IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 16, 2021, accepted January 2, 2022, date of publication January 11, 2022, date of current version January 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3142054

Advanced Control With PLC-Code Generator for
aMPC Controller Implementation and
Cooperation With External Computational Server
for Dealing With Multidimensionality,
Constraints and LMI Based Robustness

JAROSLAW TARNAWSKI™, PIOTR KUDELKA, AND MATEUSZ KORZENIOWSKI

Faculty of Electrical and Control Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland

Corresponding author: Jaroslaw Tarnawski (jaroslaw.tarnawski@pg.edu.pl)

ABSTRACT The manufacturers of Programmable Logic Controllers (PLC) usually equip their products
with extremely simple control algorithms, such as PID and on-off regulators. However, modern PLCs have
much more efficient processors and extensive memory, which enables implementing more sophisticated
controllers. The paper discusses issues related to the implementation of matrix operations, time limitations
for code execution within one PLC cycle, and memory requirements. The adaptive Model Predictive
Controller (aMPC) algorithm is selected for predictive control with on-line adaptation of model parameters.
The combination of predictive and adaptive properties in the regulator enables control of many industrial
objects for which PID control is ineffective, e.g. nonstationary plants with time-varying delays. The presented
generic approach consists in developing a C++ application for desktop PC that generates, based on user
provided parameters - such as MPC horizons, the code in Structured Text (ST) language compliant with
the IEC-61131 standard for PLCs. Despite the enhanced capabilities of programmable controllers, there
are limitations to this platform that cannot be overcome. The implementation of optimization-based control
algorithms requires cooperation with an external computing server. In the article, the PLC/external computer
cooperation is used to implement the control with constraints taken into account. The robust control using the
Linear Matrix Inequalities (LMI) for a multivariable plant is also presented. A number of tests were carried
out to verify the correctness of implementation of this control in software-in-the-loop and hardware-in-the-
loop structures.

INDEX TERMS Control engineering, control system synthesis, programmable control, programmable logic
devices, predictive control, adaptive control, optimal control, application software, system simulations,

system verification.

I. INTRODUCTION

Programmable Logic Controllers are a popular industrial
platform for the implementation of control algorithms. Due
to their numerous advantages, such as high reliability, prepa-
ration for operation in industrial conditions, wide range of
I/O modules providing the possibility of connecting any
control object, large communication possibilities ensuring
integration with SCADA systems and other elements of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Jesus Felez

VOLUME 10, 2022

control system, high scalability, and easy programming, it is
difficult to find better equipment to act as a direct control
layer. To apply advanced control (AC) methods with a PLC,
we have two main approaches: implement a complex algo-
rithm in the PLC, or use an external computing machine. Both
these approaches are discussed in the article.

In order to implement advanced control algorithms on a
given platform, its possibilities and limitations should be
analyzed beforehand. A detailed analysis of CPU perfor-
mance and memory limitations of selected PLCs is presented.
Algorithms described by difference equations written in the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 10597

https://orcid.org/0000-0002-5744-5671
https://orcid.org/0000-0003-4501-1339

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

form of relations between values in the present and past times
are especially predestined for implementation in a PLC. Due
to the loop-based manner of PLC operation, it is relatively
easy to write a program that realizes dynamic with input to
output or input and state to output relations. This opens the
space for the implementation of discrete control algorithms,
estimation, filtration, etc. A separate chapter presents the
implementation of the algorithms described by difference
equations in a loop environment such as PLC.

Natural limitations of the PLC platform refer to much
lower computing power and memory area compared to PC
computers. Also, the real-time operating system enforces a
finite computation time within one PLC work cycle. More-
over, programming libraries that are available for PCs are
not available on the PLC. Most of the advanced control algo-
rithms use matrix notation. PLCs offer matrix data storage but
do not have native arithmetic operations on matrices. In the
article, attention is paid to the implementation of basic math-
ematical operations using matrices such as addition, multipli-
cation and inversion in terms of their memory requirements,
execution time and accuracy. In addition to the PLC limits,
it is not possible to create dynamic matrix sizes on the PLC
platform, which makes it difficult to implement algorithms
in which the matrix sizes depend on parameters set by the
user. Hence the idea that the program for the PLC should be
prepared by a specially created generator for a standard PC.
The assumption is that the user enters the controller param-
eters, and then the code generator working on PC prepares
the program in the form of a text file in ST language for the
PLC. This approach is very flexible, it additionally provides
the information on the amount of memory used and the time
needed to execute such a code in the PLC. All this allows the
user to define the scope of applicability of a given code in
relation to a specific PLC CPU.

There are situations where the computation time necessary
to complete the entire control algorithm exceeds the allow-
able cycle time. For these situations, an approach is presented
in which the computations are shared between successive
PLC cycles. This obviously increases the step at which the
controller can work to the sum of times of all cycles taking
part in the calculation of all steps of the algorithm.

However, not everything can be calculated directly within
the PLC. When we need to use external libraries or an opti-
mizer, or simply when the dimensions of the matrix or the
computation time exceed the capabilities of the PLC, the
only solution is to use PLC cooperation with an external
computing server.

Advanced adaptive-predictive control algorithms were
selected for implementation. These are MPC and DMC algo-
rithms with on-line updating of information about the object
model. These algorithms use different forms of the model,
but are functionally similar to each other. They preserve
all advantages of predictive control related to: extension
of the horizon, entering the parameters as trajectories, tak-
ing into account multidimensionality, the ability to control
non-minimal phase objects, and natural handling of delays,

10598

including time-varying delays. In addition, due to the adap-
tive part, they have the ability to control objects in which
the occurring parameter changes are sufficiently slow to
be captured by the estimation mechanism. To present the
potential of the structure employing an external computing
server, control algorithms were prepared taking into account
constraints, such as QDMC and LMI-based robust control.
Non-stationary SISO and MIMO objects were used for ver-
ification. The correctness of implementation of the prepared
algorithms was verified by simulation only within the PLC,
or with the acquisition card and the control object simulated
outside.

The article is a significant extension of the work presented
in publications [1] and [2]. A large part of the present achieve-
ments comes from master’s theses [3] and [4].

Il. STATE OF THE ART

This section presents, based on literature and Internet refer-
ences, the most important aspects of the article, including:
what we call advanced control, what industrial equipment
enables the implementation of advanced control algorithms,
and which algorithms are implemented in their devices
by leading manufacturers. The next section will give brief
descriptions of the IEC-61131 standard defining program-
ming languages for PLC and of the PLCopen organization
dealing with the maintenance and development of the PLC
programming standard and its close relationship with the
issues of data exchange in the automation system using the
OPC standard. Another important element directly related
to the content of the article is the PLC Coder tool as part
of the Matlab package. Finally, a few literature examples of
advanced control algorithms implemented in PLCs in various
industrial applications are presented.

A. DEFINITIONS OF ADVANCED CONTROL

Since there is no strict definition of the term ‘‘advanced
control”, an attempt was made to find its clarification in
the industry literature. In [5], we can read “Classical con-
trol techniques are mainly represented by the proportional-
integral-derivative (PID) controller which has been employed
in a broad range of applications. PID controllers are applied
mostly to the processes which are characterized by linear,
low-order dynamics. Advanced control techniques might be
classified into the following three main categories: model-
based control, fuzzy logic control, and artificial neural
network-based control”.

In [6], it is written “Typically, advanced control methods
involve more complex calculations than the conventional
PID controller algorithm. Advanced control has the follow-
ing features: Process modelling and parameter identification
(off line or on line), Prediction of process behavior using
process model, Evaluation of performance criterion, subject
to process constraints, Optimisation of performance crite-
rion, Matrix calculations (multivariable control) and feedback
control”.

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

A different approach is proposed in [7]. Instead of sim-
ple division into simple and advanced control algorithms, a
multi-layer (direct, constraint/set-point, optimization, man-
agement) control structure is proposed, with three goals iden-
tified as: safety of the control system, keeping product quality,
and, at the third place, consideration of economic issues.
The least complicated layer located next to the object is
the direct layer. In [7] we can read “Algorithms of direct
control should be safe, robust and relatively easy, that is why
classic PID algorithms are still dominant™. The author names
algorithms that can be applied in the direct layer derived from
or cooperating with PID, but also algorithms of unconstrained
adaptive and predictive control and concludes: ‘“However,
it should be strongly emphasized that the generic feature
distinguishing all direct control algorithms is the direct access
to the controlled process (the process manipulated inputs
are outputs of the direct (basic) controllers) and high fre-
quency of intervention (small sampling period) — not the
kind of control algorithm employed”. Later in the book, the
algorithms of model based fuzzy and predictive control and
set-point optimization are presented as advanced. A similar
approach related to ensuring security in the direct/basic layer
is presented in [8]. The advanced algorithms listed in this
book include PID tuning methods, linear estimation issues,
artificial neural networks, and model-based predictive con-
trol.

The latest and very important trend in industrial control
systems is ensuring security against network attacks with
the application of sophisticated machine learning technol-
ogy [9], [10].

B. INDUSTRIAL PLATFORMS FOR ADVANCED CONTROL
IMPLEMENTATION

There are two main options of advanced control system
implementation with industrial hardware and software plat-
form: the DCS system, and the PLC + SCADA system.
In chapter IX.B less popular alternatives are presented.

Leading DCS manufacturers, such as Emmerson, Yoko-
gawa, Honeywell, Rockwell, ABB and Siemens, have
equipped their products with advanced control algorithms.
Let us see what DCS manufacturers consider advanced con-
trol and what advanced algorithms are available in their prod-
ucts.

Emerson [11] introduces its advanced control section as
follows ‘“We recognize that control systems are more than
just a collection of PID-algorithm control loops. Advanced
control can help your plant optimize its performance by
increasing throughput, increasing conversion, increasing on
spec product, and reducing by-product. Some of the other
plant improvements to maximize profit include: Helping site
management and engineering focus on optimizing process
operations 100% of the time, Determine economic optimum,
Determine optimal setpoints, Process issues such as complex
multi-input, multi-output relationships, operating constraints,
nonlinear dynamics, and frequently changing targets.”

Emerson tools and solutions in AC are:

VOLUME 10, 2022

- Aspen DMC3 - enables rapid deployment and sustains
optimal performance with patented adaptive process control
technology that enables simultaneous process optimization
and testing.

- DeltaV EnTech Toolkit — offers Advanced analysis and
tuning technology to improve the performance for difficult
control loops, along with easy plant test data collection and
model identification, and Optimal tuning to improve the
performance. Advanced performance provides insight into
the characteristics of loop variability and interactions, and
possible root causes of poor performance.

- SmartProcess Optimization Software — optimizes control
processes using turnkey, off-the-shelf advanced control and
monitoring applications from Emerson

- Model-Predictive / Multivariable Control (MVC)

- DeltaV Predict/Pro - enables the user to obtain greater
throughput, reduced variability, and increased safety for
his/her model predictive control strategies. DeltaV Pre-
dict/Pro is fully embedded in the DeltaV system which makes
it easy to configure, validate, test and deploy.

State-Based Control - automated procedures for safer and
faster startup.

On Yokogawa’s website pages and brochures [12] it can be
read: “Advanced Process Control brings benefits by reducing
energy consumption and improving the yields. The platform
for Advanced Control and Estimation brings multi-variable
control, quality estimation, complex calculation, user inter-
face definition all in one application dramatically reducing
deployment time and simplifying maintenance for robust per-
formance. Our all-inclusive Platform for Advanced Control
and Estimation brings multi-variable control, quality estima-
tion, complex custom calculations, and operator user inter-
face design all into one application; in doing so, dramatically
reducing deployment time and simplifying maintenance for
robust performance.”

Yokogawa tools and solutions are: Stable Base-Layer
Control with Advanced Regulatory Controls, Integrated
Dynamic Modeling Tools and Automatic Step-Tests, Holistic
Advanced Process Control Application, and Advanced Mon-
itoring & Diagnostics Tool.

Multivariable Control & Quality Estimation is generally
divided into Design Time and Run Time. Design Time pro-
vides a single workspace for: process data management, pro-
cess dynamics modeling, processor and sequence design, and
scenario-based simulation - all of which are based on best
practices in Advanced Process Control deployment. Seamless
sharing of information between Design Time and Run Time
empowers control engineers to develop complex applications
rapidly.

Design Time tools are: Preliminary Controller Design,
Robust Model Identification, and Complex Application
Development, while Run Time tasks are: Auto Step Testing,
New Human-Machine Interface with Key Performance Indi-
cator Faceplate, and Online Tuning.

Honeywell [13] claims that ‘“Advanced Process Con-
trol (APC) products address all aspects of advanced process

10599

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

control and optimization from improving regulatory loop
control to globally optimizing the entire process using a
unique layered approach. This model allows new technolo-
gies to be easily added at any time to a common platform
that meets optimization objectives without compromising
on future opportunities to improve business performance.
Delivered through the unified Experion Process Knowl-
edge System (PKS) architecture, Honeywell’s APC prod-
ucts improve profitability by increasing throughput, reducing
costs, increasing yields and improving product quality.

Solutions tackle complex problems through a unique
outcome-based consulting approach that supports better
process design, process history and analytics, operations
excellence, production management and enterprise collab-
oration. These solutions allow users to make faster and
smarter decisions to improve safety, reliability, efficiency and
sustainability”.

Some selected Honeywell modules of advanced software
are listed below.

Honeywell Forge for Industrial enables Enterprise Perfor-
mance Management by using real-time accurate models and
visual analytics to deliver intelligent actionable recommen-
dations for sustained peak performance.

Profit — Software for Advanced Control, Optimization and
Monitoring. From blending, movements and advanced pro-
cess control to plant-wide optimization and condition-based
monitoring, Profit Technologies enable facilities to achieve
and maintain excellent operations.

Software for Oil and Gas Production. Honeywell’s soft-
ware for oil and gas users includes Production Control Center,
which automates time consuming tasks and makes informa-
tion available across the organization, and Well Performance
Monitor, which enables users to proactively assess the per-
formance of o0il and gas production fields using real-time key
performance indicators (KPI).

Software for Operations Excellence. From the control
room to off-sites material movement, Operations Excellence
runs the gamut to eliminate events caused by sub-optimal
control performance, increase production and energy effi-
ciency, enable accurate operations monitoring, and so much
more.

UniSim - Software for Process Design and Simulation.
Honeywell’s UniSim software family substantially improves
simulation of online and off-line process unit design and
optimization applications and helps determine the workflow,
equipment needs and implementation requirements for a par-
ticular process.

DCS systems are designed for the largest industrial instal-
lations in areas such as oil&gas, chemistry, power plants,
pharmaceuticals, pulp and paper mills, etc. Wherever the
highest reliability is needed, no downtime of the industrial
process which may result in the loss of raw material and
blocking of the installation is acceptable, and therefore the
DCS system should be considered as base infrastructure.
A characteristic feature of DCS is the ability to change hard-
ware configuration and control logic on-line, during oper-

10600

ations. DCS is more configurable than programmable, and
it usually contains libraries of advanced continuous control
algorithms, as these systems are derived from the control
of chemical processes, which more often require continuous
control algorithms than discrete control. DCS scope of oper-
ation is usually the whole installation and the philosophy of
action can be described as a top-down fashion.

PLCs have gone a different way to the present state. They
come from the automotive industry, from assembly lines
where it was necessary to replace control systems with con-
tactor and relay diagrams. Hence, the domain of PLCs for
years has been discrete control, timers, counters, comparators
and triggers. PLC scope of operation is often part of the
process.

These systems also differ in the structure. The DCS system
consists of layers: controllers at the process level, and usually
redundant computing servers with a proprietary operating
system on the system layer where subsequent advanced con-
trol modules are run. DCS has central database where all
system variables are stored. That is why it is so scalable and
manageable even for a huge plant. On the contrary, each PLC
has its own data storage space, so there is a need to design
custom information exchange between individual controllers
and other elements of the control system.

Although the differences between modern DCS and PLC
+ SCADA based solutions are diminishing and blurring,
the approach presented in this article does not mean replac-
ing DCS with a PLC, but rather implementing some of the
advanced control DCS functionality in the PLC cooperating
with a computational server.

C. IEC 61131 STANDARD FOR PLC PROGRAMMING

The IEC 61131 standard [14] defines basic concepts, general
principles, software, and the communication model (data
exchange between software components), as well as basic
data types and structures for PLC programming. It names
two groups of programming languages: text and graphics.
The LD graphic language was intended to enable quick and
trouble-free programming for electricians who know the prin-
ciples of the construction of contactor-relay schemes. It is a
very transparent language for discrete control applications,
but too long-winded and therefore not well readable for the
implementation of advanced control algorithms. A similar
situation takes place for the FBD language, where the graphic
form resembles logic gate diagrams. The text languages,
composing the other group of programming languages, can
be divided into low-level IL and high-level ST. For the
implementation of advanced control algorithms, the ST lan-
guage (resembling the PASCAL, BASIC, or C languages
known from PCs) is the most suitable. Since 2003, when the
object-oriented and namespace aspects appeared in the IEC
61131 standard, this language can be said to be similar to
object-oriented languages such as C++-, JAVA, Python, etc.
Certainly, the similarity applies to the syntax, but the specific
loop-like manner of PLC operation, with a watchdog system

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

that supervises the end of all PLC cycle operations, causes a
different programming approach for PLC than for classic PC.

D. PLCopen ASSOCIATION

PLCopen [15] is a vendor and product independent associa-
tion, whose members come from all fields of the industry to
deal with topics concerning industrial control software. The
areas of PLCopen operation include: faster application devel-
opment, faster commissioning time, and reduced software
life cycle costs. According to [15], current PLCopen topics
are: “Motion Control and Safety functionality, XML data
exchange format standardizing the base data of IEC projects
in software systems, and mapping to the OPC Unified Archi-
tecture for transparent Communication”. The association
has undertaken the development of technical specifications
related to IEC 61131-3, which resulted in ‘“‘standardized
libraries for various application fields, harmonized language
compatibility levels, and engineering interfaces for inter-
change and clear communication”. This organization also
deals with training, publishing, and certification activities.
On their pages you can find a large number of documents
that allow you to improve your qualifications and qual-
ity, as well as the portability of the produced code for
PLC and related industries. Noteworthy is also establish-
ing close cooperation with the OPC UA organization that
replicates the communication standards between PLC, DCS,
SCADA, industrial databases, measuring devices, actuators,
and other elements of automation. Noteworthy is the standard
XML-based Exchange Format developed by PLCopen for
export and import of IEC 61131-3 projects. Being part of the
61131-10 standard, it can be considered the next step towards
a joint description of projects for PLCs irrespective of their
manufacturers. Summarizing the PLCopen topic, when the
issue of implementing advanced control algorithms on the
PLC platform is considered, it is helpful to become familiar
with the achievements of this organization.

E. PLC CODER MATLAB TOOLBOX

An important tool for the implementation of advanced control
algorithms in PLCs is undoubtedly the Matlab toolbox called
PLC Coder [16]. This software is designed to automatically
generate the logic developed in the three main Matlab design
tools, i.e. Simulink, Stateflow, or Matlab, and save it as
m-files in LD and ST PLC languages. The big advantage of
PLC Coder is targeting logic to popular platforms for PLC
programming such as: CODESYS, Rockwell Automation
Studio, Siemens TIA Portal, and OMRON Sysmac Studio.
When some hardware platform is not directly supported,
you can use the generic path and adapt the received code
to your hardware and software. For example, adjusting the
code for the PAC GeFanuc controller (which is not originally
supported by PLC Coder) used in this article comes down to
defining the variables by yourself and dividing the logical part
of the program into the initialization part and the rest of the
code. The obvious advantage of PLC Coder in Matlab is the

VOLUME 10, 2022

ability to use other toolboxes and their contents to generate a
code for the PLC. The joint use of the MPC toolbox and PLC
Coder allows you to quickly obtain the code of an advanced
controller, which can be comprehensively tested in simulated
scenarios and environment, and then quickly implemented
on the target industrial equipment. It can be called a typical
example of the idea of rapid prototyping.

F. SELECTED PAPERS WITH ADVANCED CONTROL
IMPLEMENTED IN PLCs

The subject of the implementation of advanced control algo-
rithms in PLC is discussed in scientific and industry articles.
The article [17] presents the implementation of a Generalized
Predictive Controller (GPC) on Allen Bradley PLC - SCL500
using Function Block Diagram and Structured Text. As the
authors claim: “The results of this work encourage to keep
working in developing simple predictive algorithms to be
programmed in industrial standard hardware.” An example
used to illustrate the correctness of the implementation was
a heating process having the features of a first-order iner-
tial object with delay. The same object was used in [18] to
illustrate the operation of a predictive controller with auto-
tuning and constraints on control signals. The comparison
of the control quality with the PID controller clearly shows
why it is worth making the effort to implement the MPC
controller. The third in a series of articles describes MPC
implementation with constraints [19], and its authors propose
an original approach to ‘““parameterization of the parametric
regions which allows efficiency of definition, effective span-
ning of the feasible region, and also highly efficient search
algorithms™. The whole series of these articles shows that the
PLC is an appropriate industrial hardware platform on which
both classic and novel advanced control algorithms can be
implemented.

Another paper worth mentioning is [20], which describes
the implementation of MPC with constraints on input sig-
nals using the Nesterov’s fast gradient method using [21]
approach. The authors successfully implement the MPC algo-
rithm in the Modicon M340 controller from Schneider Elec-
tric and test it in a loop with a simulated object having the
form of connected tanks. The authors raise the problem of
limitations in the available memory and computing power of
PLC. The MPC program for the PLC was executed in ST
language.

An interesting implementation of an advanced algorithm
in PLC is described in [22]. The model predictive control
was applied with a projected gradient algorithm designed for
controlling nonlinear input constrained systems. The imple-
mented nonlinear MPC was used for a laboratory crane with
sampling resolution of 2 ms. A spectacular video document-
ing successful implementation and handling constraints is
provided. In that case, the FESTO PLC was a host plat-
form for implementation, and PLC Coder was used to export
the algorithm from Matlab/Simulink to Codesys engineering
software.

10601

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

Initialization

v
[Loading of inputs
v
[Program execution
STAGE I
v . Initializing
[Setting outputs] ..
* STAGE II
s b Updating
1 Programmer |
_________________ 7
v STAGE III
[Diagnostics] Saving
I

FIGURE 1. PLC scan and 3-stage program framework for implementation
formulas given by difference equations.

G. SUMMARY OF THE LITERATURE REVIEW AND
GUIDELINE FOR THE ARTICLE

As a result of the query on the literature resources and the
largest manufacturers of DCS systems, an approach emerged
that advanced algorithms on industrial control platforms are
adaptive, predictive, and of fuzzy control type, and they make
use of neural networks and broadly understood optimization.
The term “advanced” also refers to taking into account lim-
itations, multidimensionality, as well as the use of models,
self-tuning, and safe control at the limits of the constraints.

Hence, the implementation of predictive control on the
PLC platform with on-line adaptation of model parameters
was chosen as the main challenge of the paper. The coop-
eration of PLC with an external solver (of DCS-type) for
building the system with optimization was also considered.
Two control systems were implemented as an example: con-
strained multivariable MPC control, and LMI-based robust
control.

The article makes use of an idea from the PLC Coder
toolkit, i.e. instead of writing programs for PLC directly,
it is more convenient and more developmental to create an
external application for generating a parametric program for
the PLC. The ST language according to IEC 61131 standard
and PLCopen materials were used for this purpose.

1Il. SPECIFICS OF PLC AND OVERCOMING ITS
LIMITATIONS

The specificity of the PLC is the use of a simplified real-time
operating system implemented as a loop consisting of several
operations: reading inputs, executing program logic, setting
outputs, diagnostics, and possibly communication with the
programmer. All these activities must be completed within
the set time, supervised by the watchdog system. Typically,
the PLC cycle time without program is several millisec-
onds, while the maximum time set in the watchdog is of
the order of seconds. This means that the time allowed for

10602

one iteration of the program cannot exceed seconds. In a
natural way, this eliminates the PLC from a certain class of
applications, such as solving complex optimization problems.
Another limitation is the use of significantly slower CPUs
in the PLC than those used in the PC, and limited amount
of memory. An important limitation is also the method of
PLC programming, in particular the lack of native support
for algebraic matrix operations while allowing data saving
in the form of a matrix. The specifics of PLC operation are
not only limitations - due to the loop-oriented way of oper-
ation, it is relatively easy to implement algorithms given by
difference equations. This section describes how to overcome
the limitations of the PLC and use its properties. It shows
how to measure the computing power of the PLC, how to
implement algorithms given by difference equations, and how
to effectively implement the matrix algebra and divide the
algorithm into a number of cycles.

A. PERFORMANCE ANALYSIS - PLC BENCHMARKING

GE Fanuc RX3i was the controller used for testing and
implementing advanced control algorithms. Two different
CPUs (CPU310 and CPE305) were used for performance
testing. The faster of them was then used for further research.
32,640 logical (16-bit) variables can be stored in the available
memory, which allows the use of 16320 real variables when
operating on real 32-bit numbers [23].

The duration of the cycle depends on the time required
to execute the uploaded program and service the connected
modules. Based on the information available in the operating
instruction manual for a given controller, it is possible to
calculate the theoretical cycle time and the program execution
time. The times of execution of single instructions are given
with an accuracy of 0.01 [us]. This makes it possible to
theoretically determine the computing power of the controller
and express it in FLOPS (Floating Point Operation Per Sec-
ond), which is the number of floating-point operations that
the computational unit can perform per second. However,
as specified in the instruction manual, the given time values
represent the average execution times of given instructions
and may vary depending on the inputs. In addition, the impact
of high-level ST instructions on the execution time is not
described, as the execution times given in the manual apply
to the LD language [23]. Therefore, it was decided to test also
the performance of the programmable controller in practice.

The most common unit for determining processor perfor-
mance is FLOPS. The simplest operations such as addition,
subtraction, and multiplication were used to evaluate the per-
formance. Performing one of these operations is considered
to be equal to one operation on a floating-point number.
The processor performance is often determined using Fused
Multiply-add (FMA) and its variations, such as Multiply-
accumulate (MAC), which take the form (1) [24]:

D=AB+C ey

The controller performance evaluation was carried out for
two PLC CPUs using 3 programs with different designs,

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

TABLE 1. Description of methods for determining controller performance.

Descriptive Description of method
number

1 Determined theoretically

2 Program that uses only high-level
instructions

3 Program that uses high-level and simple
instructions

4 Program that uses only simple instructions

TABLE 2. Test results for MAC operations performed in several ways.

Processor Method Performance Program size
[FLOPS] [BYTES]

CPU310 1 467 289 -

2 467 426 1139

3 1 895 743 48 186

4 2 848 837 608 136
CPE305 1 1197 604 -

2 1243 523 1139

3 4953 560 48 186

4 7 145 833 608 136

implementing MAC operations. The tests were performed
using the ST language, as the use of a high-level language
allows for better overall performance measurements than the
tests based on low-level languages [25]. The methods used
for determining the controller performance are described in
Table 1, while the results are given in Table 2.

For three different programs, three different execution
times and three different determined computing capacities
of the controller were obtained. This is due to the fact that
by testing the computational performance with a program,
we determine the effectiveness of a given program [26].
Therefore, it can be concluded that the least effective imple-
mentation of calculations is the use of high-level instructions,
while the most effective is the complete absence of them.
A good alternative is to carry out part of operations with loops
and part with basic operations. This will significantly reduce
the program execution time and, at the same time, keep the
code transparent.

It can be concluded that the performance of both CPUs
obtained after executing the program using basic operations is
the value closest to the actual performance of the controller
and close to the maximum possible efficiency that the user
program can achieve.

Having the information about the PLC performance, the
user can estimate whether his algorithm can be implemented
on this platform, and/or eventually what the maximum values
of the algorithm’s parameters may be.

B. PLC IMPLEMENTATION METHODS OF ALGORITHMS
GIVEN WITH DIFFERENCE EQUATIONS

Due to the loop/cyclic operation, PLCs are naturally predis-
posed to the implementation of estimation, filtration, and con-

VOLUME 10, 2022

TABLE 3. 3-Stage PLC implementation of 2"d order oscillation dynamics
with delay given by difference equation.

Stage Operations
Initialization ynew = 0; y = 0; yl = 0
(only in the first u3 = 0; w2 = 0; ul = 0;
PLC cycle)

y_new =1.469*y-0.6703*yl+

Update +0.1077*u2+0.09414%u3;

yl = y; y = y_new;

Save u3 = u2; u2 = ul; ul = u;

trol algorithms defined by difference equations. The notation
in the form of difference equations is recursive and given by
the relations of appropriate quantities at the present time with
past times. Three phases: initialization, updating, and saving
are sufficient for complete implementation of the algorithm
given by a differential equation. The context of their use
adapted to the cyclical operation of PLC is shown in Fig. 1.
In the initialization phase, which is usually called only once
with the first PLC cycle, the initial conditions are given to all
quantities. The updating phase includes correct description of
the algorithm based on the given difference equation. In the
saving phase, usually at the end of the code, the current data
is saved in relevant variables, which will be then treated as
variables delayed by one step in the next controller cycle.
The first example of 3-stage implementation is the dynam-
ics of a 2nd order oscillation model with delay given by (2):

wZe—rs
Gi)= V——F—F—-
) (52 + 26 ws + w?)
t=25, w=05 &=04 2)

After discretization with sampling time T = 1 s we get

Y(z) 5 0.1077z+0.09414

H(z) = = 3
@ = 0o =% 2-1469:+ 06703)
After regrouping, this can be written as
y(k) (2> — 1.469z + 0.6703)
= u(k)z~2(0.1077z + 0.09414) 4)
y(k +2) — 1.469y(k + 1) + 0.6703y(k)
= 0.1077u(k — 1) + 0.09414u(k — 2) 5)
and finally:

y(k + 1) = 1.469y(k) — 0.6703y(k — 1) + 0.1077u(k — 2)
+0.09414u(k —3) (6)

In order to preserve the dynamics of the object modeled
in this way, it is necessary to keep the intervals between
particular cycles equal to the sampling period. This effect
can be achieved programmatically by using timer blocks,
or by forcing a fixed PLC cycle time in the CPU. The 3-stage
implementation scheme is presented in Table 3.

10603

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

Step Response
T T

12 m J
P |

N

0 L . L . L .
Tl 5 50 25 30 35
ime (seconds)

FIGURE 2. Step response of G(s), H(z) and dynamics described by
difference equation (6). Time series for H(z) and for dynamics (6) are the
same.

TABLE 4. 3-Stage PLC implementation of normalized gradient estimation
method given by difference equation.

Stage Operations
Initialization
(only in the first theta = theta_init;
PLC cycle)
Update eps = theta’*fi-y;
m = sqgrt (kappa+fi’*fi);
theta new = theta-(gamma*fi*eps)/m;
Save theta = theta_new;

Note the specific reverse order of assigning variables in the
save stage.

The time series for (2), (3) and (6) with initial conditions
from Table 3 and sampling time of 1s are presented in Fig. 2.

Another example of 3-stage implementation is the normal-
ized gradient estimation method from [27]. The algorithm
described in matrix (vector) form is:

0t +1) = 0(1) — %)f(’))
0(tg) = 6y, teftg,to+1,...}
0<I=rT<20
m(t) = Vk +)7 p(t)
k>0 (8)
e(t) = 0T (p(t) — y(t) 9)

where:

0(t) is the parameter vector to be estimated,

6 is the initial estimate vector at time 7o,

I', k are the design parameters,

I is the identity gain matrix,

¥(t) is the measured output of the modeled plant,

£(t) is the estimation error,

¢(2) is the vector with delayed inputs and outputs.

The 3-stage implementation scheme for this case is pre-
sented in Table 4.

10604

" STAGE 1 - Initialization
if $FST_SCN then
y new := 0.0; y :=0.0; yl = 0.0;
u = | ul := 0
thl : thz :=
kappa := 0.1;
end if;

). 0
uuuuu

' STAGE 2 - Update
u := 1.0+0.1%*noise;
y new := 1.469*y-0.6703*y1+0.1077*u2+0.09414*u3;

m sq rev := 1.0/ (kappaty*y+yl*yl+u2*u2+u3d*u3);

eps := (thl * v + th2 * y1 + th3 * u2 + th4 * u3)-y_new;
thl new := thl -y * eps * m sqg rev;

th2:new = th2 - yl * eps * m:sq:rev;

th3 new := th3 - u2 * eps * m sq rev;

thd4 new := th4d - u3 * eps * m sq rev;

' STAGE 3 - Save

yl = vy; y 1= Yy new;

u3 := u2; u2 :=ul; ul := u;

thl := thl_new; th2 := th2_new;

th3 := th37new; thd := th47new;

FIGURE 3. ST-language 3-stage code for PLC with implementation of
oscillation dynamics and normalized gradient parameter estimation
method.

In order to illustrate the implementation and performance
of the estimation algorithm, it was used to determine the
parameters of the model from the first example. It was
assumed and stated in (10) that the initial values of the
estimated parameters are zero, the parameter kappa = 0.1,
and the gamma matrix is unitary.

0* = (1.469, —0.6703, 0.1077, 0.09414)
0(0) = (0, 0, 0, 0)
0(t) = (th1(t), th2(t), th3(t), tha(t))
d(t) = (y(k), y(k — 1), utk — 2), u(k — 3)) (10

Based on the algorithm described by formulas (7)-(9) and
the 3-stage implementation method from Table 4, the pro-
gram for PLC was developed as shown in Fig. 3. Several
ST-specific features can be seen: each line ends with a semi-
colon, the assignment operator is: =, as well as the high-level
language construct if..then..end_if; and distinguishing INT
types from REAL in that the latter must be written in full
dotted form even if the numbers are zeros.

The initialization phase is based on the #FST_SCN sys-
tem variable, which is on high state only in the first cycle
after PLC start. The input signal is realized as the sum of
the constant value 1 and a pseudorandom number generated
based on system timers available in the PLC. Fig. 4 shows the
trajectories of parameter estimates.

The speed of convergence of the estimates depends on
parameters kappa and gamma, but also on the noise level
at the input of the simulated object. Fig. 4 shows the +1
waveform of noise, and a much faster convergence can be
obtained by significantly increasing the noise. As it can be
seen, the estimates are heading towards the ideal values,
which indicates the correctness of the implementation.

For the purposes of the illustration, simple and clear
examples were chosen, but many different, more advanced

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

progress

e [n
~th2

th3

—tha

The model p
T T

055 1

-0.5F T |

FIGURE 4. The model parameter estimation progress.

algorithms for control, estimation, and filtering of models
of dynamic objects defined by differential equations can
be implemented in the PLC using the presented three-stage
method.

As can be seen in the presented example, matrix operations
were performed in a scalar manner due to the lack of native
support for matrix operations in the PLC. Proper program-
ming of matrix operations in PLC seems to be crucial, due
to the memory management and the speed of execution of
algorithms with large matrix sizes.

C. DATA STORAGE IN MATRICES AND MATRIX
OPERATIONS
The IEC 61131 standard specifies structures such as matrices,
but the manufacturers usually allow working with matrices by
referring to individual elements. There are also restrictions
on matrix size, for instance the maximum amount of data
in the matrix in the GE Fanuc RX3i controller is 9999.
In addition, the PLCs do not have built-in instructions for
matrix operations, so all the necessary operations need to be
implemented. That is why the efficiency analysis of various
methods of performing matrix operations was undertaken.
One of the most important features of the computer pro-
gram is its efficiency, which describes the use of computer
hardware resources: computing power and memory. The time
consumed by the computer unit to execute the algorithm
and the memory usage are critical for evaluating algorithm’s
effectiveness. Frequently, the order of the number of opera-
tions is used to determine the size of the problem, rather than
the exact number of operations. This order can be expressed
with O(f(n)), where n is the measure of the size of the
problem, and for n — oo the number of operations is cf (n),
where ¢ is a constant independent of n. According to this
description, the multiplication of matrices with sizes n x m
and mx p takes O(nmp) number of multiplication and addition
operations. In particular, the multiplication of square matrices
has the order of O(n®) operations. Different algorithms can
only differ by the coefficient c. The order of the algorithm is
the best performance indicator, which tells how it will be able
to deal with large problems [28]. Most matrix operations can
be done in more than one way. There are (3! = 6) possible

VOLUME 10, 2022

ways to do matrix multiplication [29]. For each method, the
order of the algorithm is O(nmp) or O(n>) for a square matrix,
but each method reads and writes data differently, which may
affect the execution time of the operation. To reduce the
number of operations, the Strassen algorithm can be used,
which reduces the order of the algorithm by reducing the
number of multiplication operations required. It is assumed
in the Strassen algorithm that the matrices A and B are square
matrices of equal dimensions. This allows the number of
multiplication operations to be reduced from 8 to 7 for a
2 x 2 matrix. However, as the number of multiply operations is
decreased, the number of addition operations increases. The
addition of two k X k size matrices is a problem of the order
of O(k?), so for a sufficiently large number of operations per-
formed with the Strassen algorithm, the number of required
mathematical operations is smaller than for the traditional
multiplication algorithm. Therefore, recursively dividing the
multiplied matrices into P matrices if the matrix size n is of
the form 2° makes that the algorithm can be used e times
and then the traditional matrix multiplication operation can be
used for each submatrix of size <n/2¢ [29]. The general order
of the Strassen algorithm can be described as O(n*3%7), which
is a significant reduction compared to traditional methods of
matrix multiplication. However, for present implementation
of the multiplication operation in predictive control, it was
decided to use the conventional matrix multiplication meth-
ods because:

o In the implemented predictive control algorithm, the
multiplied matrices (with assumed dimensions n x n) are
smaller than the point for which the Strassen algorithm
becomes more efficient [29], [30] so the multiplication
making use of a traditional method will be more effi-
cient.

o The Strassen algorithm uses more memory than tradi-
tional methods [31],[32].

o The matrices on which the operations will be performed
are not square matrices, therefore, in order to use the
Strassen algorithm, the given matrices should be sup-
plemented with zeros, which additionally increases both
memory use and computational complexity [28].

o In part of the operation, the matrix elements can be
non-negative and filled with small values. Therefore,
in order to be able to use the Strassen algorithm, an error
analysis should be additionally performed, because this
algorithm does not guarantee the accuracy comparable
with that of traditional methods [29].

During the analysis, it was decided to carry out matrix
multiplication using several methods with different ways of
accessing the data and different number of high-level ST
language instructions. The applied methods and the obtained
results are presented in Table 5.

The analysis was performed for several matrix sizes, the
results given in Table 5 are for the 50 x 50 matrix.

The best method under consideration is method 2, because
it is 2.6 times faster than method 1, without significantly

10605

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

TABLE 5. Performance ratio of programs.

Descriptive ~ Method Performance ratio

number of programs

1 Updating all C elements using 3 for loops 45.06

2 Computing each element of matrix C in one 17.12
operation using 2 for loops

3 Carrying out matrix multiplication using 2.92
elementary operations without use of high-level
structures

Classical methods taking into account the multiplication of

upper- with lower-triangular matrices occurring in the control

law.

4 Skipping zero values of one matrix

5 Skipping zero values of both matrices using
additional conditional statements.

6 Skipping zero values of both matrices using 1
only elementary operations.

23.52
16.24

increasing the size of the program. If the fastest execution
of the program is needed, method 3 is 5.8 times faster than
method 2. The cost of using this method is a very large code
size, which makes the program unreadable. For example,
to perform matrix multiplication, the code had to be divided
into 14 ST blocks, due to the ST block size limitation of
0.131072 megabytes.

Method 2 was used during the implementation of predic-
tive control on the programmable controller.

Matrix inversion can be considered a problem when solv-
ing linear equations. The methods for solving linear equations
can be divided into two categories, which are:

« Finite methods of solving systems of linear equations,
o Iterative methods.

The iterative methods are used for matrix sizes n of 10° or
greater. The disadvantage of iterative methods is that for two
different matrices of the same size, the method may require a
different number of steps, compared to the constant number
of steps executed in a classical method. Moreover, the number
of steps and the execution time of the algorithm itself signifi-
cantly depend on the conditions of the system [33]. Therefore,
when selecting the algorithm for implementation of matrix
inversion in the MPC control, the analysis of finite methods
for solving systems of linear equations was performed.

The first method considered was the determinant method
using the following ways to calculate the determinant of the
matrix and the append matrix:

« Laplace’s minor expansion method along a row or col-
umn for which the order of the algorithm is n! It is
therefore impractical [34].

o More efficient Gaussian elimination method for which
the determinant method has the order of computational
complexity of 2n°.

The implementations of the Gauss-Jordan elimination or

LU decomposition methods were considered, they have the
same computational complexity order of 21> [35].

10606

The method with lower computational complexity is the
Cholesky decomposition method, which uses only the L or U
matrix. The cost of the algorithm’s execution is half that of the
LU algorithm and its order is n’ [35], However, for an adap-
tive algorithm, it should be proved that the inverted matrix
will be positively determined for each parameter value that
can be derived during the estimation. Applying the Cholesky
decomposition to the matrix that is not positively defined
makes that the algorithm is not numerically correct, which
means that the error value can be arbitrarily large.

Full matrix inversion would be one of the most time-
consuming operations performed during the algorithm oper-
ation. It is necessary only when all values of the control
horizon are to be determined. When the algorithm uses RHC
(Receding Horizon Control), it is enough to determine only
the first value of the control horizon. Consequently, in that
algorithm it is enough to calculate the first row of the inverse
matrix.

The implemented predictive control algorithm uses RHC,
therefore only the first row of the inverted matrix can be cal-
culated. This approach is the most efficient of all described,
it can be implemented using both the determinant method and
the Gauss-Jordan elimination method.

The Gauss-Jordan elimination method is more efficient,
and for larger sizes of the inverted matrix, n > 25, it enables
two-fold time reduction compared to full matrix inversion.

Due to the small size of the inverted matrix, the Gauss-
Jordan elimination method was used with full matrix inver-
sion, but the modification transforming the algorithm for
single-row inversion is very simple. Both methods were built
on the basis of [36].

The implementation of single-line inversion is justified
when we need to additionally reduce the time and/or length
of the control horizon.

D. SHARING CALCULATIONS AMONG CYCLES

The implementation of the predictive control algorithm is
associated with the need to perform complex calculations, the
execution time of which can be long when implemented on a
programmable controller.

In some cases, the computation time may exceed the max-
imum PLC cycle time and the control system sampling time
may be longer than the computation time. In this case, we can
divide the math operations into several function blocks and
execute them sequentially in successive PLC cycles.

Fig. 5 presents the program for dividing mathematical
operations into successive cycles of controller operation.
In this program, the calculation execution time for each func-
tion block was 1.4842 s, which means that the execution of
all calculations takes 5.9368 s. This time is twice as long as
the maximum allowable cycle duration in the GE Fanuc Rx3i
controller. The program ladder with set and reset coils causes
that one function block is calculated in one controller cycle,
so that the entire algorithm does not lead to controller crash.
This solution is used for systems where the sampling period
is longer than the maximum cycle duration.

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

T #FTEeH [caL e
iy —

" #FST_SCH
— ¥
M5

M2

T

u2 TALL
5 MPEI
u3 TALL
3 MEC2
ToMa TAL |
I MEC3
' M5 CalL |
|

FIGURE 5. Program for dividing mathematical operations into successive
cycles of controller operation.

The first cycle of the controller operation Execution time = 1500 [ms]

‘ Executing the "init" block and setting the high state to "M1" ‘

¥

Setting high state on "M2" and low state on "M1"
¥

‘ Execution of the "MPC1" block ‘

12

The second cycle of the controller operation Execution time = 1484 [ms]

Setting high state on "M3" and low state on "M2" ‘
v

‘ Execution of the "MPC2" block ‘

v

The third cycle of the controller operation Execution time = 1484 [ms]

Setting high state on "M4" and low state on "M3" ‘
v

‘ Execution of the "MPC3" block ‘

¥

‘The fourth cycle of the controller operation Execution time = 1484 [ms]

Setting high state on "M5" and low state on "M4" ‘

]

‘ Execution of the "MPC4" block ‘

FIGURE 6. Program execution for the first four control cycles.

Fig. 6 presents the program execution for the first four
control cycles.

IV. CODE GENERATOR FOR aMPC CONTROLLER

To illustrate the implementation of the advanced control
algorithm on the PLC hardware platform, the MPC [37] and
DMC [38] algorithms, and their versions with adaptation of
model parameters, i.e. aMPC and aDMC, were selected.

VOLUME 10, 2022

The regular approach is to create and enter the code in
the environment for configuring and programming PLC con-
trollers. However, it was decided instead to develop an indi-
vidual, independent, external application in C++ that will
generate a text file in ST language for the PLC with the MPC
algorithm included, taking into account algorithm parameters
set by the user, such as sampling, prediction, and control
horizons.

This section presents the MPC algorithm and the parameter
adaptation procedure using the least squares method. The
implementation is divided into steps. The task of the code
generator application is to fill the program content using
scalar algebraic operations so as to obtain the result of the
matrix operation intended to be implemented in a given step.

In the implemented predictive control systems, the con-
troller was created on the basis of a non-parametric object
model and had the form of a step response (DMC) or impulse
response (MPC). The main feature of the discussed systems is
the assumption that the process is asymptotically stable [38].
Despite this assumption, algorithms based on nonparametric
models are often used because limiting only to stable pro-
cesses is rarely justified [39]. Therefore, a general approach is
adopted in which the object is assumed to be one-dimensional
and asymptotically stable. On the basis of this assumption,
it was possible to develop a program that, based on the
impulse or step response and the given prediction and control
horizon lengths, would generate the algorithm code in ST
language.

A. aMP ALGORITHM DESCRIPTION

The MPC algorithm was created on the basis of the control
object dynamics model having the form of a non-parametric
impulse response model. A feature of the MPC algorithm
is the assumption of object stability, which in the case of
impulse response allows assuming that the values of the
ignored response parameters are equal to zero. The algorithm
was developed on the basis of [37].

For MPC regulation, the model takes the form (11):

(k) = Vutk — 1)
V=v,4+viz 't 4+t (11)

The used model is of the moving average type in which
the coefficients of the polynomial V are the parameters of
the impulse response and is therefore called the convolutional
model. The model assumes that the discrete delay time is
equal to 1. Therefore, it is assumed that the first coefficients
of the V polynomial may be equal to 0. During the synthesis
of the MPC controller, the discrete delay time was not used,
so that in the adaptive form the controller is not very sensitive
to changes in delay time. The used incremental predictor had
the following form (12):

yk +j) = yk +j = 1) + K"u(k + j) (12)

10607

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

where K™ is the model transmittance. When applied to (11),
Equation (12) takes the form (13):

yk+j)=yk+j—D+VAuk+j—1) (13)
where:
y(k) = y(k) (14)

Since Equation (13) uses future control values, V trans-
forms to the form (15):

V=V v (15)
where:
Vi=vo+viz 4
R (16)
After substituting (15) into (13) we get Equation (17):

Y+) =3k +j— D+ V] Aulk +j — 1)+ V7 Autk = 1)
(17)

v:= Vi +Vjiy1Z

It follows from Equations (16) and (17) that
Yk +)=3"k+j—D+ViAuk -1 (18)
The vector of control increments is denoted as (19):
8it = [Su(i), Su(i+ 1), -+, du(i+H — 1]" (19)

Based on (16), (17), and (18), the prediction vector can be
written as (20):

y = Q8+ 3" (20)
where:

y=Dl+1),5G+2),---, 56+ H)]" (21)

B) 0 . 0]

vl VO .o O

_ . . T, . 22
0 VI—1 VL2 ho 22)

| VH-1 VH-2 hy—r |

In Matrix (22), v; and h; are, respectively, the parameters
of the impulse response and step response of the process.

The main purpose of the MPC controller is to minimize the
distance between the predicted trajectory of the output signal
and the reference trajectory, taking into account the weight
for control deviation from the u(i — 1) value. Therefore, the
minimized criterion function takes the form:

H
7= Y {5k +) — W0k +)PP + psidtk +j— D) (23)
j=1

where the value of the variable éu minimizing Equation (23)
can be calculated analytically with formula (24):

Stopr = (T Q +pD) 'O (W0 —3%) (24)

where:

10608

w? is the reference trajectory vector
y° is the prediction vector of the control object output.
Assuming zero increments of the control signal, the control
signal is constantly equal to u(k — 1).
The DMC algorithm was developed on the basis of [38].
For the two examined predictive control algorithms it
was assumed that the model used for approximation would
be a discrete model of finite impulse response, having the

form (25):

N
ymt) =) wut = 1), =1, (25)

=1

The following relationships were used to change the
form of the impulse response model into the step response
model (26):

i
hj = ZVj

j=1
vi = hi —hi_y (26)

where v; are the impulse response coefficients, and h; are
the step response coefficients. The purpose of the recursive
algorithm based on the normalized least squares method is to
minimize the cost function consisting of the sum of squared
errors with a penalty for the initial estimate 6(rg) = 6 of
variable 6*. The cost function was defined as (27):

1L~ O0T(0¢(n) — Y (1))
J0) =5 > prare dt

fo

1
+500 - 00) Py O(1) = 60)) (27)

where:

0(t) is the unknown vector of estimated parameters,

¢(¢) is the vector of previous control input values.

The equations defining the algorithm of the normalized
least squares method are (28) [27]:

& = (D) = (O
m(t) = VK+ 97 (PG — D(0)
0+ 1) = b(a) — LA _niz)zgt)g(’)
P(t— DO OP(— 1)

m2(t)

Pit) =Pt —1)— (28)
where K > 0 is the design factor, P(¢) is the gain matrix,
and m(t) is the normalizing signal. The required initial values
are: P(0) - the gain matrix value at initial time, and 6(0) -
parameter estimates at initial time.

B. aMPC ALGORITHM IMPLEMENTATION

For the purpose of implementing DMC/MPC control in ST
language, the algorithm has been divided into individual steps
listed in Fig. 7.

VOLUME 10, 2022

—

. Tarnawski et al.: AC With PLC—Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

#HFST_SCN

Variable initialization

¥

Matrix Q formation

v

Transpose Q matrix

v

Matrix multiplication transposedQ*Q £

Update model parameters

* Perform parameters estimation

Adding lambda parameter

: <>

Matrix inverse

Is the algorithm equipped with
¥ No A
model parameters estimation?
Multiplication of the inverted matrix T
with transposed Q
Reading the object
¢ output signal
Computation of free response %
prediction y)
Sending a control
,L signal to the object
Calculating the difference w-y T
& Limiting the value and changes of the
control signal
Calculation of the vector of control
changes T
V» Updating the vector of the past control
Calculation of the contrel signal changes and the past control signal

l)

FIGURE 7. Algorithm divided into individual steps.

Due to the lack of built-in matrix and vector operating
instructions in the PLC, all necessary operations must be sep-
arately performed in a scalar manner. Therefore, the imple-
mentation of the MPC algorithm for the PLC described by
formula (24) requires significantly more code in relation
to matrix-supported environments, such as SciLab, Matlab,
or MathCad. To facilitate the implementation and control
tests, it was decided to generate the code through application
in C++. The developed application uses method 2 of matrix
operations (described in previous section), which is a com-
promise between the performance and size of the program
for matrix implementation and vector multiplication. The
application user specifies the length of the prediction and
control horizon and the object step response vector on the
basis of which the regulator code is generated.

The algorithm of the normalized least squares method
divided into individual steps is shown in Fig. 8.

C. CODE GENERATOR C++ APPLICATION

The main purpose of the developed application for generating
the code for the programmable controller is to write the code
in ST language based on the given step response and the given
length of the control and prediction horizon. The developed
program saves the generated code in properly titled text files.
The files generated by the program include:

VOLUME 10, 2022

HFST_SCN

’ Variable initialization ‘

odpowiedz_FIR=Qpop-wektor_tymczasowy
Operation
wektor_tymczasowy=Ppop*deltaUpop2

FIGURE 8. Algorithm of the normalized least squares method divided into
individual steps.

’ Matrix P,Ptym,Ppop formation ‘
2
Calculation of the model output ym and
determination of the estimation error
CmigsTOREDSE [i
! |
I
! ! Operation
| Operation } Opop=odpowiedz_FIR
} wektor_tymczasowy=deltaUpop2*Ppop | T
I
I
| * ;|____________T—_____2___'___-1
! Operation | PIO=PI-L-P-04 OP(-1)/m'(0) i
} mkwadrat=wektor_tymczasowy*deltaUpop2 | || |
I |
| 1
! v i i
1" |
: ’ mkwadrat= mkwadrat+alfa ‘ } : Operation 1
I 1 Ppop=P/mkwadrat |
e e e ppeetc] !
}B(N1]=9(t)-P(t-1)d>(t)s(t)/mz(t) H : £ !
| } | Operation |
! v i P=Ppop-P [
| Operation H b !
} wektor_tymczasowy=Ppop*deltaUpop2 | : X |
| } | ’ Operation ‘ ;
I =| *
| Operation } ! GG :
| wektor_tymczasowy=(wektor_tymczasowy* | || £ |
1 error)/mkwadrat } | Operation :
; } : Ptym=wektor_tymczasowy *deltaUpop2 }
| Operation ; : T }
I | | |
} | |
| i b
| i i

1. Thefile “Initialization”, containing initial values of the
predictive algorithm and the variables that should be
initialized in the controller,

2. The file “DMC” (or “MPC”) containing the
user-selected prediction algorithm,

3. The file “RLS” that contains the least squares algo-
rithm.

The code generator program has been extended with func-
tions in which regulator parameters are selected automati-
cally, based on given process parameters or step response.
The standardized least squares method, modified according
to [40], is used to determine object parameters, assuming
inertia with delay dynamics of the object. The scheme of
program’s operation is shown in Fig. 9.

Fig. 10 shows the graphic interface of the program. The
type of algorithm is selected as one of “DMC, MPC, aDMC,
aMPC” buttons. After selecting the algorithm, the user can
enter the controller parameters, or select one of the available
automatic parameter selection methods. Step response, or the
response to variable signal and set signal need to be given in
text files and can be directly copied from the Matlab environ-
ment. The developed interface checks the entered parameters
and warns the user in case incorrect data is provided. Then,
after entering the correct parameters, the button “Generate
code” should be pressed to save the generated code in appro-
priate files. The program will also determine the expected
cycle duration and the amount of memory required. The
estimated time applies to the Rx3i controller with CPE305

10609

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

The user selects the type of algorithm from 4
available: DMC, MPC, aDMC, aMPC

The user specifies: step or The user specifies e . .
impulse response and the parameters of Lhelsercrecificslnouc slenaljoblect

response and sampling time of the
given signal

—

Determination of the parameters of discrete
and continuous transmittance

v

Determination of parameters of the
predictive controller

v

Transmission discretization with sampling
time of the control system

¥

Determination of step and impulse responses
based on discrete transmittance

L]

continuous
transfer function

parameters of the predictive
controller

Predictive controller code generation

v
Showing the approximate program
execution time and the number of
required variables

FIGURE 9. Scheme of code generator operation.

central unit. In order to facilitate the use of the developed
applications, programs have been built that install the code
generation applications along with appropriate libraries.

D. aMPC VERIFICATION

Being a typical object that often occurs in industrial applica-
tions, the first-order inertia with constant delay was selected
as the test object. The model transmittance is described by
(29):

0497 .

GO = e+ 1¢

(29)
1) SOFTWARE-IN-THE-LOOP

Before testing the operation of the system in a hardware loop,
a discrete version of the object can be programmed on the
PLC and the control system can be tested using the PLC
only. In the Proficy Machine Edition Logic Developer PLC
environment, the data monitor window allows to view the
values of variables on a graph.

Figs. 11-14 show the tracking of the set trajectories.

2) HARDWARE-IN-THE-LOOP

The system located in the Computer Controlled Systems
laboratory at the Gdansk University of Technology, Faculty
of Electrical and Control Engineering, was used to implement
the predictive control in the Hardware-in-the-loop (HIL) sys-
tem. The diagram of the hardware structure of the system is
shown in Fig. 15.

10610

® MPC Code Generator for PLC - O X
File Help

Automatic selection of controller parameters

Generate Code

N [2T

o [oo oz |

FIGURE 10. Graphic user interface of code generator.

s il
W @
T T

~

o

Output and Reference Trajectory
o
o

o

L
100 200 300 400 500 600 700 800
Time [s]

FIGURE 11. Response from DMC control (blue), and reference trajectory
(black).

o
@

o
wow
T T

- o, Nt

Output and Reference Trajectory
o
0

o

| I L \ q
100 200 300 400 500 600 700 800
Time [s]

FIGURE 12. Response from aDMC control (blue), and reference trajectory
(black).

The system consists of a GE Fanuc RX3i controller with
CPE 305 main unit equipped with IC694ALG442 module.
Using the ALG442 module, the controller was connected via
the PLCD9710 connection board to the Advantech PCI1711

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

®
@

Output and Reference Trajectory
S
U |

|

N
0

100 200 300 400 500 600 700
Time [s]

FIGURE 13. Response from MPC control (blue), and reference trajectory
(black).

w
o

>
$ s .
2 pag
Fy /
L f
a5 f
s
g L . !
® - | o~
s /
g8 | | / |
° { | A
517 | [
Zosl| (L
3 |_

ot/ 1

100 200 300 400 500 600 700

Time [s]

FIGURE 14. Response from aMPC control (blue), and reference trajectory
(black).

PC with installed card:
Advantech PCI1711
o) | PLCD PLCD | (1)
» 0710 Software: Simulink 0710
INPUT Desktop Real-Time OUTPUT
Control Object
PLC
1010y | ALGA42 GeRF:TJ‘IJ:tSfa ALG442 0-10V
OUTPUT sul INPUT |
algorithm

FIGURE 15. Diagram of hardware structure of the system.

w
o«

r
0w w
—

o

Output and Reference Trajectory
~

100 200 300 400 500 600 700 800
Time [s]

FIGURE 16. Response from DMC control (blue), and reference trajectory
(black).

acquisition card. The performance of the control systems is
presented in Figs. 16-19.

VOLUME 10, 2022

i 0 w
- N o ow o

Qutput and Reference Trajectory

o
o

100 200 300 400 500 600 700 800
Time [s]

FIGURE 17. Response from aDMC control (blue), and reference trajectory
(black): 100% increase of object gain parameter.

N
»n

Output and Reference Trajectory
~ @
— T

W

100 200 300 400 500 600 700
Time [s]

FIGURE 18. Response from MPC control (blue), and reference trajectory
(black).

|

~
o

Output and Reference Trajectory
b

ol
o -

o
T

100 200 300 400 500 600 700
Time [s]

FIGURE 19. Response from aMPC control (blue), and reference trajectory
(black): 100% increase of object gain parameter.

All test scenarios ended with accurate tracking of the
reference trajectory. For the version with parameter adapta-
tion, more extensive research was carried out after introduc-
ing non-stationarity in simulation model parameters. If the
parameters changed slowly enough for the estimation proce-
dure to capture them, and the MPC mechanism was able to
take these changes into account (the prediction and control
horizons were appropriate), the regulation was stable and
qualitatively correct for all changes of gain, time constant,
and delay. This proves the correctness of the structure of the
code generation tool.

Along with natural advantages, such as the possibility to
synthesize the algorithm for arbitrary parameters specified by
the user, the applied approach has very useful features, such
as calculating the memory demand and the execution time
of one cycle of the controller program by the code generator
application. This means that the user can conclude on the
applicability of the controller with given parameters and the

10611

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

TABLE 6. Brief comparison of digital devices able to perform control
algorithms.

— & > o
g S = < =
PLC ms H M H L M
FPGA ns M M L M M
DSP us M M L M M
IPC us M H H H M
DCS ms H M H H H
Embedded us M L L M L
Single
board us M H M H L
computer

Legend: H-high, M-medium, L-low

specific PLC CPU. Another huge advantage of the presented
approach is potential code portability.

V. COOPERATION WITH EXTERNAL COMPUTATIONAL
SERVER

It is assumed in this section that due to PLC drawbacks and
limitations, the algorithm used in the control system cannot
be implemented in the PLC, even using the guidelines given
in the previous section. These may be the cases which require
significant computing power or, for instance, the availability
of libraries or specialized toolkits.

A. ALTERNATIVE CONTROL DEVICES

The article basically concerns the implementation of
advanced control algorithms in a PLC hardware platform, but
some of the described algorithms can also be implemented
with other devices. A brief comparison is shown in Table 6.

A comparison of the control devices characteristics can
be found in [41]. The table has been updated and supple-
mented on the basis of information gathered in [42]-[44].
A detailed comparison of FPGA and DSP platforms can be
found in [45]. The following categories of comparison were
presented: single cycle duration, preparation for operation in
industrial conditions, flexibility, scalability, predisposition to
advanced control algorithms implementation and cost.

The category ““industrial applications” means not only the
DIN rail mounting, heavy-duty chassis, power redundancy,
operation in harsh industrial conditions, but also features
related to the so-called maintenance, i.e. hot-swap and on-
line redundancy and high availability guarantee. Flexibility
is understood as configurability and the possibility of wide
application to various purposes and industries. Scalability
is the possibility of unrestricted development of the control
infrastructure with growing requirements, based on the possi-
bility of supplementing, expansion, without having to replace
the main part of the equipment and change the whole concept.

10612

The advanced control section addresses the ability and ease
of implementing advanced control algorithms.

It should be noted that the three-scale assessments pre-
sented in Table 6 are evaluative and are the result of averaging
features and opinions. For example, the price of a PLC can
range from $100 to several thousand. It should be noted that
the target versions of a given device were taken into account,
and not rapid development environmentals. For example,
a great solution for the implementation of advanced control
algorithms can be the National Instruments cRIO system,
SpeedGoat or dSpace hardware platforms with LabView or
Matlab rapid prototyping software. However, these are not the
mainstream target industrial hardware platforms but rather
laboratory R&D equipment.

There has been a significant technological progress in
the single board computer hardware class (also called IoT -
Internet of Things platforms) due to budget Raspberry Pi or
Intel Galileo solutions. While DSP and FPGA provide high
time resolution and the implementation of specialized control
algorithms, it is difficult to use them to solve optimization
problems or use C/C++/Python libraries with advanced con-
trol algorithms. Basically all-purpose computers are suitable
for these tasks, and recently also single-board computers.
In the following chapter of the article, a solution based on a
PLC (as the basic platform for industrial control) and a com-
puting server is considered. The role of the server, depending
on the computational requirements, can be performed by
an industrial PC or a single-board computer. The PLC and
computing server set has all the advantages of Table 6 while
respecting the price and industrial conditions regime.

It is worth emphasizing once again that this is not the only
solution, but the one that is considered in the article where
PLC is the main control device.

B. PLC-PC CONTROL STRUCTURE AND REAL-TIME
OPERATION

The solution to the problem of communication between the
PLC and the computing server with the provision of real-time
operation is described below, while the next section presents
the verification of the proposed control structure using a
multidimensional non-linear object and two control methods:
QDMC and robust control based on LMI.

The structure of the system with external computation
server is presented in Fig. 20.

A properly built control system is expected to work in
the real-time regime. This means that after receiving the
current information about the state of the object from the
measurement, the control system is able to develop and
provide to the object a control signal before the sampling
time expires. The implementation is relatively simple when
performed inside the PLC, due to real-time nature of the
PLC operating system. However, when the control signal
is calculated outside the PLC, the round-trip communica-
tion (to and from the computing server) and the calculation
time in the computing server must be taken into account.
There are different approaches to implementing the real-time

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

PC with installed card:

u(t) ya(t)

wlt) PLCD Advantech ECIl?ll PLCD va(t)

—» 0710 Software: Simulink 0710

INPUT Desktop Real-Time OUTPUT
Control object PC
executing the
regulator's
algorithm
ALG442 ALG442 0-10V
104V outpuT PLC INPUT |«

Ge Fanuc RX3i

Va(t), ya(t)

Modbus TCP/IP

B u(t), uz(t)

FIGURE 20. Control structure with external computation server.

postulate [46]. The implementation of hard real-time regime
means a full guarantee of control signal calculation in a preset
time. This is achieved by a fully deterministic approach to
both communication and computing. There is also a soft real-
time approach, in which incidental overruns of computation
times may occur. Soft real-time systems are usually not based
on guarantees, but on practical approach and analyses of regu-
lar performance of individual elements composing the control
system. The specificity of simulation with real-time models is
also presented in [47]. The soft real-time approach was used
as a prototype solution in this article. The computing server
was a computer with OS Windows 10 with Matlab Opti-
mization Toolbox software and YALMIP library [48]. The
communication made use of the Modbus TCP protocol and
the PLC built-in communication mechanism asynchronous to
the cycle based on the Direct Memory Access.

After receiving the new measurement information from the
object, the PLC sets a flag in the form of a discrete variable
about the availability of new data. The external computing
server scans frequently whether this flag is set. If so, the new
data is downloaded from the PLC to the server, the flag is
cleared, and the data is used to calculate the control signal
which is then sent to the PLC after the calculation. Another
flag is used to mark a new control signal.

A reasonable supplement to the above solution is to
develop a strategy for situations in which an externally gen-
erated control signal does not come. This may have a form
of maintaining the previous control signal, or a look-up table
solution, or using a simpler algorithm executed in the PLC to
ensure suboptimal but object-safe control.

For presentation purposes it was assumed that the con-
trolled plant operates with the step of 1 s. The conclusions
from the performance analysis of individual system compo-
nents are as follows: the one-way communication usually
takes less than 1 ms, while the calculations in the external
server do not exceed 200 ms, and their time duration depends
on the control algorithm used. In this way, a real-time working
effect is achieved, without a guarantee but with practical
confirmation resulting from hours of real tests.

For industrial applications, the above-presented idea is
fully applicable, but the hardware and software parts should
be replaced with hard-real time solutions. That means that

VOLUME 10, 2022

=d
F1.64 Fa.cp
S— ‘E_
-
h <<
F.c
S

FIGURE 21. Continuous stirred-tank reactor (CSTR).

a real-time network should be used, Profinet for instance,
the computing server should work with a real-time system,
e.g. RT Linux or QNX, and the calculation software should
guarantee finite and predictable computation time.

C. THE CONTROL OBJECT-CSTR

A continuous stirred-tank reactor (CSTR) was selected as an
example of control object. This plant is non-linear and has
two inputs: flow rates F; and F; of the liquid with concentra-
tions ¢ and cy, respectively, and two outputs: the volume V
of the liquid in the tank and the concentration c of the liquid
flowing out of the tank through free outflow. Fig. 21 presents
a schematic of the plant.

D. QDMC REGULATOR FOR MULTIVARIABLE CONTROL
WITH CONSTRAINTS

The optimization problem in the predictive control algorithm
with constraints on inputs, outputs, and input increments for
the cost function J cannot be solved directly in PLC. However,
the problem can be turned into a quadratic programming
problem that will be solved on an external computing server.
The constrained optimization problem after transformation is
presented as (30):

n&in(AuTH Au+ ¢! Au) (30)
u
with constraints AAu < b given by(31):

Aupin < Au(k) < Aupax
Unin < W(k) < Upax 3D

Ymin < YK) < Ymax

Matrix H in (30) is called the Hessian, while ¢ is the gradi-
ent, and Au is the control increment.

The above predictive control algorithm with constraints
performs the task of tracking the reference trajectory [38].

E. LMI BASED REGULATOR FOR MULTIVARIABLE ROBUST
CONTROL

Classic predictive control algorithms use models with con-
stant parameters and structure, which do not take into account
the influence of disturbances and uncertainty of parameters.
The solution to this problem is robust predictive control.

10613

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

In [49], the authors present an approach to robust predictive
control using linear matrix inequalities (LMI).

The uncertain system is the system whose parameters
change over time, which can be described as (32):

x(k + 1) = A(k)x(k) + B(k)u(k)
y(k) = Cx(k)[A(k)B(k)] € €2 (32)

where u(k) € 0" is the control, x(k) € N™ is the state of
the object, y(k) € 0™ is the output of the object, €2 is some
predefined set, A(k) is the state matrix, and B(k) is the input
matrix.

Based on the input/output measurement data recorded at
various operating points, it is possible to determine a set of L
linearized models [49], which forms the polytopic set €2 (33):

Q = Co{[A1B1], [A2B2], ..., [ALBL]} (33)

where Co refers to a convex shell and L is the number of its
vertices.

The robust predictive control algorithm with an infinite
prediction horizon uses the cost function in the form (34):

Joolk) =Y~ (x(k + ilk)" Q1x(k + ilk)
i=0
+u(k + i) Rutk + ilk)} (34)

where Q1 > 0 and R > 0 are symmetric weight matrices.
In cases when the prediction horizon p = o0, the Infinite
Horizon MPC (IH-MPC) approach is used. The use of an
infinite prediction horizon guarantees nominal stability.

The optimization problem is defined as (35):

MmNy 1lk),i=0, 1,...,m MAX[AGk+)Bk+i)]e,i=0 Joo (k) (35)

The min-max approach consists in determining the con-
trols on the control horizon m as a result of minimizing the
cost of the worst case.

The given problem, although convex for a finite m, is com-
putationally insolvable [49]. However, it can be solved by
specifying the upper limit of the objective function.

After transformation, the optimization problem can be
written as the minimization problem with linear matrix
inequalities LMI in the form (36):

min, gy ¥y (36)

and constraints (37) and (38):

1 x(k)i)T] -0
x(k|k) 0 |-
(37)
T T pT 1/2 T pl/2
0 QAT +Y"B] 00/ Y'RY
A;Q + BjY (0] 0 0
1/2 >0
0,0 0 vI 0
Ry 0 0 vl |
(38)

10614

The controls are determined on the basis of the state feed-
back control law u(k|k) = Fx(k|k) where the matrix F is
determined as (39):

F=Y0"! (39)

The robust control algorithm with input and output con-
straints determines the control by solving the optimization
problem (40):

min, g x,v,z ¥ (40)
with constraints (41), (42), (43) and (44):
1 x(k)k)T
o |70 @b
) oAl +YTBT 00/ YTRV?
A;Q + BjY (0] 0 0
1/2 >0
0,70 0 v 0
| R'?Y 0 0 yI
42)
(X v
o Q] >0, Xy SUepae F=12,....m (43)
i Z CAQ+BY)] _
| A0+ BY) cT 0 =

Zy Vi r=L2..my, j=12,... L (44)

The aim of the presented algorithm of robust predictive
control using linear matrix inequalities is to bring the states
to the zero state, and thus bring the object to the selected
operating point.

F. VERIFICATION RESULTS

The performance of predictive control with constraints was
tested using HIL. The optimization problem was resolved on
a PC in the Matlab environment. The calculated controls were
sent to the programmable controller, which then controlled
the object in the form of a model in the Matlab/Simulink
environment on a PC. Figs. 22 and 23 show the results of
tracking the set trajectories for the output volume V and con-
centration c. Similarly, the robust predictive control algorithm
with constraints was tested in the HIL loop. The optimization
task was performed on a PC in the Matlab environment with
YALIMP. The designated control signals were sent to the
programmable controller, and then to the object in the form of
amodel in another Matlab/Simulink. Figs. 24 and 25 show the
effects of forcing the outputs to the values appropriate for the
selected operating point for the volume V and concentration
¢, at the base value of concentration ¢c2 = 0.1.

In order to test the robustness of the control system, the
tests were repeated for different values of coefficient c5.
Figs. 26 and 27 show controlling the outputs to the values
appropriate for the selected operating point set for the output
of volume V and concentration c, at the base value of concen-
tration cp = 1.

The use of the external computing server allowed the
implementation of complex predictive control algorithms that

VOLUME 10, 2022

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

0.295

0.285 -

o
i
3
T
—

o
N
N

T
-
-

Volume V [m 3]

4 |
0.265
Volume setpoint
oz Volume V value | |
0255
0 100 200 300 400 500 600 700 800 900 1000
Time [s]

FIGURE 22. Operation of the predictive control system for a nonlinear
object using the QDMC method for the task of tracking the trajectory of a
given volume. Prediction horizon p = 150, control horizon m = 15.

T T T
—— Concentration setpoint

85 N 4
——Concentration ¢ value

Concentration ¢ [mole/I]

6.5

L L 1 I L L L L
0 100 200 300 400 500 600 700 800 900

Time [s]

FIGURE 23. Operation of the predictive control system for a nonlinear
object using the QDMC method for the task of tracking the trajectory of a
given concentration. Prediction horizon p = 150, control horizon m = 15.

0.272 T T T T

Matlab simulation
0.27 \A —Hardware-in-the-loop|

| [-Setpoint

5 10 15 20 25 30 35 40 45 50
Time [s]

FIGURE 24. The operation of the robust algorithm for concentration
¢, = 0.1 and the set reference values of volume V,¢¢ = 0.2595 and
concentration c,f = 6.3 for volume V.

could not be implemented on the programmable controller.
The two presented algorithms worked in soft real-time regime
and allowed for controlling a nonlinear and multidimensional
object with constraints, as well as robust control. The time
of calculating the control signals and communication with
the controller was shorter than the sampling time of the
object. The algorithms enabled tracking the reference values

VOLUME 10, 2022

8.5
T T f T T T T Matlab simulation
—Hardware-in-the-loop)
8| - -Setpoint
=
ETAS il 1
= \
s ||
s 7 1
= [
Sest | 1
]
e S e e
6 \v. e
55 I L I L L L L L L
] 5 10 15 20 25 30 35 40 45 50

Time [s]

FIGURE 25. The operation of the robust algorithm for concentration
¢, = 0.1 and the set reference values of volume V,¢¢ = 0.2595 and
concentration ¢ = 6.3 for concentration c.

0.272 T T T T T T
Matlab simulation
—Hardware-in-the-loop
0.27 'HI - -Setpoint
|
11
0.268 1 | 1
Eo.zes! | 1
®
£ |
202641 | | 1
> \
0.262F | |‘ |
026 \wlf/\,,,_;___ﬁm___.,__“____.,__“__;ﬂ).:
0.258 I L I L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time [s]

FIGURE 26. The operation of the robust algorithm for concentration
¢, = 1 and the set reference values of volume V¢ = 0.2595 and
concentration ¢ = 6.3 for volume V.

85 T T T T T T T
Matlab simulation
—Hardware-in-the-loop
Bfl [-Setpoint

=
w

T
1

Concentration [mol/L]
&
T T
L

55 . ! . ! I ! L ! .
0 5 10 15 20 25 30 35 40 45 50
Time [s]

FIGURE 27. The operation of the robust algorithm for concentration
¢, = 1 and the set reference values of volume V¢ = 0.2595 and
concentration ¢ = 6.3 for concentration c.

of object states, as well as the fulfillment of certain constraints
on inputs and outputs.

VI. CONCLUSION

PLCs usually work with implemented simplest control algo-
rithms or as part of a hierarchical control system, where the
PLC receives from another device a setpoint to be maintained.
This article shows that with some preparation effort, it is

possible to implement advanced control algorithms on the
PLC platform.

10615

IEEE Access

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

PLC limitations concerning cycle times, memory sizes, and
the lack of support for matrix arithmetic operations are widely
discussed. A general method of implementing algorithms
described by difference equations is presented. The properties
of individual methods of multiplication and subtraction of
key matrices for the implementation of advanced control
algorithms in the presence of strong limitations of the PLC
platform are carefully considered.

The implementation of aMPC and aDMC algorithms was
developed, which allowed for regulation of disturbed, non-
stationary objects with large and time-varying delay. The
developed application produces the code for the PLC, but
after minor changes it can also do it for microcontrollers,
single-board computers, or industrial computers. If more
complex algorithms need to be used, the concept of dividing
calculations between PLC cycles is presented, as a conse-
quence of which the time of one cycle is not a final limitation
anymore. The most advanced control methods can be imple-
mented using the presented concept of PLC cooperation with
an external computing server. The multi-dimensional predic-
tive control with input and output constraints for a CSTR
plant was presented. In order to prove wide possibilities of
the proposed solution, the concept of a robust control based
on an external solver and libraries for LMI was included.
The verification using the hardware-in-the-loop structure as
close as possible to real conditions confirmed the correct-
ness of implementation and the usefulness of the presented
methods.

REFERENCES

[1] J. Tarnawski, ‘“‘Realizacja programowa algorytmoéw filtracji, estymacji i
sterowania w PLC/PAC,” Pomiary Automatyka Robotyka, vol. 17, no. 196,
pp. 100-107, May 2013.

[2] J. Tarnawski, “Implementacja algorytmu regulacji predykcyjnej MPC w
sterownikach programowalnych,” Pomiary Automatyka Robotyka, vol. 17,
no. 197, pp. 100-107, Jun. 2013.

[3] M. Korzeniowski, ‘“Predictive control of a multidimensional chemical
reactor with continuous flow of components,” (in Polish), M.S. thesis,
Dept. Intell. Control Decis. Support Syst., Fac. Elect. Control Eng., Gdansk
Univ. Technol., Gdarisk, Poland, 2020.

[4] P. Kudetka, “Implementation of the predictive control algorithm in the
programmable controller with the analysis of computational complexity,”
(in Polish), M.S. thesis, Dept. Intell. Control Decis. Support Syst., Fac.
Elect. Control Eng., Gdanisk Univ. Technol., Gdansk, Poland, 2020.

[5] T. Kondakci and W. Zhou, “Recent applications of advanced control
techniques in food industry,” Food Bioprocess Technol., vol. 10, no. 3,
pp. 522-542, Mar. 2017, doi: 10.1007/s11947-016-1831-x.

[6] P. Airikka, “Advanced control methods for industrial process con-
trol,” Comput. Control Eng., vol. 15, no. 3, pp. 18-23, Jun. 2004, doi:
10.1049/cce:20040303.

[7]1 P. Tatjewski, Advanced Control of Industrial Processes: Structures and
Algorithms. London, U.K.: Springer, 2007.

[8] T. L. Blevins, G. K. McMillan, W. K. Wojsznis, and M. W. Brown,
Advanced Control Unleashed: Plant Performance Management
for Optimum Benefit. Research Triangle Park, NC, USA: ISA,
2002.

[9] J. Flaus and J. Georgakis. (2018). Review of Machine Learning Based
Intrusion Detection Approaches for Industrial Control Systems. Accessed:
Jan. 7, 2022. [Online]. Available: https://www.semanticscholar.org/paper/
Review-of-machine-learning-based-intrusion-for-Flaus-Georgakis/
3165069b0b93¢25177454266901705459dda7814

[10] M. Conti, D. Donadel, and F. Turrin, ““A survey on industrial control system
testbeds and datasets for security research,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 4, pp. 2248-2294, 2021, doi: 10.1109/COMST.2021.3094360.

10616

(11]

[12]

(13]

[14]
[15]
[16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Emerson—Advanced ~ Control ~ and Optimization. Accessed:
Jan. 7, 2022. [Online]. Available: https://www.emerson.com/pl-
pl/automation/operations-business-management/control-operator-
performance/advanced-control-and-optimization

Yokogawa—Platform for Advanced Control and Estimation (Advanced
Process Control). Accessed: Jan. 7, 2022. [Online]. Available:
https://www.yokogawa.com/solutions/products-platforms/solution-
based-software/optimization/advanced-process-control-platform-for-
advanced-control-and-estimation/

Honeywell—Advanced Process Control. Accessed: Jan. 7, 2022.
[Online]. Available: https://www.honeywellprocess.com/en-
U.S./training/programs/advanced-applications/Pages/advanced-process-
control.aspx

IEC 61131-3:2013. Accessed: Jan. 7, 2022.
https://webstore.iec.ch/publication/4552
PLCopen Association. Accessed: Jan. 7, 2022. [Online]. Available:
https://plcopen.org/

Mathworks PLC Coder. Accessed: Jan. 7, 2022. [Online]. Available:
https://www.mathworks.com/products/simulink-plc-coder.html

G. Valencia-Palomo, K. R. Hilton, and J. A. Rossiter, “Predictive con-
trol implementation in a PLC using the IEC 1131.3 programming stan-
dard,” in Proc. Eur. Control Conf. (ECC), Aug. 2009, p. 1322, doi:
10.23919/ECC.2009.7074588.

G. Valencia-Palomo and J. A. Rossiter, ‘““Programmable logic controller
implementation of an auto-tuned predictive control based on minimal
plant information,” ISA Trans., vol. 50, no. 1, pp. 92-100, Jan. 2011, doi:
10.1016/j.isatra.2010.10.002.

G. Valencia-Palomo and J. A. Rossiter, “Efficient suboptimal
parametric solutions to predictive control for PLC applications,”
Control Eng. Pract., vol. 19, no. 7, pp.732-743, Jul. 2011, doi:
10.1016/j.conengprac.2011.04.001.

M. Pereira, D. Limon, D. Munoz de la Pena, and T. Alamo, “MPC
implementation in a PLC based on Nesterov’s fast gradient method,” in
Proc. 23rd Medit. Conf. Control Autom. (MED), Jun. 2015, pp. 371-376,
doi: 10.1109/MED.2015.7158777.

S. Richter, C. N. Jones, and M. Morari, “Computational complexity certi-
fication for real-time MPC with input constraints based on the fast gradient
method,” IEEE Trans. Autom. Control, vol. 57, no. 6, pp. 1391-1403,
Jun. 2012, doi: 10.1109/TAC.2011.2176389.

B. Kaepernick and K. Graichen, “PLC implementation of a nonlinear
model predictive controller,” in Proc. 19th IFAC World Congr., Cape Town,
South Africa, 2014, pp. 1892-1897.

PACSystems CPU Reference Manual, GFK-2222L. GE Fanuc
Intelligent Platforms. Accessed: Jan. 7, 2022. [Online]. Available:
https://eia.pg.edu.pl/documents/1113028/0/gfk22221.pdf

R. Dolbeau, “Theoretical peak FLOPS per instruction set: A tuto-
rial,” J. Supercomput., vol. 74, no. 3, pp. 1341-1377, Mar. 2018, doi:
10.1007/s11227-017-2177-5.

H. J. Curnow, “A synthetic benchmark,” Comput. J., vol. 19, no. 1,
pp. 43-49, Jan. 1976, doi: 10.1093/comjnl/19.1.43.

J. E. Gentle, Matrix Algebra: Theory, Computations, and Applications in
Statistics. New York, NY, USA: Springer, 2007.

G. Tao, Adaptive Control Design and Analysis, 1st ed. Hoboken, NJ, USA:
Wiley, 2003.

G. H. Golub and C. FE. V. Loan, Matrix Computations, 4th ed. Baltimore,
MD, USA: Johns Hopkins Univ. Press, 2013.

S. Huss-Lederman, E. M. Jacobson, A. Tsao, T. Turnbull, and
J. R. Johnson, “Implementation of Strassen’s algorithm for matrix mul-
tiplication,” in Proc. ACM/IEEE Conf. Supercomputing (CDROM), Pitts-
burgh, PA, USA, Jan. 1996, p. 32, doi: 10.1145/369028.369096.

P. D’ Alberto and A. Nicolau, “Using recursion to boost ATLAS’s perfor-
mance,” in Proc. 6th Int. Symp. High-Performance Comput. 1st Int. Conf.
Adv. Low Power Syst., Berlin, Heidelberg, 2005, pp. 142-151.

J. Huang, T. M. Smith, G. M. Henry, and R. A. Van De Geijn, ‘‘Strassen’s
algorithm reloaded,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Nov. 2016, pp. 690-701, doi: 10.1109/SC.2016.58.

B. Boyer, J.-G. Dumas, C. Pernet, and W. Zhou, “Memory efficient
scheduling of Strassen-Winograd’s matrix multiplication algorithm,” in
Proc. Int. Symp. Symbolic Algebr. Comput., Séoul, South Korea, Jul.2009,
p. 8. Accessed: Jan. 7, 2022. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-00163141

A. Bjorck, Numerical Methods in Matrix Computations. New York, NY,
USA: Springer, 2014.

[Online]. Available:

VOLUME 10, 2022

http://dx.doi.org/10.1007/s11947-016-1831-x
http://dx.doi.org/10.1049/cce:20040303
http://dx.doi.org/10.1109/COMST.2021.3094360
http://dx.doi.org/10.23919/ECC.2009.7074588
http://dx.doi.org/10.1016/j.isatra.2010.10.002
http://dx.doi.org/10.1016/j.conengprac.2011.04.001
http://dx.doi.org/10.1109/MED.2015.7158777
http://dx.doi.org/10.1109/TAC.2011.2176389
http://dx.doi.org/10.1007/s11227-017-2177-5
http://dx.doi.org/10.1093/comjnl/19.1.43
http://dx.doi.org/10.1145/369028.369096
http://dx.doi.org/10.1109/SC.2016.58

J. Tarnawski et al.: AC With PLC-Code Generator for aMPC Controller Implementation and Cooperation

IEEE Access

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

J. D. Hoffman, J. D. Hoffman, and S. Frankel, Numerical Methods for
Engineers and Scientists, 2nd ed. Boca Raton, FL, USA: CRC Press, 2017,
doi: 10.1201/9781315274508.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: SIAM, 2002.

K. D. Dorfman and P. Daoutidis, Numerical Methods with Chemical Engi-
neering Applications, 1st ed. Cambridge, U.K: Cambridge Univ. Press,
2017.

A. Niederlinski, J. Moscinski, and Z. Ogonowski, Regulacja Adaptacyjna.
Warsaw, Poland: Wydawnictwo Naukowe PWN (in Polish), 1995.

E. F. Camacho and C. B. Alba, Model Predictive Control. London, U.K.:
Springer, 2013.

J. A. Rossiter, A First Course in Predictive Control, 2nd ed. Boca Raton,
FL, USA: Taylor & Francis, 2018.

P. Kudetka and M. Korzeniowski, ““Synthesis of adaptive regulators for a
laboratory stand with transport of warm air,” (in Polish), M.S. thesis, Dept.
Intell. Control Decis. Support Syst., Fac. Elect. Control Eng., M.S. thesis,
Gdarisk Univ. Technol., Gdansk, Poland, 2018.

W. Grega, Metody i Algorytmy Sterowania Cyfrowego w Ukladach
Scentralizowanych i Rozproszonych. Krakéw, Poland: Uczelniane
Wydawnictwa Naukowo-Dydaktyczne Akademii Gorniczo-Technicznej
(in Polish), 2004.

P. Zhang, Advanced Industrial Control Technology, 1st ed. Amsterdam,
The Netherlands: William Andrew, 2010.

B. R. Mehta and Y. J. Reddy, [Industrial Process Automation
systems?: Design and Implementation. Amsterdam, The Netherlands:
Elsevier, 2015. Accessed: Jan. 07, 2022. [Online]. Available:
https://www.nlb.gov.sg/biblio/202651517

K. L. S. Sharma, Overview of Industrial Process Automation, 2nd ed.
Amsterdam, The Netherlands: Elsevier, 2017.

E. Monmasson and M. N. Cirstea, “FPGA design methodology for indus-
trial control systems—A review,” IEEE Trans. Ind. Electron., vol. 54,no. 4,
pp. 18241842, Aug. 2007, doi: 10.1109/TIE.2007.898281.

P. A. Laplante and S. J. Ovaska, Real-Time Systems Design and Analysis:
Tools for the Practitioner, 4th ed. Hoboken, NJ, USA: Wiley, 2012.

J. Tarnawski and T. Karla, ‘‘Real-time simulation in non real-time environ-
ment,” in Proc. 21st Int. Conf. Methods Models Automat. Robot. (MMAR),
Aug. 2016, pp. 577-582, doi: 10.1109/MMAR.2016.7575200.

J. Lofberg, “YALMIP: A toolbox for modeling and optimization in Mat-
lab,” in Proc. IEEE Int. Conf. Robot. Automat., Sep. 2004, pp. 284-289,
doi: 10.1109/CACSD.2004.1393890.

M. V. Kothare, V. Balakrishnan, and M. Morari, ‘“Robust
constrained model predictive control using linear matrix
inequalities,” Automatica, vol. 32, no. 10, pp.1361-1379, 1996,

doi: 10.1016/0005-1098(96)00063-5.

VOLUME 10, 2022

JAROSLAW TARNAWSKI was born in Gdansk,
in 1974. He received the M.Sc. and Ph.D. degrees
from the Gdansk University of Technology, in
2000 and 2006, respectively. He is currently an
Assistant Professor with the Department of Elec-
trical Engineering, Control Systems and Computer
Science, Gdansk University of Technology. He is
the Head of the Laboratory of Computer Con-
trol Systems with industrial-class infrastructure,
including DCS, PLC, SCADA systems, and indus-

trial IT networks. He has experience in the field of control of drinking water
supply systems and in nuclear power control systems. His research interests
include mathematical modeling, identification, optimization, hierarchical
control systems, and adaptive and predictive control for objects with time-

varying delays.

PIOTR KUDEEKA was born in Wejherowo,
Poland, in 1996. He received the M.Sc. degree
in automatics and robotics from the Gdansk Uni-
versity of Technology, in 2020. His research
interests include adaptive and predictive control,
computational complexity, programmable logic
controllers, and efficiency and computational per-
formance.

MATEUSZ KORZENIOWSKI was born in Pastek,
Poland, in 1996. He received the M.Sc. degree in
automatics and robotics from the Gdarisk Univer-
sity of Technology, in 2020. His research inter-
ests include adaptive and predictive control, robust
control, neural networks, optimization, and genetic
algorithms.

10617

http://dx.doi.org/10.1201/9781315274508
http://dx.doi.org/10.1109/TIE.2007.898281
http://dx.doi.org/10.1109/MMAR.2016.7575200
http://dx.doi.org/10.1109/CACSD.2004.1393890
http://dx.doi.org/10.1016/0005-1098(96)00063-5

