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ABSTRACT Working towards active buildings that fully integrate efficient demand management with
renewable energy sources and storage, energy efficiency is an important step, as building inefficiencies cause
energy wastage and increase energy-related expenses. Currently, static thermal setpoints are typically used
to maintain the inside temperature of a building at a comfortable level irrespective of its occupancy. This
paper introduces a deep learning framework that trains across time series to forecast the temperatures of a
future period directly where a particular room is unoccupied and optimises the setpoints of the room. To the
best of our knowledge, this is the first study to use a state-of-the-art deep learning method trained across
series to accurately predict temperatures for the subsequent optimal control of room setpoints. In contrast
to traditional forecasting approaches that build isolated models to predict each series, our framework uses
global recurrent neural network models that are trained with a set of relatively short temperature series,
allowing the models to learn cross-series information. The predicted temperatures were then used to define
the optimal thermal setpoints to be used inside the room during the unoccupied periods. We evaluate the
prediction accuracy of our deep learning framework against a set of state-of-the-art forecasting models and
can outperform those by a large margin. Furthermore, we analyse the usage of our deep learning framework
to optimise the energy consumption of an air conditioning system in a real-world scenario using temperature
data from a university lecture theatre. Based on simulations, we show that our proposed framework can lead
to savings of approximately 20% and 15%, respectively, compared to the traditional temperature control
model that does not use optimisation techniques and a programmable thermostat.

INDEX TERMS Deep learning, energy optimisation, generative models, recurrent neural networks, temper-
ature forecasting.

I. INTRODUCTION
A limited number of energy resources, rapid population
growth, and increased energy consumption [1] make energy
optimisation a pressing need for modern societies. In urban
areas, more than 40% of the energy is consumed by build-
ings [2], where heating, ventilation, and air condition-
ing (HVAC) systems consume a large portion of energy in
many commercial buildings [3].

To solve these issues in our way to a carbon-neutral
future, active buildings integrate renewable energy technolo-
gies, heating, cooling and other sources related to building
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energy efficiency. They aim to provide a comfortable envi-
ronment for occupants while optimally controlling building
energy production, storage, and usage.

In this study, we focus on the energy usage component of
the problem, particularly for HVAC systems. The purpose of
an HVAC system is to maintain appropriate and comfortable
thermal conditions inside a building. The common approach
of operating an HVAC system is to use static thermal set-
points, where the inside temperature level is always main-
tained within a predefined temperature limit. However, this
strategy is beneficial only during the occupied periods of
a building. Maintaining the same temperature level during
unoccupied periods may be unnecessary and lead to energy
wastage.
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FIGURE 1. (left) Static thermal setpoints. The system always keeps the inside temperature in between two specific temperature levels irrespective of
room occupancy. (middle) Dynamic thermal setpoints with a programmable thermostat. The temperature is allowed to drop to a certain level during
unoccupied periods. However, the thermostat is always programmed to switch on before a fixed period of time ending the unoccupied period
irrespective of the inside and outside temperatures. (right) Dynamic thermal setpoints with an optimal control. The temperature is allowed to drop
during unoccupied periods and the HVAC is switched on optimally. As a result, large amounts of energy can be saved during periods where the room is
unoccupied.

Dynamic thermal setpoints are a possible approach to con-
trol the inside temperature of a building more efficiently than
static thermal setpoints. This approach can define different
setpoints for the occupied and unoccupied periods, and hence
be more energy efficient by allowing the inside temperature
to be closer to the outside temperature during unoccupied
periods. The concept of dynamic thermal setpoints has been
used to optimise the behaviour of HVAC systems. Recent
work in this area uses predictions of building management
related factors such as occupancy and percentage of dissatis-
fied building occupants to dynamically change the setpoints
of buildings [4], [5]. Adaptive programmable thermostats [6]
also use occupation schedules to control HVAC systems;
however, they are only programmed to switch on/off an
HVAC system before a fixed period of time irrespective of
the inside and outside temperatures; in many cases, this time
point may not be the optimal time point to switch on/off the
HVAC system. Thus, there is a possibility of energy wastage
when programmable thermostats are used. Hence, to reduce
the energy wastage, the setpoints should be optimally con-
trolled. Fig. 1 illustrates the concepts of the static thermal
setpoints, dynamic thermal setpoints with a programmable
thermostat and dynamic thermal setpoints with an optimal
control.

For the use of dynamic setpoints and for energy effi-
ciency optimisation, it is highly beneficial to know in advance
when rooms are occupied, and it is necessary to model and
predict inside temperatures so that the HVAC system has
sufficient time to return to a comfortable level at the time
it is needed. Consequently, a body of literature is available
on the forecasting of inside temperatures and energy con-
sumption within buildings. In particular, several machine
learning technologies have been used, such as multiple
linear regression (MLR), support vector machines (SVM),

random forests (RF) and feed-forward neural networks
(FFNN) [7]–[13].
There is a recent trend in the forecasting community

towards global forecasting models [14] that build a single
model across many series, allowing the model to learn cross-
series information. They have shown a huge potential in
providing accurate forecasts compared to traditional univari-
ate forecasting models such as the exponential smoothing
state space model [ETS, 15] and autoregressive integrated
moving average [ARIMA, 16], which build separate models
to forecast each series in a more isolated way. In particular,
many of the recently held forecasting competitions such as
the M4 [17] and M5 competitions [18], have been won by
global forecasting models. In our temperature forecasting
scenario, the temperature series that show the heating or
cooling behaviours inside a particular room are quite short.
Thus, in our case, global forecasting models are more suit-
able for forecasting the inside temperatures as they train
across multiple series, whereas they can learn the cross-
series information. However, these temperature series have
varying lengths. Furthermore, the forecastingmodel often has
to address the cold-start problem, as explained in Section III.
This phenomenon limits the use of state-of-the-art deep learn-
ing models such as attention-based schemes [19] and trans-
formers [20] as the main building blocks of our framework.
This motivates us to use recurrent neural networks [RNN, 21]
as the underlying forecasting model of our framework in a
generative manner.

An RNN is a special type of NN that is highly suitable
for sequence modelling as it can address the temporal order
and temporal dependencies of a sequence [22]. RNNs were
incorporated into the winning method of the recently held
M4 forecasting competition. RNNs are suitable for modelling
in our scenario because of their capability to predict the
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inside temperatures corresponding to an unoccupied period
of a room in a sequential manner. The current temperature
depends on the previous temperature, and based on this, heat-
ing or cooling can occur. Thus, it is important to use a model
such as the RNN in our case which can properly address
the temporal order of the temperature series. RNNs can also
address the cold-start problem, as explained in Section III.
They have also been used to address real-world building
management related forecasting problems [23]–[25].

Although researchers have considered RNNs to solve
many real-world forecasting problems related to building
management, to the best of our knowledge, there is no prior
work on using global RNNs for indoor temperature forecast-
ing, especially if these forecasts are then used to optimise
the energy consumption of HVAC systems. We examine the
merits of recent advances in the field of forecasting, namely
the good performance of global forecasting models, RNNs
and their applicability in such an optimisation system. Our
study makes the following contributions.

1) We propose a global deep learning framework based
on RNNs that can forecast the future indoor temper-
atures of a particular building as a function of the
current inside and outside temperatures. In contrast
to the traditional univariate forecasting models which
build isolated models to predict each series, our pro-
posed global deep learning framework trains across a
collection of temperature series in a global manner,
allowing the model to learn the cross-series informa-
tion. Furthermore, the deep learning unit we use in
our framework, RNNs, can properly handle the tem-
poral order and temporal dependencies of the temper-
ature series while extracting more useful information
to predict future temperatures with a limited history.
We compare the prediction accuracy of our global deep
learning framework with a set of baseline machine
learning benchmark models, namely, RF, SVM, MLR,
and FFNN.We show that our global RNN-based frame-
work is more accurate in forecasting temperatures than
the benchmark models.

2) We then use the global RNN model to simulate the
thermal behaviour inside a particular room. Based on
this, we propose an optimisation approach to find the
optimal time point to switch on the air conditioning
system (AC) during an unoccupied period of that room
such that it uses a minimal amount of energy to heat or
cool the room. As the setpoints depend on the predicted
temperatures, it is crucial for the system to have an
accurate forecasting engine at its core.

We also present a quantitative comparison of the rela-
tive performance of the optimised global RNN model and
the second most accurate model, an SVM model, against
a traditional AC system and a programmable thermostat in
a case study of a university lecture theatre. This lecture
theatre does not have rooftop solar panels; therefore, con-
trolling building energy efficiency using renewable energy
sources is not applicable. Our proposed framework is suitable

for optimising the energy efficiency of any building, par-
ticularly for a building, such as this lecture theatre which
do not have renewable energy sources. We show that our
proposed framework can achieve considerable energy sav-
ings in the lecture theatre compared with its traditional
AC system as well as the programmable thermostat in
terms of the amount of energy usage. In particular, rely-
ing on the global RNN model for predictions leads to
an estimated 20% and 15% energy savings, respectively,
with the traditional AC system and programmable thermo-
stat according to our generative modelling. All implemen-
tations related to the framework are publicly available at:
https://github.com/rakshitha123/TemperatureForecasting.

The remainder of this paper is organised as follows:
Section II reviews related work. Section III describes our
proposed temperature forecasting framework based on global
RNNs and the setpoint optimisation procedure. Section IV
summarises the experimental framework and model evalua-
tion results based on prediction accuracy. Section V presents
a case study using our proposed deep learning framework
to optimise the energy consumption of an HVAC system in
a real-world application. Finally, Section VI concludes the
paper and discusses possible future research directions.

II. RELATED WORK
In this section, we review the existing state-of-the-art temper-
ature and energy prediction models and HVAC optimisation
techniques. The literature provides many examples of the use
of machine learning technologies to forecast internal temper-
atures and energy consumption within buildings. As stated
earlier, the popular machine learning models in this area
are MLR, SVM, RF, and FFNN. Krüger and Givoni [26]
proposed an MLR model to predict the internal thermal
behaviour of three separate rooms. They compared the pre-
dicted results with the simulation of COMFIE software [7],
where the simulated results were similar to the predictions.
Kisi and Sanikhani [27] further proposed a similar MLR
model to predict the inside temperatures in summer and
winter separately.

Radhika and Shashi [8] used an approach based on SVM
and FFNN to predict the maximum atmospheric tempera-
ture at a particular location. Paniagua-Tineo et al. [9] used an
SVM to predict the daily maximum temperature which was
then used to forecast the daily maximum energy consump-
tion. Salcedo-Sanz et al. [10] established a model based on
SVM and FFNN to predict the outside temperature at dif-
ferent locations in Australia and New Zealand. Their results
showed that the SVM had better prediction accuracy than
the FFNN. Furthermore, Jing et al. [28] used SVMs to pre-
dict the air pressure to facilitate air balancing in ventilation
systems.

Researchers have also used RFs to predict energy expen-
diture in buildings. Ahmad et al. [11] compared FFNNs and
RFs in predicting the energy consumption in buildings where
both the FFNN and RF demonstrated similar performances.
Touzani et al. [12] established an RF and a gradient boosted
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tree algorithm to predict the energy consumption in buildings
where the gradient boosted tree algorithm achieves better
prediction accuracy. Wang et al. [13] used an RF to predict
the hourly electricity usage, with good results. Taheri and
Razban [29] used FFNN, RF, SVM, and boosting techniques
to predict CO2 concentrations, where FFNN achieved bet-
ter prediction accuracy. Taheri et al. [30] proposed a new
stochastic planning framework for energy hubs.

A series of temperatures can also be considered as a
sequence or time series. Therefore, it is possible to apply
time series forecasting techniques to predict a set of future
temperatures. In the forecasting community, there is a recent
trend towards global forecasting models [14] that build a
single model across many series, in contrast to the traditional
univariate forecasting methods such as ETS and ARIMA
which build one model per time series. Thus, global models
are allowed to learn cross-series information unlike tradi-
tional univariate forecasting models. Many recently intro-
duced deep learning models can be trained as global models,
such as attention-based schemes [19], transformers [20], and
Deep4cast [31], [32]. These novel deep learning methods are
faster to train, easier to scale up, and thus more favourable
for use than traditional deep learning models such as RNNs.
However, in our temperature forecasting scenario, the tem-
perature series are often very short and vary in length. Fur-
thermore, the forecasting model must properly address the
cold-start problem (Section III), and it is required to be a
generative model. Thus, the applicability of popular deep
learning frameworks is very limited in our scenario. On the
other hand, RNNs are a particularly promising forecasting
model. They recently contributed to the winning solution
of the M4 forecasting competition [17]. RNNs have also
obtained competitive results in real-world applications. For
example, Bandara et al. [33] used RNNs for sales demand
forecasting and outperformed statistical benchmarks and a
production system. RNNs have also been used as generative
forecasting models [34] and have provided promising results.
Thus, we use RNNs as the underlying forecasting model of
our framework.

RNNs have recently been used to address many building
management related forecasting problems. Kreider et al. [35]
used RNNs to predict building energy usage based on hourly
data recorded at an engineering centre. Taheri et al. [36] pro-
posed a deep RNN to automatically detect faults in HVAC
systems, where the proposed method is more accurate in
detecting faults compared to RF and gradient boosted trees.
Furthermore, Kato et al. [23] proposed a heat load prediction
approach using RNNs, where the method provided more
accurate forecasts than a layered NN. Taheri et al. [37] pro-
posed a deep RNN for medium and long-term forecasting
of heating and electricity consumption which outperformed
SVM and gradient boosted trees in terms of forecasting
accuracy. RNNs have also been used for power forecast-
ing [24], [38], [39], building occupancy forecasting [40], and
energy consumption forecasting [41]. Although researchers
have considered RNNs to solve many real-world forecasting

problems related to building management, to the best of our
knowledge, this is the first study to use globally trained RNNs
for indoor temperature forecasting.

In the past, researchers have used the concept of dynamic
thermal setpoints to optimise the behaviour of HVAC sys-
tems. Peng et al. [5] established an optimisation model to
dynamically control the status of an HVAC system by pre-
dicting room occupancy. Their results showed that their sys-
tem could save up to 21% of energy on average. However,
the motion sensors used in the study which measured the
motions of occupants were only operated in fixed 10 minute
intervals where more energy could be saved by consider-
ing motion sensors which use other sampling methods and
adaptive periods to measure the motions. Furthermore, those
authors used only four occupancy patterns to train the occu-
pancy predictionmodels, where the results could be improved
by considering more occupancy patterns. Roussac et al. [42]
evaluated two strategies for changing the temperature set-
points in office buildings: static intervention and dynamic
intervention, where static intervention raises the setpoints
by 1C and dynamic intervention involves load shifting. The
results show that dynamic intervention has better perfor-
mance, with a 6.3% reduction in energy consumption com-
pared to static intervention. However, the static method was
the most effective during the warmer summer when the
dynamic method was not operational. Thus, there are issues
with the comparison of static and dynamic intervention meth-
ods, where these two methods cannot be directly compared.
Furthermore, for the static method, those authors have only
considered a threshold of 1Cwhen raising the setpoints where
the results could be different for other thresholds, such as
2C or 3C. Similarly, Ward et al. [4] proposed an optimisa-
tion model to minimise the proposed cost function that can
adjust the temperature setpoints in 15-minute intervals. The
cost function contains the predicted percentage of dissatisfied
building occupants (PDD), HVAC system power, electricity
price, and CO2 index. Their results demonstrated that their
proposed optimisation model could reduce the energy con-
sumption of HVAC systems by 10% - 15%. However, the
uncertainty of the optimisation process is high, as multiple
variables are predicted to optimise the cost function. Further-
more, the predictions are obtained for the next 24 hours in
5-minute intervals and that further increases the uncertainty
of the method. The adaptive programmable thermostats [6]
also use the concept of dynamic thermal setpoints to con-
trol the HVAC systems. The thermostats are programmed
to switch on/off the HVAC system before a specific period
of time ending an unoccupied period of a particular room,
irrespective of the inside or outside temperatures. However,
there is a high possibility that this time point may not be the
optimal time point to switch on/off the HVAC system. Thus,
there is a possibility of energy wastage when programmable
thermostats are used.

The success of previous studies in reducing the energy
consumption by using dynamic thermal setpoints encouraged
us to use such an approach to optimise the HVAC system.
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FIGURE 2. Overall process of setpoint optimisation during unoccupied
periods.

As the literature lacks approaches to use indoor tem-
perature forecasts to change the setpoints dynamically,
we propose a global deep learning temperature forecast-
ing model based on RNNs, where the temperature predic-
tions subsequently enabled us to dynamically change the
setpoints of particular rooms, particularly during unoccupied
periods.

III. METHODOLOGY
Themain goal of our research is to optimise theHVAC system
by determining the optimal thermal setpoints to be used inside
a particular room during unoccupied periods. Fig. 2 shows
the overall procedure used to optimise the setpoints during
unoccupied periods. Our framework first forecasts the future
inside temperatures of a room during its unoccupied periods
as a function of the current inside and outside temperatures
using global RNNs, where separate RNNs are used to model
the heating and cooling behaviours of the room. The predicted
inside temperatures are fed back to the RNNs to predict
the next inside temperature in a sequential manner, where
this process is repeated until it finds the inside temperatures
corresponding to the full unoccupied period. Our framework
then uses these temperature forecasts to determine the opti-
mal thermal setpoints and optimal time point to switch on
the AC during the unoccupied period.

The details of our proposed prediction model and its opti-
misation procedure are described in the following.

A. PREDICTION MODEL
The overall system has four possible states: active heating or
cooling, and passive heating or cooling. In winter, when the
outside temperature is lower than the inside temperature, the
room switches between the active heating and passive cooling
states when the HVAC is switched on and off, respectively.
In summer, the system switches between active cooling and
passive heating.

FIGURE 3. Heating and cooling parts of a temperature series. As these
parts show a quite different behaviour, we use different models to fit
them. The models need to be able to train on many relatively short
heating or cooling series, respectively.

As the underlying mechanisms and the dynamics of the
measured temperatures are quite different, we use a separate
RNNmodel to forecast the inside temperatures for each of the
four states. Each model is trained only with parts of the time
series that correspond to their respective states. For example,
the model for active heating is trained only with periods of
active heating. For an illustration, see Fig. 3. Thus, the model
trains effectively with many (relatively short) time series.
Therefore, we train our models as global forecasting models
that can learn across multiple time series during the training
process [14]. In addition to the current inside and outside
temperatures, we also provide future outside temperatures
obtained from weather forecasts as inputs to the models.

Traditional univariate forecasting models would be of lim-
ited use in our setup, as we deal in many situations with a
so-called cold-start problem, that is, predicting series with
very short history or no history at all, which corresponds to
predict directly after, for example, heating has been switched
on in our application. In particular, our global RNN models
predict one future inside temperature at a time, and feed
the prediction back into the model to predict the next inside
temperature. RNNs are especially suitable for modelling this
situation, as they memorise the previous outputs using their
feedback loops and use them when providing a new fore-
cast. In this way, RNNs properly address the temporal order
and temporal dependencies of inside temperatures; in this
case, it is very important that the inside temperatures of
an unoccupied period be predicted in a sequential manner.
Other machine learning models such as FFNNs and (causal)
convolutional networks require a potentially large number
of inputs to produce accurate forecasts; hence, they are of
limited use in this situation.
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Note that our approach can also be considered a clustering
approach, where two clusters of time series with different
characteristics are used to train separate global RNN models,
as presented by Bandara et al. [43].

1) RECURRENT NEURAL NETWORKS WITH LONG
SHORT-TERM MEMORY CELLS
The Elman RNN unit [ERNN, 22], long short-term memory
cell [LSTM, 44], and gated recurrent unit [GRU, 45] are some
of the commonly used RNN units for time series forecasting.
Out of those, we use LSTM in our work, due to its capa-
bility of capturing long-term dependencies while address-
ing vanishing/exploding gradient problems [46], and based
on the recommendation given by Hewamalage et al. [21].
An LSTM cell contains two memory components, a short-
term and a long-term memory component, which correspond
to its two states: the hidden state and the cell state. Further-
more, an LSTM cell contains three gates: input, forget, and
output gates. The input and forget gates determine the amount
of past information to be saved in the current cell state, and
the amount of information to be passed forward to future time
points. In our model, we use an LSTM cell with peephole
connections [47] which considers the previous cell state in the
updating process of the input and forget gates, and is usually
more accurate than the vanilla LSTM. For further details on
LSTMs for forecasting, we refer to Hewamalage et al. [21].

2) RNN MODEL ARCHITECTURE
We use the stacked architecture for the RNN models, as sug-
gested by Hewamalage et al. [21] and Bandara et al. [43].
Fig. 4 shows the unfolded version of an RNN over time with
one hidden layer. In this case, each time step corresponds to
an LSTM cell. In Fig. 4, we denote Xt as the input to the
LSTM cell at time step t , Yt as the output of the dense layer
corresponding to each LSTM cell at time step t , and ht andCt
as the hidden and cell states of the LSTM cell at time step t ,
respectively. Note that Xt and Yt are vectors that can contain
multiple data points. The feedback loops between LSTMcells
support the model in carrying the states of the cells, namely
hidden states and cell states, to future time points. In the
stacked architecture, multiple layers can be placed on top
of each other. The inputs are taken at the bottom layer, and
the corresponding output is propagated to the next layer. The
cell functions calculate the outputs based on current weights.
There can be several hidden layers exist within the network.
To convert the dimension of the cell output to the number
of forecasts needed for the selected forecast horizon, the cell
outputs are fed into a dense layer, a neural layer trained
together with the RNN. The output of the final LSTM cell Yn
contains the expected forecasts of a particular time series. The
cell dimension and number of hidden layers are externally
tuned hyperparameters, as described in Section III-A3.
The model training process uses the errors of all the time

steps until the end of the sequence to calculate the accumu-
lated training error. Equations (1) and (2) represent the for-
mulas for calculating the error per time step (et ) and the final

FIGURE 4. Stacked architecture used in our RNN model.

accumulated error (E), respectively, where Zt is the actual
output vector at time step t . The calculated accumulated error
is then used with the backpropagation through time (BPTT)
process to update the weights of the RNN cells.

et = Zt − Yt (1)

E =
T∑
t=1

et (2)

Recent literature suggests the application of a moving win-
dow scheme to split the time series into a set of input and out-
put vectors and use them to train the RNN model [21], [33].
However, as stated before, in our particular application we
are frequently in the situation of a cold-start problem after
switching states, so that we can effectively use only the cur-
rent inside and outside temperatures as direct inputs into our
model and not a window of lagged inputs. Therefore, instead
of the input and output windows, we predict one future inside
temperature at a time and feed the predictions back into the
model iteratively until we have predicted the full unoccupied
period.

3) HYPERPARAMETER TUNING
Each RNN model contains a set of hyperparameters that
need to be tuned. For this purpose, we use the last value
of each temperature series as a validation set. Then, we use
the sequential model based algorithm configuration (SMAC)
optimisation method [48] to automatically identify the opti-
mal values for the hyperparameters given predefined ranges
for hyperparameter selection. Table 1 lists the hyperparame-
ters and the initial ranges used in our experiments.

4) LEARNING ALGORITHM
We use the continuous coin betting [COCOB, 49] algorithm
as the learning algorithm. Unlike other algorithms, including
Adam [50] and Adagrad [51], COCOB does not require the
learning rate as a hyperparameter to train the models, because
it automatically chooses an optimal learning rate. A recent

VOLUME 10, 2022 6847



R. Godahewa et al.: Generative Deep Learning Framework Across Time Series to Optimize Energy Consumption

TABLE 1. Initial parameter ranges used with hyperparameter tuning of
RNN model.

study by Hewamalage et al. [21] proposes using COCOB as
the learning algorithm for RNN training processes in time
series forecasting, based on experiments on six benchmark
datasets.

This approach is inspired by a coin-betting scheme in
which the outcome of a coin toss decides the amount of
money required to maximise total wealth. COCOB applies
the same idea to optimise a loss function where total wealth,
coin toss, and bet correspond to the optimum point of the
function, negative subgradient of the function at the bet point,
and size of the step taken along the axis of the independent
variable.

B. OPTIMISATION METHOD
We assume that the passive behaviour of a room is that the
inside temperature strives towards the outside temperature
in an exponentially decaying manner. That is, the closer the
inside temperature is to the outside temperature, the longer it
takes for the inside temperature to change more towards the
outside temperature.

This assumption allows us to implement a straightforward
optimisation procedure as follows: The best way to minimise
the energy consumption of the HVAC system is to leave it in
a switched-off state as long as possible until the inside tem-
perature approaches the outside temperature. Only when the
room is occupied again, there should be a comfortable inside
temperature level for the occupants. Therefore, we need to be
able to predict the passive change in the inside temperature
and the time it takes for the HVAC system to return the
temperature to a comfortable level before the occupation
starts. In particular, we proceed as follows: As the first step,
we predict the temperatures for the entire unoccupied period,
assuming passive temperature behaviour during this period.
We then predict the active temperature behaviour of the room
using the respective prediction engine from different starting
points. We start from the last time point of the unoccupied
period and then produce a prediction successively going back
one point at a time, until we reach a point from which the
predicted temperature at the end of the unoccupied period is
within the setpoints, if the HVAC is switched on at this point
in time. The procedure is illustrated in Fig. 5 considering
the passive cooling and active heating behaviours. Fig. 6
illustrates the overall setpoint optimisation procedure used
with the temperature prediction models.

FIGURE 5. HVAC optimisation procedure for a 60 minutes unoccupied
period considering passive cooling and active heating behaviours.
According to the predictions, the HVAC system should be switched on
45 minutes before occupying the room to bring the inside temperature to
a comfortable level.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS
In this section, we present our experimental setup and the
results on a real-world temperature dataset. This section
describes the dataset, data preprocessing techniques, and
benchmarks used for model evaluation.

A. DATASET
We use the temperature readings from a university lecture
theatre in our experiments. The dataset contains 15-minutely
readings between 27/06/2017 and 02/10/2017, 9408 rows in
total; hence, a slight limitation is that we are only able to
consider winter data for our experiments, even though our
proposed framework is applicable to optimise HVAC systems
during any season. Each row contains a timestamp, inside
temperature, outside temperature (both measured in degrees
Celsius), AC status (on/off), and setpoint. As an example,
Fig. 7 shows the temperature behaviour on two selected win-
ter days (Australian winter) along with the active (heating)
and passive (cooling) periods between these days.

B. DATA PREPROCESSING
Our dataset contains an indicator variable that indicates when
the AC system is switched on and off. However, in the
exploratory data analysis, we determined that this indicator
variable is relatively unreliable in the historical data. There-
fore, we opted for a (semi-)manual preprocessing step to
extract the active heating and passive cooling periods/series
from the original temperature series. Fig. 8 shows an example
of this (semi-)manual detection of active heating and passive
cooling periods between June 28 and June 29 in the dataset.
The black points in Fig. 8 indicate the starting and finishing
points of the cooling and heating periods. For the heating
section, we only extract the heating period when the temper-
ature almost reaches the lower setpoint which is 20C in the
example. For the cooling section, we select the entire period
during which the AC system is completely switched off until
it is switched on the next day.

We extract 68 cooling and 112 heating series from the
lecture theatre temperature data, as described above. The
corresponding outside temperature series are also extracted,
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FIGURE 6. Setpoint optimisation procedure using the prediction models. Here, n is the total predictions fit with the unoccupied period.
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FIGURE 7. Passive cooling and active heating periods between June 28
and June 29. The lecture theatre cools down during the night when the
HVAC is switched off, and then heats up in the morning when the HVAC is
switched on.

TABLE 2. Heating and cooling series information.

as both the inside and outside temperatures are used to train
the RNN models. The extracted heating and cooling series
range from 8 to 22, and in order to bring all the temperatures
to the same scale, mean scale normalisation is applied, where
we normalise the data by dividing them using the average
temperature during the daytime, which is 20 in our case. The
purpose of data normalisation is to avoid the placement of
RNN outputs within the saturated range [52].

Due to the iterative procedure and generative modelling
throughout the entire unoccupied period, the models require
the corresponding future outside temperatures when pre-
dicting the future inside temperatures. These future outside
temperatures can be retrieved using a weather forecasting
platform. For simplicity, in our experiments, we approximate
these weather forecasts using the actual outside temperatures
in the dataset. We note that this information is fed into all
algorithms compared with each other in the same way, so that
it does not alter their relative performance or the conclusions
of our work.

We build separate global RNN models to model heat-
ing and cooling using the preprocessed heating and cooling
series. Table 2 represents the number of series used to train
each model, along with the maximum and minimum lengths
of the extracted heating and cooling series. Table 3 lists the
optimal parameter values we use to train the global RNNs that
are obtained by the SMAC algorithm.

We use TensorFlow [53], an open-source deep learning
platform, to implement all RNN models.

C. ERROR METRIC
In time series forecasting, many error metrics are com-
monly used, such as the symmetric mean absolute percentage
error (SMAPE) and mean absolute scaled error [MASE, 54].

TABLE 3. Optimal parameters used to train the RNN models.

However, the primary goal of most of these measures is to
evaluate forecasts across series on different scales. However,
in our case, all series are on the same scale, namely temper-
ature in degrees Celsius, and hence, we refrain from using
specialised forecasting error metrics. Instead, we use the root
mean squared error (RMSE) and mean absolute error (MAE),
as defined in (3) and (4), respectively.

RMSE =

√∑N
i=1(ai − fi)2

N
(3)

MAE =

∑N
i=1 |ai − fi|

N
(4)

In (3) and (4), N is the total number of temperature mea-
surements, and ai and fi are the ith actual and predicted
temperatures, respectively.

D. BENCHMARK MODELS
We use four state-of-the-art temperature prediction models,
SVM, RF, MLR, and FFNN, as benchmarks against the RNN
to predict the inside temperatures. The current inside and
outside temperatures are used as inputs to these models to
predict future inside temperatures in an iterative manner.

A grid-search approach is used to tune the hyperparame-
ters of the models. We use 10-fold cross-validation with the
training dataset to tune the hyperparameters. For the SVM,
we choose a radial kernel function. The parameters gamma
and C (cost) are varied from 1 to 5 with steps of 0.1, by cross-
validation. In the heating section, the best value for C is 0.2,
and the chosen value for gamma is 0.1. In the cooling section,
the best values for C and gamma are 2 and 0.2, respectively.
For the RF, we choose 500 for ntree, 30 for ntime and 3 for
mtry in both the cooling and heating sections and change the
node size from 1 to 20. For heating and cooling, the node
sizes of 2 and 10 are selected, respectively, using the quantile
regression computation algorithm. For the FFNN, the same
normalisation method as for the RNN model, that is, mean
scale normalisation is used. For the FFNN, we choose 0.1 for
the threshold, 0.001 for the learning rate, and the learning
algorithm is back-propagation in both the heating and cooling
sections. We try different structures of layers and units with
(0), (1), (2), (3), (4), (1,1), (1,2), (1,3), (2,3), (2,4), (1,1,2)
and (1,2,2). The activation functions that we compare are
sigmoid, tanh, and logistic. For heating, the best structure is
2-layers structure with two and three units, respectively, and
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FIGURE 8. Detection of heating (left) and cooling (right) periods.

the activation function is tanh. For cooling, the best model has
one hidden layer with the tanh activation function.

The setpoint optimisation is conducted for all benchmark
models in the same way as the RNN model, as described
in Section III-B, and the benchmark models also use the
corresponding outside temperatures for training.

E. EVALUATION OF PREDICTION ACCURACY
We evaluate our global RNN model against the benchmark
models based on the prediction accuracy. For this, we divide
both the heating and cooling series into training and test sets,
such that 80% of the series are used for training and 20% for
testing. All the prediction models are then trained using the
series in the training set. The forecasts are obtained from the
trained models for each series in the test set by providing the
start inside temperature and the corresponding outside tem-
peratures of the series. Finally, the forecasts provided by the
separate models are compared with the actual temperatures
in the test set, and the RMSE and MAE are calculated for the
entire test set.

Table 4 presents the RMSE andMAE values for the test set
based on the predictions for both cooling and heating series
with all considered models. From Table 4, it is clear that our
proposed global RNN model is more accurate in forecasting
indoor temperatures than the benchmark models in terms of
both RMSE and MAE.

We further perform a nonparametric Friedman rank-sum
test to evaluate the statistical significance of our results in
the RMSE values. We then use Hochberg’s post-hoc pro-
cedure [55] to characterise these differences, compared to
the best-performing model. Table 5 shows the results of
the statistical testing with the adjusted p-values calculated
from the Friedman test with Hochberg’s post-hoc procedure

TABLE 4. Comparison of RNN Model with SVM, RF, MLR and FFNN based
on RMSE and MAE.

TABLE 5. Results of statistical testing.

considering a significance level α = 0.05. The p-value for
the overall Friedman rank-sum test is 5.17 × 10−11, that is
highly significant. The proposed global RNN performs the
best; hence, it is used as the control method, as mentioned
in the first row. A horizontal line is used to separate the
models that perform significantly worse than the RNN. All
benchmark models report pHoch values less than α indicating
that their performances are significantly worse than that of
the RNN; hence, they are listed below the horizontal line.

V. CASE STUDY: USAGE OF OUR DEEP LEARNING
FRAMEWORK TO OPTIMISE THE ENERGY
CONSUMPTION OF HVAC SYSTEMS
In this section, we analyse the performance of our proposed
global RNN-based framework in a real-world scenario of
energy optimisation in an university lecture theatre. This
lecture theatre does not have any rooftop solar panels, and
thus, optimising the energy usage of its HVAC system using
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our proposed approach is more beneficial. We determine
the extent to which the duration of heating periods can be
reduced, as a proxy for energy savings, compared with a base-
line of static thermal setpoints, a programmable thermostat,
and the best-performing benchmark from Section IV-E, the
SVM model.

A. BASELINE MODEL WITH STATIC THERMAL SETPOINTS
As a baseline model, we assume that the AC system of the
lecture theatre uses static thermal setpoints to maintain the
inside temperature at a comfortable level. Fig. 9 shows the
generative modelling process with static thermal setpoints
of 19C and 20C, where the model maintains the inside
temperature between the two setpoints irrespective of room
occupancy.

FIGURE 9. Generative modelling with static thermal setpoints.

B. PROGRAMMABLE THERMOSTAT
The thermostats are always programmed to be switched on
the AC system before a fixed period of time occupying the
room. With the generative modelling of the RNN and SVM
models, we find the maximum period of time it takes to heat
the room to the comfortable level after switching on the AC
system. This time period is considered as the programmed
time period of the thermostat for calculating the energy con-
sumption savings.

C. OCCUPATION SCHEDULE
Fig. 10 shows the weekly schedule of the lecture theatre.
Although the schedule may change from week to week, the
chosen week has a typical occupation pattern, and we deem
our conclusions drawn from this week as representative for
a semester. We see from the schedule that there are unoc-
cupied periods in the room on Wednesday and Thursday,
as well as cases where occupation starts later or finishes
earlier than usual. We can use this information in our models
by reducing the heating time during an unoccupied period,
by determining the optimal time points to switch on the AC in
the morning, and by switching off the AC in the evening after
occupation ends. We optimise our global RNN model and
the most accurate benchmark, the SVM model as described
in Section III-B.

FIGURE 10. Weekly schedule of the lecture theatre in consideration.

D. COMPARISON OF RNN MODEL WITH SVM MODEL
We compare the models by calculating the reduction per-
centage of the heating time for all days in the schedule.
Table 6 represents the total minutes (total operation time of
the HVAC system) required by the models to heat the room
with the baseline model using static thermal setpoints, the
programmable thermostat, and optimised models according
to the generative modelling of SVM and RNN, along with
the percentages of the reduction of heating time given by the
optimised models. According to Table 6, the SVM and RNN
models predict an average of 12.79% and 20.26% heating
reduction for the baseline with static thermal setpoints, and
an average of 8.00% and 14.97% heating reduction for the
programmable thermostat, respectively, over the week. As we
know from Section IV, the RNN is significantly more accu-
rate than the benchmarks, and its predicted savings are much
higher than the savings from the benchmark model and pro-
grammable thermostat, overall this shows that using the RNN
model is superior to using the benchmark and programmable
thermostat.

Fig. 11 and 12 show the generative modelling of the
optimised RNN and SVM models and the static baseline,
as an example, for Wednesdays. We obtain the optimised
curves of both models according to the procedure described
in Section III-B. The behaviour of the optimised models
within setpoints depends on their predictions. According to
the generative modelling, the RNN and SVMmodels respec-
tively allow the room to cool down until 13.81C and 16.33C
during the unoccupied period and these temperatures can be
identified as the optimal lower setpoints to be used during that
period with respect to the optimised models.

For all days of the week, the generative modelling of both
the SVM and RNNmodels predicts a considerable amount of
energy saving in terms of heating time reduction compared
to the generative modelling with the baseline model using
static thermal setpoints of the lecture theatre in themorning as
well as during the unoccupied periods in the afternoon. The
generative modelling of the RNN predicts a higher amount
of energy savings than the generative modelling of the SVM.
The RNN model allows the room to cool down to a lower
temperature during the unoccupied periods of the room and
as a result, it predicts a higher energy saving compared to the
SVMmodel onWednesdays and Thursdays, according to our
generative modelling. Furthermore, the generative modelling
of the RNN model allows the room to start heating much
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TABLE 6. Comparison of RNN model and SVM model with the baseline model and a programmable thermostat using current static thermal setpoints of
the lecture theatre.

FIGURE 11. Generative modelling of the RNN on wednesday comparing
the baseline and optimised models.

FIGURE 12. Generative modelling of the SVM on wednesday comparing
the baseline and optimised models.

closer to the scheduled start time on each day compared to
the generative modelling of the SVM model; and therefore,
it predicts an energy saving of more than 16% on Monday,
Tuesday, and Friday, even though the room does not contain
any unoccupied periods in the afternoon.

These observations are very similar to those of the pro-
grammable thermostat. We consider that the thermostat is
programmed to switch on the AC before 105 minutes occu-
pying the lecture theatre for the generative modelling of SVM
and RNN. This programmed time period is the maximum

amount of time that the AC takes to heat the lecture theatre to
the comfortable level during any day of the week according
to the generative modelling of SVM and RNN. Thus, this
maximum heating period is considered as the programmed
time of the thermostat to ensure that the lecture theatre will be
always at a comfortable level when it is occupied. Both SVM
and RNN optimised models show a considerable amount of
energy saving compared to the programmable thermostat.
The HVAC operation time is minimal with our proposed
RNN optimised model compared with both the static baseline
and the programmable thermostat; thus, it is clear that our
proposed framework is able to save more energy compared
to them.

E. COMPUTATIONAL PERFORMANCE OF RNN MODEL
The simulations are run on an Intel(R) Core(TM) i7-8850
processor (2.6GHz) and 24GB of main memory.

Our proposed framework takes one minute to complete the
training of RNN models, forecasting the inside temperatures,
and optimising the setpoints for the unoccupied periods on
Wednesday (2pm to 4pm) and Thursday (11am to 1pm). For
temperature forecasting and optimisation, it only takes a few
seconds and thus, in general, it is able to return the optimal
thermal setpoints and the time that the AC should be switched
on during a 2 hour unoccupied period within a few seconds.

VI. CONCLUSION AND FUTURE RESEARCH
Building energy efficiency is an important part of the work
towards active buildings that fully integrate efficient demand
management with renewable energy sources and storage.
Building inefficiencies cause energy wastage and increase
energy-related expenses. Currently, many buildings use static
thermal setpoints to maintain their inside temperatures at a
comfortable level, irrespective of building occupancy.

In this paper, we have proposed a global deep learning
framework based on RNNs to predict the inside temperatures
of a particular room. The predicted temperatures are then used
to optimally control the room setpoints. To the best of our
knowledge, we are the first to use this kind of approach for
controlling setpoints. In contrast to the traditional univariate
forecasting models that build isolated models to predict each
series, our framework uses globally trained RNNs which
are trained across a set of temperature series, allowing the
models to learn cross-series information. Global RNNs are
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particularly useful in our setup compared to the popular deep
learning models, such as transformer and attention-based
schemes, due to their capability to address the cold-start
problem and act as a generative model. Our global RNNs
can learn across many relatively short varied-length time
series, which allows us to train separate models on particular
operation modes. We have compared the prediction accuracy
of our global RNN-based framework with four state-of-the-
art temperature prediction models based on SVM, RF, MLR,
and FFNN. We have shown that our proposed framework is
significantly more accurate in predicting indoor temperatures
than the benchmark models. We have analysed the usage
of our proposed global RNN temperature prediction model
and the best-performing benchmark method in a real-world
scenario by using them to optimise the energy consumption
of the HVAC system of a lecture theatre. We have evaluated
these models against the generative modelling of the cur-
rent AC system of the lecture theatre and a programmable
thermostat where our proposed model and the benchmark
model lead to energy savings of approximately 20% and 13%,
respectively, compared with the current AC system of the
lecture theatre and 15% and 8%, respectively, compared with
the programmable thermostat. Thus, our proposed model is
more capable of saving energy by reducing the time required
to heat the lecture theatre.

As our global RNN model provides more accurate
temperature forecasts and predicts more energy savings,
it can be identified as an appropriate method for predicting
temperatures.

The success of this approach encourages as future work to
build a global temperature prediction model which can pre-
dict future temperatures related to any room type. Different
rooms have different characteristics such as size, occupancy,
and number of windows. Therefore, developing a prediction
model that can predict the temperatures belonging to any
room type will be useful. Developing a temperature predic-
tion model using ensemble mechanisms is another possible
approach that would further increase the performance of our
optimised global RNN model. Furthermore, our research is
also applicable to similar room settings outside the university
space, such as hotel conference rooms, libraries, and theatres,
which highlights the potential commercial benefits of our
research. Our model is designed for very broad applicabil-
ity with the use of only the most standard data resources.
As such, we are currently not considering data such as occu-
pancy patterns, electricity prices andCO2 measurements, that
have been considered in the literature. As a future work, it will
be worthwhile to acquire and use such data to compare these
approaches with our proposed framework in different room
settings.
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