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ABSTRACT In this paper, we present refining graph representation for cross-domain recommenda-
tion (CDR) based on edge pruning considering feature distribution in a latent space. Conventional graph-
based CDRmethods have utilized all ratings and purchase histories of user’s products. However, some items
purchased by users are not related to the domain for recommendation, and this information becomes noise
when making CDR. So, the proposed method introduces edge pruning into the latest graph-based CDR
method to refine graph representation. To compare the item embedding features calculated in different
domains, we construct a latent space and perform edge pruning through their correlations. Additionally,
we introduce a state-of-the-art graph neural network into the graph construction of the proposed method
that considers the interactions between users and items thereby obtaining effective embedding features in
a domain. This makes it possible to consider domain-specific user preferences and estimate embedding
features with high-expressive power. Furthermore, to compare the embedding features of items in the two
domains, we construct their latent spaces and project them. Edge pruning is performed using the correlation
of items between the two domains on the latent space. We obtain cross domain specific graph representation
through edge pruning, which improves the performance by considering the relationship between both items
across domains. To the best of our knowledge, no study in the CDR field focuses on eliminating unnecessary
node information. We have demonstrated the effectiveness of the proposed method by comparing several
graph-based state-of-the-art methods.

INDEX TERMS Edge pruning, cross-domain recommendation, latent space graph convolutional networks.

I. INTRODUCTION
Recently, the number of e-commerce services has increased
rapidly providing a variety of services. As the number
of items increases, it has become difficult for users to
find their favorite items in these services (e.g., Amazon,1

eBay,2 and Tmall3). So, e-commerce services have intro-
duced a recommendation system [1]–[5] on their backends

The associate editor coordinating the review of this manuscript and

approving it for publication was Walter Didimo .
1https://www.amazon.com/
2https://www.ebay.com/
3https://www.tmall.com/

to recommend items while predicting potential relationships
between the users and the items. Thus, these services make
an effort to achieve personalized item recommendations.
General link prediction tasks [6]–[9] have a data sparsity
problem, which happens when many items do not have links
between users and items. As the main cause of this prob-
lem, many users only evaluate very few items. Consequently,
a large number of items in the long tail are only evaluated a
few times. Note that long tail is a way of selling products on
the Internet. This sparsity problem is known as the cold-start
problem [10]–[12], and it becomes increasingly serious for
new users and items.
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FIGURE 1. Framework of the proposed method. We calculate the embedding features of users and items for each domain using the purchase history.
We project the embedding features to the latent space via canonical correlation analysis (CCA) to directly compare features across domains. Furthermore,
we perform edge pruning via the distance of items in the latent space. Finally, we construct the recommendation module using the graph on the latent
space constructed after edge pruning.

The cross-domain recommendation (CDR) has been stud-
ied [13]–[20] to solve the cold-start problem. CDR is a
method of item recommendation that complements the infor-
mation in the target domain by utilizing the information in
the source domain with enough information. In the previ-
ous methods, domains were regarded as product categories
(e.g., books, movies, music, and clothing). The CDRmethods
can be classified into semantic, factorial, tag, and graph-based
methods. Among them, various graph-based methods have
attracted significant attention. In these methods, users and
items are defined as nodes. The relationships between the
users and the items are defined as edges, and their interactions
can be considered to improve the recommendation accuracy.

Although previous graph-based methods use the informa-
tion of all the items for which interactions exist in the source
domain, some of those items have nothing to do with the tar-
get domain. It means that there is a possibility that the users’
embedding features were calculated using the information of
those items that contain noise. Thus, they cannot deal with
information on items in the source domain that have little
relationship with those in the target domain which is a fun-
damental problem. Therefore, to conduct accurate item rec-
ommendations considering the characteristics of the domain,
it is necessary to eliminate the influence of items in the source
domain that are not related to item recommendations in the
target domain when embedding features are calculated. Thus,
it is expected that pruning the edges of items in the source
domain that are irrelevant for item recommendation in the
target domain improves the performance of the CDR. To the

best of our knowledge, no study in the CDR field focuses on
eliminating unnecessary node information.

In this paper, we propose a refining graph representation
for CDR based on edge pruning considering feature distribu-
tion in a latent space. By employing the proposed method,
we can efficiently use information from the source domain in
the target domain by minimizing the influence of the items in
the source domain that are not needed in the target domain.
First, we construct the graphs for each domain using users’
purchase histories with LightGCN [21], i.e., a state-of-the-
art method. Then, we project the item embedding features
of the source and the target domains into the latent space
using the simplest method, canonical correlation analysis
(CCA) [22] and analyze within a domain correlation of item
embedding features. We prune the edges of items in the
source domain that have a low correlation with those in
the target domain using the local outlier factor (LOF) [23],
which is a method for anomaly detection. The proposed CDR
method enables item recommendations that are not affected
by noisy items. We conduct experiments with representative
real-world datasets. We confirmed the effectiveness of the
proposed method by reducing the influence of unnecessary
information in several experiments. Note that this paper is an
extension of [24].

II. PROPOSED METHOD
This section presents refining graph representation for CDR
with edge pruning. Figure 1 shows a framework of the
proposed method. We introduce edge pruning into the new
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graph-based CDR method for refining graph representation.
First, we train graph representation through the relationship
between domains using user-item interactions. Next, we cal-
culate the embedding features with high representation abil-
ity for users and items (II-A). Then, we project the item
embedding features of the source and the target domains
into the latent space and prune the edges of useless source
domain items via relations in the latent space (II-B). This
is the main contribution of this paper. Furthermore, we train
a recommendation module based on preference propagation
graphnet (PPGN) [14], which is a state-of-the-art graph-based
CDR method, by utilizing the graph after edge pruning in
the latent space (II-C). Finally, we use the embedding fea-
tures of the target user to determine the recommended items
(II-D). It is only then, that we can estimate user preferences
based only on information about items that are useful for
recommendations in the target domain.

A. REPRESENTATION BASED ON RELATIONSHIP WITHIN
THE DOMAIN
We train graph representation through the relationship
between domains. In the proposed method, we construct
graphs using the user-item interactions in both domains,
respectively. To illustrate this method, we show the graph
construction in a domain. The purpose of the graph construc-
tion is to calculate the user and item embedding features using
the user-item interaction. Figure 2 shows a framework of the
construction of the graph. Given, user u ∈ {1, 2, · · · ,U},U is
the number of users and item i ∈ {1, 2, · · · , I }, and I is the
number of items, we define user and item embedding features
as eu ∈ Rd and ei ∈ Rd , respectively. Particularly, d denotes
the dimension of the embedding features. Then, we adopt
LightGCN [21], which is one of the latest graph neural net-
works. The embedding features of the users and the items
are estimated using only the interaction between the users
and the items in the domain. The user and item embedding
features eu and ei are calculated from linear combinations of
their h-th hop embedding features, respectively. Additionally,
h (= 0, 1, · · · ,H ) denotes the number of hops from user u or
item i.

We can calculate eu(h+1) and e
i
(h+1) to capture the relation-

ship between the users and the items within a domain as
follows:

eu(h+1) =
∑
i∈Nu

1
√
|Nu||Ni|

eih, (1)

ei(h+1) =
∑
u∈Ni

1
√
|Ni||Nu|

euh, (2)

whereNu andNi denote the set of items interacted by the user
u and the set of users who interact with the item i, respectively.
The symmetric normalization term 1√

|Nu||Ni|
is defined based

on the standard graph convolution networks [25] and avoids
the scale-up of the embedding features related to graph convo-
lution operations. Given eu0 and e

i
0, the user-item embedding

FIGURE 2. Framework of the graph construction in one domain. The
constructed graph provides effective representation through the
relationship between the users and the items.

features at higher hops can be repeatedly calculated using
Eqs. (1) and (2). These embedding features obtained at each
hop are combined with the final embedding features of user
u and item i as follows:

eu =
H∑
h=0

αheuh, (3)

ei =
H∑
h=0

αheih. (4)

Here, αh ≥ 0 represents the importance of the
h-th neighborhood embedding feature that produce the final
embedding features. The trainable parameters for our graph
construction are only the 0-th hop embedding feature matrix
E(0)

∈ R(U+I )×d . Then, we train a model that can intro-
duce the interactions using the Bayesian personalized rank-
ing (BPR) loss [2] as follows:

LBPR=−
U∑
u=1

∑
i∈Nu

∑
j/∈Nu

ln σ (y(u,i) − y(u,j))+ε||E(0)
||
2
F . (5)

Here, σ (·) represents a nonlinear activation function, which
is a sigmoid function, and ε controls the strength of the L2
regularization. We can estimate user u’s preferences y(u,i) and
y(u,j), which are the criteria for determining whether the item
i or j are user u’s preferences. Thus, we calculate y(u,i) and
y(u,j) using the embedding features as follows:

y(u,i) = euTei, y(u,j) = euTej, (6)

where j (= 1, 2, . . . , J ) denotes an unfavorable item for
user u. We can calculate the users’ embedding features via
user-item interactions that consider the user’s preferences by
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minimizing LBPR. Consequently, we obtain the embedding
features with high embedding expressiveness that considers
the relationships within the domain.

B. EDGE PRUNING MODULE
We prune the edges of not closely related items using the
embedding features of users and items in the source and target
domains calculated in Section II-A. Therefore, to project
these features to the latent space, we obtain projection matri-
ces 9s ∈ Rds×dcca and 9 t ∈ Rdt×dcca by applying CCA to
the user embedding featuresEus = [e1s , e

2
s , . . . , e

U
s ] ∈ Rds×U

and Eut = [e1t , e
2
t , . . . , e

U
t ] ∈ Rdt×U . Specifically, we maxi-

mize the following objective function:

(ψ̂ s, ψ̂ t) = arg max
ψs,ψ t

ψ>s CEusEut
ψ t√

ψ>s CEusEus
ψ s

√
ψ>t CEutEut

ψ t

.

(7)

Here,ψ s andψ t are the projection vectors, and9s ∈ Rds×dcca

and 9 t ∈ Rdt×dcca include these vectors. The projection
vectors are calculated by maximizing Eq. (7) by solving the
eigenvalue problems to obtain 9s ∈ Rds×dcca and 9 t ∈

Rdt×dcca . Therefore, we obtain the projected features êis ∈
Rdcca and êit ∈ Rdcca that considers their relationships as
follows:

êis = 9
>
s e

i
s, (8)

êit = 9>t e
i
t. (9)

Thus, we can compare items in the source and target domains
in the latent space. It is worth noting that items with high
correlation will be closer to each other in the latent space,
whereas the items with low correlation will be farther away.
Therefore, if there are few items in the neighborhood, we can
regard them as those whose edges should be pruned. We cal-
culate the anomaly of items in the source domain using local
density on the latent space and prune the edges of highly-
anomalous items with LOF [23]. Thus, we express how the
local density of item is differs from the local density of
neighbor item o in terms of outlier scores as an anomaly. First,
lrd(is) for the local density of is is calculated as follows:

lrd(is) = 1/
(∑

o∈Nv(is) reach-distv(is, o)

|Nv(is)|

)
, (10)

where Nv(is) is the set of v neighbor items of is; lrd(is) is
the inverse of the average reachability distance through the v
nearest neighbors of is. Furthermore, reach-dist(is, o) for the
reachability distance of is from o is calculated as follows:

reach-distv(is, o) = max(v-dist(is), d(is, o)), (11)

where v-dist(is) is the distance of is to the v-th neighbor-
hoods; d(is, o) is the distance between is and o. If the outlier
score lrd(is) is an indicator that measures distance between is
and the item set, then the outlier score as local reachability
density of a is, lof(is), is calculated as follows:

lof(is) =

∑
o∈Nv(is)

lrd(o)
lrd(is)

|Nv(is)|
. (12)

The value lof(is) captures the degree to which we regard is as
an outlier. It is the average of the ratio of the local reachability
density of is and those of is âs v-nearest neighbors. Finally,
we obtain the embedding features êi

′

is ∈ Rdcca of the item by
pruning the edges of the item determined based on the outlier.
Note that i′ ∈ {1, 2, · · · , I ′} and I ′ are the number of items
after edge pruning. In this way, edge pruning based on outlier
detection is achieved.

C. TRAINING STRATEGIES OF RECOMMENDATION
MODULE
We train the recommendation module using PPGN [14]. The
knowledge of the recommendation module flows along with
the observed user-item interactions. Thus, we can capture
the higher-order user-item relationships across domains on
a superimposed graph. We can recommend items based on
the graphs of the two domains in the latent space using
PPGN. After obtaining the potential embedding features of
users (e.g., êu) and items (e.g., êi

′

s and êit) calculated in the
previous section (II-B), the tuples of (êi

′

s , ê
u and êit) are fed

intomultilayer perceptions (MLPs). Here êi
′

s is the embedding
feature of the items in the source domain after edge pruning.
Specifically, êi

′

s , ê
u
t , and ê

i
t can be combined as inputs of two

MLPs to obtain recommendation predictions for the training
samples, i.e., x̂s and x̂t between the users and the items in both
domains as follows:

êu,0s = [êi
′

s , ê
u], êu,0t = [êit, ê

u],

êu,1s = σ (W
1>
s êu,0s + b

1
s ), êu,1t = σ (W

1>
t êu,0t + b

1
t ),

...

êu,Ls = σ (W
L>
s êu,L−1s + bLs ), êu,Lt = σ (W

L>
t êu,L−1t + bLt ),

x̂s = φs(ê
u,L
s ), x̂t = φt(ê

u,L
t ). (13)

Here,WL
s andWL

t are the trainable transformation matrices;
bs and bt are the trainable transformation biases; L is the
total number of MLP layers. φs and φt are the two MLPs to
map êu,Ls and êu,Lt to the two scalars x̂s and x̂t. The proposed
method aims to improve the prediction performance on both
domains using refined graph representation for CDR. The
loss function L of PPGN is constructed via a joint cross-
entropy loss from the recommendation prediction of both
domains: Lus and Lut and a regularization term Lreg as
follows:

L = Lus + Lut + Lreg, (14)

Lus = −
∑

(is,u,it)∈T

xs log x̂s + (1− xs) log (1− x̂s), (15)

Lut = −
∑

(is,u,it)∈T

xt log x̂t + (1− xt) log (1− x̂t), (16)

Lreg = −ε
∑
|2|. (17)

Here, T is the training dataset with positive and negative
samples; xs and xt are the corresponding labels; ε is the
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regularization coefficient; 2 is a set of trainable parameters.
We adopted Adam [26] as the optimizer for the parameter
update.

TABLE 1. Details of the items used for the experiment dataset.

TABLE 2. Number of pruned edges and their ratios.

D. ITEM RECOMMENDATION
We determine the recommended items using PPGN learned
in the previous subsection (II-C). Specifically, we predict the
existence of an edge for user u′. The recommendation module
consists of multiple MLPs, which can estimate the users’
preferences x̂ itu′ using embedding features of the users and the
items as follows:

x̂ itu′ = φt(ê
u′,L
t ). (18)

Here, items with high users’ preference x̂ itu′ are more likely
to have an edge. Finally, we recommend items in order of
user u′’s preference x̂ itu′ for item it as predicted using PPGN.

III. EXPERIMENTAL RESULTS
This section evaluates the proposed method to verify its
effectiveness using the real-world dataset. First, we explain
the experimental setting (III-A). Then, we analyze and dis-
cuss the experimental results qualitatively and quantitatively
in (III-B), respectively.

A. EXPERIMENTAL SETTING
In this experiment, we verify the effectiveness of the proposed
method. We used the dataset constructed according to the
Amazon review dataset4 [27]. The five-core dataset,5 which
is the original dataset is available for download. The five-
core dataset contains 75.26 million reviews, and all users and
items have at least five reviews. In this experiment, we set the
domain as the product category of Amazon.com. We set the
source and target domains to ‘‘Books’’ and ‘‘Movies and TV,’’
respectively. From the five-core dataset, we collected 37,388
users who are mutual users between the source and the target

4https://jmcauley.ucsd.edu/data/amazon/
5http://deepyeti.ucsd.edu/jianmo/amazon/categoryFiles/

All_Amazon_Review_5.json.gz

domain. Specifically, 269,301 items in the source domain
and 49,273 items in the target domain were rated by those
users, respectively. The details of the dataset are presented
in Table 1. Table 2 presents the number of pruned edges and
their ratios. The number of items to be pruned depends on the
number of neighboring items of the target item.

In this experiment, we split the training and test users in a
ratio of 8:2. We adopted the widely used hit ratio (HR@k),
mean reciprocal rank (MRR@k), and normalized discounted
cumulative gain (NDCG@k) [28] as the performance evalua-
tion of all methods following [29]. Here, k was 5, 10, and 20.
Additionally, as a comparison with the baseline, we set
LightGCN, which is one of the latest graph recommendation
methods, as a comparison method. We adopted the original
PPGN, which is a state-of-the-art method in the CDR field
and the proposed method without edge pruning as the com-
parative methods. The effectiveness of the proposed method
was verified by comparing the proposed methods (v = 3, 5,
20, and 100) with the comparative methods. In the following
subsection, we will show the actual recommendation results
and discuss the effectiveness of the proposed method.

B. PERFORMANCE EVALUATION
Table 3 presents the overall experimental results. Conse-
quently, we have the following observations. First, the pro-
posed method significantly outperforms LightGCN. It also
accurately captures the user’s preferences and generates high-
quality recommendations. These results confirm the effec-
tiveness of the CDRby calculating the embedding features for
each domain. Second, the proposed method produces higher
quality recommendations than themethod without edge prun-
ing. The proposed method without edge pruning generates
higher quality recommendations than PPGN. As shown in
Table 3, we achieve the best recommendation at v = 5. The
proposed method prunes 4.85% (v = 3) and 3.55% (v = 5)
of the edges in the source domain. The results show that the
recommendation accuracy is highest at v = 5, followed by
v = 3. Here, the recommendation accuracy is higher than
the proposed method without edge pruning. This indicates
that edge pruning improves the recommendation accuracy
in the CDR task. Therefore, the recommendation accuracy
at v = 3 is lower than that at v = 5. This may be due to
the effect of pruning too much information in the source
domain, suggesting that there was 3%-4% noise in the source
domain data in this experiment. Therefore, the effectiveness
of calculating the embedding features for each domain and
using them for CDR is confirmed.

Figure 3 shows the qualitative experimental results of the
top five items purchased by a user (Books) and the top five
recommended items (Movies and TV). Figure 3 shows that
while a user is interested in action and mystery, they like
items about a person’s life, such as (c), (g), (h), and (i). Then,
we focus on the recommendation results of LightGCN and
the proposed method. First, the recommendation results of
LightGCN are biased toward action and mystery, which is
attributed to roughly capturing user preferences in the source
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TABLE 3. Details of the experimental results. The best results are highlighted in bold.

FIGURE 3. Qualitative evaluation results. This figure shows the items (Books) purchased by the user and the recommendation results (Movies and TV).
It also shows that while the users are interested in action and mystery, they like items about a person’s life, such as (c), (g), (h), and (i). The
recommendation results of LightGCN are biased toward action and mystery. In contrast, the proposed method includes the items of not only action and
mystery but also the main character’s life, such as (r).

domain. In contrast, the proposed method includes the items
of not only action and mystery but also the main character’s
life, such as (r). Consequently, the proposed method canmore
clearly grasp the user’s preference in the source domain and
recommend items based on it, confirming its effectiveness.

IV. CONCLUSION
This study proposed refining graph representation for CDR
with edge pruning considering feature distribution in the
latent space. Extensive experiments validated our motivation
to make better recommendations in CDR by removing unnec-
essary information in the source domain. We observed that
the proposed method outperforms the comparative methods,
including the state-of-the-art methods.
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