nk is a non-
linear operator, t is an independent variable, k (t) is an
unknown function, ϕ is the problem domain. According to
OHAM, one can construct a homotopy map Hk (Fk (t,P)) :
ϕ×[0, 1]→ ϕ that satisfies Eq.(15) can be constructed using
OHAM as [39], [40].

(1− P)[T a(Fk (t,P))] = Hk (P)[T aFk (t,P)+ NkFk (t,P)

+LkFk (t,P)], (17)

where embedding parameter (P) is 0 ≤ P ≤ 1, auxiliary
function Hk (P)∀P 6= 0, unknown function (Fk (t,P)) and
H (0) = 0, when P = 0 and P = 1, it holds that Fk (t, 0) =
k,0(t), and Fk (t, 1) = k (t) respectively. Thus as P moves

from 0 to 1, the solution Fk (t,P) approach from k,0(t) to
k (t), where initial guess k,0(t) satisfies the linear operator

generated from Eq.(17) for P = 0.

T α( k,0(t)) = 0. k,0(b) = 0, (18)

The Hk (P) is given as

Hk (P) =
∑n

j=1
PjCj, (19)

where Cs
j can be known later. We get approximate solution

by expanding Fk (t,P,Cj) in Taylor’s series in terms of P,

Fk (t,P,Cj)= k,0(t)+
∑

k≥1 i,k (t,Cj)Pi j=1, 2, . . . , n

(20)

VOLUME 10, 2022 9397



O. O. Olumide et al.: Efficient Solution of FOSIREM of Childhood Diseases With OHAM

using above in Eq.(17) with collections of the coefficient like
the power of P gives the governing equations i,0(t) in a
linear form in Eq.(18). Then 1st problems are given as

T α( k,1(t)) = C1N0( k,0(t)), k,1(b) = 0, (21)

the general governing equation k,i(t) is

T α( k,i(t))− T α(k,i−1(t)) = CiNk,0( k,0(t))

+

∑i−1

m=1
Cj,m[T α( k,i−m(t))

+Nk,i−m( k,i−1(t))], (22)

k,i(b) = 0 i = 2, 3, . . .m (23)

where Nk,m( 0(t), k,1(t) . . . , k,m(t)) is the coefficient of
Pm, produce by expanding Nk (Fk (t,P,Cj)) in series relating
to P

Nk (Fk (t,P,Cj))=Nk,0( k,0(t))

+

∑
m≥1

Nk,m( 0, 1, . . . m)Pm (24)

The convergence of series solution Eq.(24) relies on Cs
j . If its

convergent at P = 1 gives solution to Eq.(15) as

k (t,Cj) = k,0(t)+
∑m

k≥1 i,k (t,Cj),

j = 1, 2, . . . ., n (25)

using Eq.(25) in Eqs.(15-16), we have an expression for the
governing equation as

Rk (t,Cj) = T α( k (t,Cj))+ N ( k (t,Cj))+ Lk ( k (t,Cj))

(26)

If

Rk (t,Cj) = 0, (27)

then k (t,Cj) is the exact solution. Typically, such an
instance does not arise. We implement the Galerkin method
to find the optimal values Cs

j as given below

Pk =
∂ k (t,Cj)
∂Cj

= 0 k = 1, 2, . . .m (28)

minimize the functional

1k (Cj) =
∫ b

a
Pk × Rk (t,Cj)dt (29)

Error norm L∞

L∞ = ||Z exact − ZN ||∞ ≈ maxi|Z exacti − (ZN )i| (30)

A. CONVERGENCE ANALYSIS
Theorem 1. Suppose the series k (t,Cj) = k,0(t) +∑m

i=1 k,i(t,Cj), for j = 1, 2, . . . ., n converges where
k (t,Cj) is governed by Eq.(25) under the definitions Eq.(22)

and Eq.(23), becomes Eq.(15) and Eq.(16) solutions.
Proof: If we assume

∑
∞

m=1 k,m(t,Cj) for k = 1, 2..n,
converges to k (t,Cj) then

lim
m→∞

k,m(t,Cj) = 0 ∀k = 1, 2 . . . n. (31)

from Eq.(22), we can write∑∞

i=1
[CiNk,0(xk,0(t))

+

∑i−1

m=1
Cj,m[T α( k,i−m(t))+ Nk,i−m( k,i−1(t))]

=

∑∞

k=1
[T α( i,k (t))− T α( i,k−1(t))], (32)

= lim
n→∞

∑n

k=1
T α( i,k (t))− T α( i,k−1(t)), (33)

= T α 11(t)+ (T α 22(t)− T α 21(t))+ ..

+ (T α nn(t)− T αxn(n−1)(t)), (34)

= T α[ lim
n→∞

∑n

m=1 nn(t)] = T α[ lim
n→∞

nn(t)] = 0.

(35)

equating the RHS of Eq.(35) with equation below

0 =
∑∞

m=1
T α k(m−1) +

∑∞

m=1
N k(m−1)

+

∑∞

m=1
Lk (t k(m−1)), (36)

0 =
∑∞

m=1
[T α k(m−1) + N k(m−1)

+Lk (t, µ, k(m−1))], (37)

T α k (t,Cj)+ N k (t,Cj)

+Lk ( k (t,Cj)) = 0 ∀k = 1, 2..n. (38)

lf the Cj is chosen properly, then Eq.(38) leads to the solution
of Eqs.(15-16).

B. EQUILIBRIUM POINTS, REPRODUCTION NUMBER
AND LOCAL ASYMPTOTIC STABILITY
This section includes the possible fixed points of the model
Eqs.(4-6). Two possible equilibrium points are calculated,
i.e., Disease-free equilibrium (DFE) and endemic equlibrium
(EE). The steady-state solution of the model is given below
by considering the rate of change for a time becomes zero:

dS
dt
=
dI
dt
=
dR
dt
= 0.

Using the above equation, model Eqs. (4-6) becomes:

0 = (1− p)π − βSI − πS,

0 = βSI − (γ + π )I ,

0 = pπ + γ I − πR.

From a steady-state systems above, DFE is obtained as

9DFE = (S0, I0,R0) = (0,−p+ 1, p).

Similarly, EE of the model Eqs. (4-6) is given by: 9EE =

(S∗, I∗,R∗), where

S∗ = −
βπp− (β − γ )π + π2

βγ + βπ
,

I∗ =
γ + π

β
,

and

R∗ =
βπp+ βγ − γ 2

− γπ

βγ + βπ
.
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TABLE 1. Parameters values.

The basic reproduction numberR0 is calculated by the next-
generation technique. The F and V matrices at DFE 90 is
given as follow:

F = βSI ,

and

V = (γ + π )I .

Taking the product of F and V inverse, we have the reproduc-
tion number in the form

R0 =

(
β(p− 1)
γ + π

)
.

The DFE locally asymptotically stable (LAS) if R0 < 1, but
unstable if R0 > 1. This R0 is the product of the trans-
mission rate, the mean infectious time S0 and fits with the
epidemiological definitionR0. Note thatR0 it is independent
of the fraction dying from the disease. From the dynamics of
the system, if R0 < 1 the number of infectious individuals
declines gradually to 0, whereas ifR0 > 1, then this number
first inclines (before tending to zero), thus R0 = 1 acting as
a sharp threshold between the disease dying out or causing a
pandemic.

IV. NUMERICAL RESULTS AND DISCUSSIONS

T αS = (1− p)π − βSI − πS, (39)

T αI = βSI − (γ + π )I , (40)

T αR = pπ + γ I − πR. (41)

where 0 < α ≤ 1, while p, β, π , and γ are positive con-
stant parameters and the given initial conditions are S(0) =
N1, I (0) = N2, and R(0) = N3.
the OHAM method procedure is given as follows

L1[F1(t,P)] = T αF1(t,P), (42)

L2[F2(t,P)] = T αF2(t,P), (43)

L3[F3(t,P)] = T αF3(t,P), (44)

N1[F1(t,P)] = T αF1(t,P)− (1− p)π

+βF1(t,P)F2(t,P)− πF1(t,P), (45)

N2[F2(t,P)] = T αF2(tP)− β(F1(t,P)F2(t,P)

− (γ + π )F2(tP), (46)

N3[F3(t,P)] = T αF3(tP)− pπ − γ (F2(t,P)

+πF3(t,P). (47)

using Eq.(17)

(1− P)T αF1(t,P) = Hk (P)[T αF1(t,P)− (1− p)π

+, βF1(t,P)2(t,P)− πF1(t,P)],

(48)

(1− P)T αF2(t,P) = Hk (P)[T αF2(tP)

−β(F1(t,P)F2(t,P)

− (γ + π )F2(tP)], (49)

(1− P)T αF3(t,P) = Hk (P)[T αF3(tP)− pπ − γ (F2(t,P)

+πF3(t,P). (50)

where

F1(t,P) = s0(t)+
∑

j≤1
s1,j(t)Pj, (51)

F2(t,P) = i0(t)+
∑

j≤1
i1,j(t)Pj, (52)

F3(t,P) = r0(t)+
∑

j≤1
r1,j(t)Pj. (53)

Hk (P) = PC1 + P2C2 + P3C3 + . . . k = 1, 2 . . .m.

(54)

substitute F1(t,P),F2(t,P), F3(t,P) and Hk (P) into
Eqs.(51-54), and equating the coefficient of likes power of
P, gives linear FDEs as,

P0
: T αS0(t) = 0, (55)

P0
: T αI0(t) = 0, (56)

P0
: T αR0(t) = 0. (57)

P1
: T αS1(t) = T αs0(t)C1 − T αs0(t)− 0.4s0(t)C1

− 0.8s0(t)C1i0(t)C1 + 0.04C1 = 0, (58)

P1
: T αS1(t) = T αi0(t)C1 − T αi0(t)+ 0.43i0(t)C1

+ 0.8s0(t)i0(t)C1 = 0, (59)

P1
: T αR1(t) = T αr0(t)C1 − T αr0(t)+ 0.4r0(t)C1

− 0.03i0(t)C1 − 0.36C1 = 0, (60)

P2
: T αS2(t) = T αs0(t)C2 − T αs1(t)C1 − T αs1(t)

− 0.4s0(t)C2 − 0.4s1(t)C1

− 0.8s0(t)i0(t)C2 − 0.8s1(t)i0(t)C1

− 0.8s0(t)i1(t)C1 + 0.04C2 = 0, (61)

P2
: T β I2(t) = T β i0(t)C2 + T βu1(t)C1 − T βu1(t)

+ 0.43i0(t)C2 − 0.8s1(t)C1

+ i0(t)C10.43i1(t)C1

− 0.8s0(t)i0(t)C2 − 0.8s0(t)i1(t)C1 = 0,

(62)
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TABLE 2. Control-convergence parameters Ck at different values of α.

TABLE 3. Continuation of control-convergence parameters Ck of Table 2.

P2
: T βR2(t) = T βr0(t)C2 + T βr1(t)C1 − T βr1(t)

+ 0.4r1(t)C1 − 0.03i1(t)C1

− 0.03i0(t)C2 + 0.4r0(t)C2 − 0.36C2 = 0.

(63)

Using the definition (1-2) and lemma (1-2) on the above
equations with the initial condition gives

S0(t) = 1, (64)

I0(t) = 0.5, (65)

R0(t) = 0. (66)

S1(t,C1) =
19
25
tC1 + 1, (67)

TABLE 4. The number of susceptible (t) individuals in case α = 1.

TABLE 5. The number of infected (t) individuals in case α = 1.

I1(t,C1) =
37
200

tC1 +
1
2
, (68)

R1(t,C1) =
3
8
tC1 −

3
8
C1. (69)
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TABLE 6. The number of recovered (t) individuals in case α = 1.

FIGURE 2. For the value of α = 1 (OHAM = dot, HAM = dash, HPM =

dash-dot, and Rk4 = solid) at S(t).

S2(t,C1,C2) =
189
500

C2
1 t

2

+ (
19
25
C2 +

49
25
C1 +

19
25
C2
1 )t + 1, (70)

I2(t,C1,C2) =
744
40000

C2
1 t

2

+ (
77
100

C1 +
37
200

C2 −
37
200

C2
1 )t +

1
2
,

(71)

FIGURE 3. For the value of α = 1 (OHAM = dot, HAM = dash, HPM =

dash-dot, and RK4 = solid) at I(t).

FIGURE 4. For the value of α = 1 (OHAM = dot, HAM = dash, HPM =

dash-dot, and RK4 = solid) at R(t).

R2(t,C1,C2) =
−2889
40000

C2
1 t

2

+ (
39
100

C1 −
9
40
C2
1 )+

3
8
C2)t

+
11889
40000

C2
1 − 39C1

1
100
− 3C2

1
8
. (72)

From the 3rd -order approximate analytical solutions gener-
ated by OHAM, for α = 1, we have

S(t,C1,C2) = (0.3780000000C2
1 )

2t2

+ (2.720000000C1 + 0.7600000000C2

+ 0.7600000000C2
1 )t + 3, (73)
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TABLE 7. The number of each individuals in case α = 1.

TABLE 8. The number of each individuals in case α = 0.95.

I (t,C1,C2) = 1.500000000+ 0.1862250000C2
1 t

2

+ (0.9550000000C1 + 0.1850000000C2

− 0.1850000000C2
1 )t, (74)

TABLE 9. The number of each individuals in case α = 0.85.

TABLE 10. The number of each individuals in case α = 0.75.

R(t,C1,C2) = 1.500000000+ 0.1862250000C2
1 t

2

+ (.9550000000C1 + 0.1850000000C2

− 0.1850000000C2
1 )t. (75)

We determine C1 and C2 in Eqs. (73-75) by using the proce-
dure mentioned in Eqs.(28-29). As given below

S(t), C1 = 1.328569889, C2 = −7.283418688,
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TABLE 11. The number of each individuals in case α = 0.65.

TABLE 12. The number of each individuals in case α = 0.55.

I (t), C1 = 1.581087126, C2 = 0.70156516,

R(t), C1 = 1.123481639, C2 = 1.482701799.

The general approximate analytical solutions are given as

S(t) = 0.6672070251t2 − 0.580213663t + 3, (76)

FIGURE 5. For different values of α (α = 1 Solid, α = 0.95 Dash, α = 0.85
Dash-dot, α = 0.75 Space-dash, α = 0.65 Dot, and α = 0.55 Long-dash)
at S(t).

FIGURE 6. For different values of α (α = 1 Solid, α = 0.95 Dash, α = 0.85
Dash-dot, α = 0.75 Space-dash, α = 0.65 Dot, and α = 0.55 Long-dash)
at I(t).

I (t) = 0.4655320522t2 ++1.177258007t

+ 1.500000000, (77)

R(t) = −0.09116318897t2 + 1.131479155t

− 1.040315966. (78)

A. DISCUSSION
In the presented problem, the susceptible group S(t),
the infected group I(t), and the recovered group R(t)
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FIGURE 7. For different values of α (α = 1 Solid, α = 0.95 Dash, α = 0.85
Dash-dot, α = 0.75 Space-dash, α = 0.65 Dot, and α = 0.55 Long-dash)
at R(t).

results have been obtained. The results show that the
accurate series solution continually relies on the opti-
mal values of the control-convergence parameters Ck as
described in TABLES 2-3. The results in TABLES (4-6)
and Figures (2-4) show the behaviour, numerical simula-
tion, and the comparisons between OHAM, HAM, HPM,
and RK4 at α = 1. Figures (5-7) show the number of
the susceptible group S(t), the infected group I(t), and the
recovered group R(t) results at (α =1, 0.95, 0.85, 0.75, 0.65,
and 0.55) for numerical simulation and performance. The
fractional-order results in TABLES 7-12 show the perfor-
mance, mathematical values, and the declining behaviour of
the spread at a slower rate. We observed that the suscep-
tible group decrease with time while that of the recovered
group gradually increases due to the inclusion of the vac-
cinated susceptible group. The population of are infected
group decreases in the period of the epidemic. The results
obtained show that when α → 1 the integer-order solution
for the system is recovered. The calculations are performed
using Maple software 2021a, HP ENVY laptop 13 corei7 8th
Gen 16GB.

V. CONCLUSION
This paper implements the OHAM method to described
the fractional-order childhood disease model’s behaviours,
performance, and mathematical values representation. The
model is investigated for accurate approximate analytical
solutions using the proposed approach. One can be ascer-
tained that the approach provides an excellent approximate
analytical solution of the models as α → 1. The OHAM

method agrees with RK4 at (α = 1) and performs better than
those approximate analytical methods mentioned above. The
calculation requires a very short time to complete and con-
sumes a little amount of CPU time, increasing convergence
speed. The other methods mentioned above possess no norm
for the convergence of the solution and are slow convergence
as compared to OHAM. The OHAM technique is reliable,
dependable, and efficient for finding an approximate analyt-
ical solution and predicting the SIR model.
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