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ABSTRACT Fishery catch forecasting is a crucial aspect of aquatic research because of its relevance to
establishing effective fishery management and resource allocation systems. In this study, we aim to forecast
and analyze fish catch by collaboratively processing data using methods at multiple scales. To this end,
we propose two computational fishery catch forecasting models. A neural network model based on the
multi-timescale features of a convolutional neural network and a long short-term memory neural network
is proposed and implemented to forecast short-term measures for the daily catch in the eastern ports of
Hokkaido, Japan. Similarly, we propose a long-term catch forecasting and analysis model combining the
autoregressive integrated moving average (ARIMA) method and a neural network to explore short-term
water temperature and long-term catch dependence in the case of sparse data; we implement this method
to investigate the total monthly catch in Hokkaido. The experimental results demonstrate that the proposed
methods were able to effectively forecast and analyze fishery catch based on different data scales, volumes,
and other complex situations. This is also the first work in the field that considers multiple perspectives.

INDEX TERMS ARIMA model, fishery catch forecasting, neural network.

I. INTRODUCTION
Coastal fishing is an important primary industry in Japan.
Hokkaido, an island prefecture in northern Japan, is the
largest fishing region in the country, accounting for approx-
imately one-quarter of the coastal fishery products of
Japan [1]. However, after peaking in 1984 at 1.282 billion
tons, Japanese fishery and aquaculture production declined
rapidly and, although this downward trend leveled off after
1995, it has continued to the present day [2]. In this context,
accurate catch forecasts can help fishery operators make
decisions and perform efficiently. In particular, fishermen
and ports can effectively arrange fishing work, and relevant
industrial chains such as logistics can be supported to improve
logistical efficiency and ensure the freshness of aquatic prod-
ucts [3]. This can greatly relieve pressure on fishery workers.
Therefore, catch forecasting is among the most important
tasks in the fishery industry [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Eunil Park .

Research on fishery catch forecasting has considered both
long-term catch forecasting on a scale of months or years
and short-term forecasting on a scale of days. For long-term
catch projections, Komiya studied annual catch changes in
spiny lobsters and forecasting issues [5]. Leathwick et al.
used data on water temperature and salt concentrations with
a decision tree to forecast snapper catches and fishing proba-
bilities off the coast over short periods of time [6]. Moreover,
Kokaki et al. developed a fish catch forecasting method using
a state-space model that described the probabilistic behavior
of fish inside nets [7]. Long-term catch forecasting can reflect
macrolevel trend changes in the catch, whereas short-term
catch forecasting can reflect specific changes in the catch
in detail. Therefore, a combination of long-term and short-
term forecasts can comprehensively reflect changes in fish
catches, and the two approaches can confirm and complement
each other to simulate and summarize the patterns to the
greatest extent. Particularly, if changes over different time
scales are combined with changes over different geographical
scales, macro- and microlevel changes in fishery catches
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FIGURE 1. Our process summary.

can be demonstrated more effectively. However, in existing
works, long-term and short-term catch forecasting studies
have often been conducted independently. Hence, analyzing
and studying catch data from multiple perspectives remains
challenging.

Moreover, the fishery industry is subject to problems
involving limitations of available data in practical applica-
tions. In fact, in Japan, particularly in Hokkaido, numerous
challenges arise in catch data collection and collation. Due to
work cycles or actual work conditions, fishery practitioners
responsible for catch data often do not have complete and
detailed records, leading to a lack of real data and inaccu-
racies. This situation is particularly severe in the case of
short-term catch data, for which it is not easy to achieve the
desired forecasting by relying only on the analysis a single
catch data type.

To solve these problems, it is necessary to integrate
long-term and short-term catch data to develop a more
comprehensive analytical approach. To this end, we per-
formed data selection and considered the data management
approach of the fishery industry in the Hokkaido region of
Japan (Fig. 2). From the figure, it may be observed that catch
data are managed in the Hokkaido region via a cascading
accounting process, in which data are first collected by indi-
vidual fishing vessels or ports, then aggregated to the regional
fishing associations, and finally pooled from each region

FIGURE 2. Data management approach of fishery industry in the
Hokkaido.

to construct the total catch for the Hokkaido region. This
method of data management creates a difference between
data recorded at high and low levels. Because the high-level
data representing a large scope is composed of lower-level
data representing a small scope, the statistical period for
aggregating the data is longer for high-level data than for
lower-level data. In other words, high-level data are generally
counted onlywhen low-level data are accumulated to a certain
extent. Consequently, long-term data tend to correspond to a
wide range of geographical data records. By contrast, short-
term data tend to have a relatively small geographical scope.

To the best of our knowledge, the present work is the first
to integrate long- and short-term data processing for fishery
data. The proposed approach is implemented in the aforemen-
tioned forecasting study on the catch in Hokkaido. Monthly
catch data for the entire Hokkaido province and daily catch
data for the eastern ports of Hokkaido were used. The pro-
posed approach is illustrated in Fig. 1. We also consider the
combination of long- and short-term features according to the
actual situation of the data; a model based on neural networks
and autoregressive integrated moving average (ARIMA) [8]
is proposed to handle short-term characteristics and long-
term catch data, and was implemented to forecast long-term
catch data. Similarly, a neural network model with a data
splitter able to extract long- and short-term features from the
data was used to forecast short-term catch data.

II. FISH CATCH FORECASTING
A. PROBLEM FORMULATION
Given time-series data D =

{
y1, y2, y3, . . .

}
, each ys is

the n-dimensional real vector. Our objective is to estab-
lish the estimation of ys+T+1 using T -length sequence data{
ys+1, ys+2, . . . , ys+T

}
, where s = 0, 1, 2, . . .. That is, our

goal is to generate a rolling forecast of a series of future
signals. Concerning the dimension of each datum, we use
two cases for n = 2 and n = 1. In the case of n = 2,
each datum is presented by ys = (ytemp

s , ycatchs ) for daily catch
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forecasting, In the case of n = 1, each datum is presented
by ys = ycatchs in monthly catch forecasting. Where ytemp

s
and ycatchs ) present the sea temperature data and salmon catch
volume data, respectively.

B. FORECASTING OF DAILY CATCH OF PORT USING
NEURAL NETWORK
In the process of applying fish catch forecasting, real
time-series data often include a mixture of short- and long-
term patterns. This is particularly true for port-catch data,
which are highly cyclical. Long-term characteristics reflect
the labor cycle, seasonal climate, and other changes, whereas
short-term features reflect the effects of weather and human
activities, among other influences. Accurate time-series fore-
casting is not possible without considering both types of
cyclical patterns. In this study, we aim to solve this problem
using a machine learning approach.

Hochreiter et al. proposed the long short-term mem-
ory (LSTM) architecture as a machine learning method
based on recurrent neural networks (RNNs) [9], with cer-
tain information mining capability for long-range tempo-
ral data [10]. LSTM models are widely used in the recog-
nition of speech, emotion, and human activity, as well
as in load forecasting [11]–[14]. Behavior forecasting and
the recognition of activity, speech, and emotion have also
been performed by fusing convolutional neural network
(CNN) [15] and LSTM [16]–[19] models. The common
bases of these methods are the extraction of high-dimensional
features with the short sequence feature abstraction abil-
ity of CNN models and the subsequent synthesis of high-
dimensional short-sequence features for temporal forecast-
ing, which is suitable for processing temporal data with local
relevance.

On the basis of these methods, we use a specialized
neural network model with a structure consisting of a
convolutional layer, a data splitter, two recurrent LSTM lay-
ers, and a fully connected layer. Input layer is consisted
with n × T nodes. We use T length sequence data Xs =

{xs+1, xs+2, . . . , xs+T } (s = 0, 1, 2, . . .) for the casen = 2.
The whole data set generated by the given time-series data is
presented by {Xs}s>0. Concretely, x1s and x

2
s are the variables

of the input nodes for the temperature and catch volume data,
respectively.

The model uses a convolutional layer to extract high-
dimensional features, a data splitter to divide the data into
different time scales, and a recurrent layer to capture the
complex long-term dependency patterns. The splitter divides
the data into two time scales; one is input to the LSTM
layers and the other is processed by skip-LSTM layers.
Finally, a fully connected layer is used to integrate the outputs
of the two LSTM layers and generate the final prediction
results. This network architecture enables better learning of
the periodicity of the input time-series data (Fig. 3). The
technical details of each section are described in detail later
(Section II B 1- 4).

1) CONVOLUTIONAL LAYER
The CNN model performs a convolution operation by gener-
ating convolutional check information in a receptive field of
an appropriate size, which can express the original data at a
higher, more abstract level. Therefore, we use the 1D CNN,
which is widely used to process sequence data [20], as the
convolutional layer (without a pooling layer) to extract the
short-term features of the time series, where the input matrix
isX ∈ Rn×T , and the k-th filter sweeps through the input and
produces Ck

=
{
cks+1, c

k
s+2, . . . , c

k
s+T

}
(k = 1, 2, 3, . . . ,K ),

where K is the number of filters, as shown in Eq. (1).

Ck
= ReLU (X ∗Wk + bk ), (1)

where ∗ represents the convolution operation, Wk ∈ Rn is
the weight vector of the convolution kernel, and bk repre-
sents the offset. ReLU is used as the activation function,
and ReLU (x) = Max (0, x). The structure of a 1D CNN
is shown in the convolutional layer section of Fig. 3, with
the input time-series data from the input layer, which is a
multidimensional matrix X ∈ Rn×T . It is convolved from
top to bottom as shown by the arrows in the figure, with red
representing one filter and green representing another, which
can be followed by other filters. We make each vector Ck

of length T by zero-padding for the input matrix X and the
output matrix C of the convolutional layer of size K × T .

2) DATA SPLITTER
LSTM models can remember historical information and
understand long-term dependencies. However, longer input
results in more information being contained within the sys-
tem, and when the sequence is excessively long, instability
and gradient disappearance occur during the training of a
single LSTM. Thus, long-term interdependence cannot be
captured. The proposed model mitigates this problem by
using a data splitter and bypassing the loop layer, which
leverages the real-world cyclical pattern.

The data splitter intervals (p ≥ 1) longer data from the
input data. In the output matrix C
∈ RK×T of the convolutional layer, extracts Dskip

T =

{Cs+1,Cs+1+p, . . . ,Cs+1+bT/pc∗p}, where Dskip
T ∈

RK×(s+1+bT/pc). And the original data are used as the
DT = {Cs+1,Cs+2, . . . ,Cs+T } ∈ RK×T , where Ct =
{c1t , c

2
t , . . . , c

K
t }(t = s + 1, s + 2, . . . , s + T ). DT is input

into the LSTM layer, and the split data Dskip
T are then input

into a new LSTM layer, S-LSTM.

3) RECURRENT LAYER
In the convolutional layer, the output enters the loop layer at
the same time as the jump loop layer. The loop layer is an
LSTM network that refers to the gate function, which is used
to mine the time-series change rules of longer intervals in the
time series. The structure is shown in Fig. 4.
DT refers to the data value of the time t input sequence.

ct refers to a memory cell or cell state, which is the core
of the network and controls the transmission of information.
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FIGURE 3. The model structure of a neural network for forecasting fish catch volume is presented. The convolutional layer, data splitter, and recurrent
layer are introduced as the hidden structure between the input and output layers. The variables and parameters of the network are presented in the
below. The settings of the parameters were appropriately determined for the purpose of fish catch forecasting. The convolutional layer, data splitter,
recurrent layer, and fully connected layer are referred to in Section II-B-1, Section II-B-2, Section II-B-3 and Section II-B-3), respectively.

FIGURE 4. Network structure of LSTM.

it refers to an input gate, which determines the amount of
information that the current DT retains in ct . ft refers to a
forget gate, which determines the amount of ct−1 of the cell
state from the previous moment is saved to the current ct .
o refers to the output gate, which determines the amount of
output ht transmitted by ct to the current state. ht−1 refers to
the state of the hidden layer at time t − 1. The corresponding
formulae for the aforementioned process are provided in
Eqs. (2) to (7).

it = σ (WDiDT +W h−iht−1 + bi), (2)

ft = σ (WDfDT +W h−f ht−1 + bf ), (3)

ot = σ (WDoDT +W h−oht−1 + bo), (4)

c,t = tanh(WDcDT +W h−cht−1 + bc), (5)

ct = ft � ct−1 + it � c
,
t , (6)

ht = ot � tanh(ct ), (7)

where WDi, WDf , WDo, and WDc refer to the weight matrix
of the input gate, forget gate, output gate, and cell state,
respectively. W h−i, W h−f , W h−o, and W h−c refer to the
weight matrix of the hidden layer to the input gate, forget
gate, output gate, and cell state, respectively. bi, bf , bo, and
bc refer to the input gate, forget gate, output gate, and cell
state offset, respectively. σ (·) refers to the sigmoid activation
function S(x) = 1/(1 + e−x). tanh refers to the hyperbolic
tangent activation function tanhx = sinhx/coshx. � denotes
the multiplying operation of the elements of a vector. The
output of this layer is the hidden state of each timestamp,
denoted by ht . Here we set the dimensionality ‘‘LSTM units’’
of the output space to L, which means that all weight matrices
W in them are in RL×T .

The computational process of the S-LSTM layer is repre-
sented by the LSTM layer; simply replace the input data with
the matrix Dskip

T and its output is denoted as hskipt . We set the
output dimensionality of the S-LSTM layer to L̄, so that the
range of all weight matricesW is RL̄×(s+1+bT/pc).
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Finally, a fully connected layer is used to combine the
output of the LSTM and S-LSTM layers, as shown in Eq. (8).

ŷcatchs+T+1 = WLSTMht +W S−LSTMhskipt + b, (8)

WLSTM andW S−LSTM refer to theweightmatrix of the LSTM
and S-LSTM, respectively. b refers to the offset. The output
ŷcatchs+T+1 of the fully connected layer is the forecasting result,
which represents the port catch volume data.

4) LOSS FUNCTION AND OPTIMIZATION
The mean square error (MSE) [21] is the default loss function
for many forecasting tasks and is calculated as shown in
Eq. (9).

MSE =

∑m
s=1(y

catch
s+T+1 − ŷ

catch
s+T+1)

2

m
, (9)

where ŷcatchs+T+1 is an estimation of ycatchs+T+1. MSE denotes the
MSE of the forecasting result for m days in a row. The
optimization strategy adopted in this work is the same as
that in the general time series forecasting model; we choose
Adam [22] as the optimizer.

C. FORECASTING OF MONTHLY CATCH IN
HOKKAIDO USING ARIMA
In the wide range of catch forecasting, the data volume
limitation owing to the large time unit does not satisfy the
most favorable conditions for neural network models, which
characteristically require large amounts of data to perform
training. However, these wide-range, long-time unit data,
which can represent the trend changes in the catch on a
macroscopic scale, are more linear and thus more suitable for
processing by traditional statistical methods [23]. Therefore,
we use the ARIMA model to forecast the monthly catch for
the entire Hokkaido area.

Box and Jenkins introduced the ARIMA model in 1970.
Also referred to as the Box—Jenkins methodology, ARIMA
is composed of a set of activities for identifying, estimating,
and diagnosing ARIMA models with time-series data.

The ARIMA model has three parameters, as indicated
in Eqs. (10): p, d , and q. p represents the number of lags
used in the forecasting model itself and is also known as
the autoregressive (AR) term [24]. d refers to the time-series
data that require several orders of differential differentiation
to be stable and is also known as the integrated term. q
represents the number of lags of the forecasting errors used
in the forecasting model and is also known as the moving
average (MA) term [25]. It is expressed as follows.

ŷt = µ+ ϕ1yt−1 + · · · + ϕpyt−p + θ1et−1 + · · · + θpet−p,

(10)

where ϕ• denotes the coefficient of AR and θ• denotes the
coefficient of MA. In contrast to the daily catch forecast,
we use the daily sea temperature over the month to forecast
the monthly catch in the wide-area catch forecasting.

Seawater temperature has an unavoidable influence on
the capture forecasting problem, but the nature of the
ARIMA-based autoregression model leads to an inability to
resolve other characteristic variables. Therefore, to enable the
model to learn the characteristic information resulting from
the water temperature data, we include an LSTM layer in
ARIMA to resolve the monthly water temperature data and to
enhance the forecasting accuracy, with the structure depicted
in Fig. 5.

FIGURE 5. Model structure of ARIMA.

First, we extract the water temperature and fish catch data
as two inputs. For example, to forecast the catch data ofmonth
t+1, we use the catch data of the previous month 1 to month
t and the daily seawater temperature data of month t + 1.

The data normalization process has often been required for
the use of the ARIMA model. Then, we substitute (ycatcht −

ycatchmin )/(ycatchmax − y
catch
min ) with ycatcht as the data normalization.

Also, we substitute (ytemp
t −ytemp

min )/(ytemp
max −y

temp
min ) with ytemp

t .
Subsequently, we input the water temperature and fish catch
data into the LSTM and ARIMA, respectively, and use two
algorithms to process the two data separately. Finally, we use
a fully connected layer to integrate the outputs of the two
networks as the final output ŷcatcht+1 .

III. EXPERIMENTS
A. DATA
1) DATA SOURCES
We use data from JIJI Fishery News, Fisheries Research Insti-
tute, and NEAR-GOOS. Specifically, we use the daily port
catch data from JIJI Fishery News with the surface seawater
temperature data from NEAR-GOOS as local-area data for
the forecasting studies, whereas the monthly Hokkaido catch
data from the Fisheries Research Institute and the correspond-
ing surface water temperature data (also from NEAR-GOOS)
are used as wide-area data. The details of the data are listed
in Table 3.

2) TIME SPACE DISTRIBUTION OF DATA
• Short-term catch volume forecasting
We use catch data from June to November of each year

from the set-net fishing periods from 2005 to 2015. The
location we selected is the eastern part of Hokkaido, where
the catch volume is relatively high, and selected four repre-
sentative ports (as indicated in Fig. 6): Nemuro, Habomai,
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TABLE 1. Details of the data used for the study.

FIGURE 6. Location distribution of the four ports selected for the study.

Ochiishi, and Rausu, as well as 50 m surface water tempera-
ture data at the same locations and at the same times.

• Long-term catch volume forecasting

We select the monthly total catch data for Hokkaido from
September to February of each year for the period 2000 to
2016, as well as data on the surface water temperature at 50 m
for each area and time.

B. EXPERIMENTAL DETAILS
1) SHORT-TERM CATCH VOLUME FORECASTING
For this part of the experiment, as the total amount of data
spanned the period 2005 to 2015, we use the port catch and
water temperature data for the 2005 to 2014 period from each
of the four ports as the training set for the neural network
input.Moreover, we use the data for the remaining year, 2015,
as the testing set to verify the experimental results. The inputs
to the network are the catch and water temperature data from
day 1 to day n, whereas the output datum is the catch on day
n+ 1.

2) LONG-TERM CATCH VOLUME FORECASTING
Data covering the period from September 2000 to February
2015 are used as the training set, and data from September

TABLE 2. Details of parameters for the proposed method in short-term
catch volume forecasting.

2015 to February 2016 are used as the testing set. The catch
data from month 1 to month n are fed into the ARIMA
network as inputs; the daily surface water temperature data
from month n + 1 are fed into the neural network, whereas
the catch data from month n+ 1 are used as the output.

Notably, for the month n + 1 water temperature data,
we divide the water temperature data into those of the Sea of
Japan and the Pacific Ocean according to the actual sea area
of the Hokkaido area (Fig. 7) and input these data into the
neural network. Because the distribution of currents in the Sea
of Japan differs from that in the Pacific Ocean, and the water
temperature is affected by these currents [26], different states
occur, which have different effects on the catch. Therefore,

FIGURE 7. Hokkaido sea area distribution.
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TABLE 3. Details of parameters for the proposed method in long-term
catch volume forecasting.

separating the water temperature data of these two bodies of
water is more favorable for catch forecasting.

The water temperature data of the Sea of Japan were
calculated by averaging the water temperature data from the
sea area of Japan and those of Okhostk, whereas the water
temperature data of the Pacific Ocean were calculated by
averaging the water temperature data from the sea areas of
Nemuro, Eastern Erimo, and Western Erimo.

3) COMPREHENSIVE ANALYSIS OF LONG-TERM AND
SHORT-TERM CATCH VOLUMES
In this section, we present a comprehensive comparison of
long-term and short-term data. Using techniques such as
correlation analysis, we analyze the direct links between
ports and between ports and catch volumes across Hokkaido.
We also explore ways to link long-term data with short-term
data.

C. EVALUATION CRITERIA
1) METHODS FOR COMPARISON
The methods used in our comparative evaluation are as
follows.
• XGboost [27] is a boosting algorithm.
• AR refers to the autoregressive mode.
• ARIMA indicates the autoregressive integrated moving
average model.

• TCN [28] is the temporal convolutional network, which
combines dilated convolution and residual block.

• CNN-LSTM is the network model produced by com-
bining the cell of CNN and that of LSTM.

• LightGBM [29] refers to a light gradient boosting
machine, a distributed gradient boosting framework
based on a decision tree algorithm.

• LSTM refers to a long short-term memory network
model.

• S-LSTM is the proposed neural network model with a
data splitter.

• Hybrid methods including Additive-ARIMA-LSTM,
Multiplicative-ARIMA-LSTM, Additive-ETS-LSTM,
and Multiplicative-ETS-LSTM four models.

• L-ARIMA is the proposed time-series data forecasting
model based on LSTM and ARIMA.

All these methods are widely used for forecasting time-
series data, covering the scope of statistics and machine
learning. Among them, AR and ARIMA belong to tra-
ditional statistical methods, XGBoost and LightGBM are
both gradient boosting decision trees (GBDTs) in traditional

machine learning methods, and TCN belongs to deep learn-
ing. Specifically, AR and ARIMA models, as traditional
statistical models, are used even more widely in forecasting
efforts such as price forecasting [30], wind speed forecast-
ing [31], and even COVID-19 situations [32]. On the other
hand, XGBoost applies to both classification and regression
and is used in prediction work in industries such as electric-
ity [33] and health care [34], as well as in web text classifi-
cation, malware classification [27], etc. Similarly, LightGBM
has performed well in financial forecasting and cancer patient
classification [35] [36]. Although TCN is a recently proposed
model, it is also widely used in the fields of the weather
forecasting [37], runoff forecasting [38], etc.

In addition, to validate the model’s performance com-
bining ARIMA and LSTM (L-ARIMA) is proposed in
this paper. Two additive hybrid methods(Additive-ARIMA-
LSTM, Additive-ETS-LSTM) and two multiplicative hybrid
methods (Multiplicative-ARIMA-LSTM, Multiplicative-
ETS-LSTM), which directly combine linear and non-linear
models, are used for comparison.

The experiments were conducted using the Tensor-
Flow [39] machine learning framework for the Python pro-
gramming language.

2) METRICS
In this study, we used one metric, namely the root mean
squared error (RMSE), to measure the magnitude of the
error in the forecasting results as a quantitative criterion. The
metrics are defined as follows in Eqs. (11).

RMSE =

√∑m
i=1(ŷ

catch
t − ycatcht )2

m
. (11)

where ŷcatcht represents the forecast value, ycatcht represents the
true value, andm represents the total amount of test data. The
RMSE is the square root of the ratio of the sum of the squares
of the deviations of the observations from the true value to
the number of observationsm. It is generally used to measure
the deviation of the observations from the true values.

IV. RESULTS AND DISCUSSION
A. RESULTS OF NEURAL NETWORK
Table 4 presents the forecasting errors for the catch at each
of the four ports in eastern Hokkaido as predicted by the
neural network. We also calculated the error percentage for
comparison purposes because of the different scales of the
catch volume data from port to port. This corresponds to
the error after normalization of the data from the four ports
and is more indicative of the model’s predictive capability at
each port. From the table, the S-LSTM model reduced fore-
casting error compared to other models commonly used for
time-series data forecasting. This model greatly alleviates the
unavoidable gradient disappearance and explosion problems
in recurrent neural network optimization and improves fore-
casting accuracy by simultaneously increasing the perceptual
range of the model to the data. It can be observed that the
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forecasting of the network model for the catch at each of
the four ports fluctuated to an extent but generally remained
within a specific range. The model exhibited slightly better
forecasting for Nemuro compared to the other three ports,
which was also reflected in the visualization results.

TABLE 4. Comparison of short-time forecasting errors. RMSE represents
the actual forecast error value for each port, while RMSE[%] represents
the result of converting the error value into the corresponding percentage.

A visualization of the forecasting is shown in Fig. 8, with
a comparison of the forecast and true values in 2015 for the
four ports of Nemuro, Habomai, Ochiishi, and Rausu. The
orange curve represents the forecast results and the blue curve
represents the true changes in catch. The x-axis represents the
time and the y-axis represents the catch (in tons). It can be
seen that the network fit the real data well in the part where the
capture was zero. In the period from October to November,
when the catch volume changed dramatically, the forecasting
of the capture volume data from Nemuro exhibited the best
fit.

Overall, although the network showed good forecasting
of the capture volume, it did not exhibit a good forecasting
ability for the peak portion of the catch volume, particularly
for Habomai and Rausu. Owing to the high sensitivity of the
RMSE error to outliers, the RMSE [%] values for Habomai
and Rausu in Table 4 were also higher than those for the
other two ports. This may be attributed to insufficient feature
volume data. Although the water temperature data were also
included as a feature quantity in this experiment, it may be
possible to capture the variation patterns of the catch quantity
more effectively by incorporating richer feature quantities,
such as wind speed and weather.

We also performed statistical tests of the forecast results.
Concretely, t-test and likelihood-ratio test were applied for
the forecast results by S-LSTM and the other methods. The
p-values of the t-test results are presented in Table 5, while
the p-values of the likelihood-ratio test are shown in Table 6.
As a result, the p-values were greater than 0.05. Therefore,
the forecast results by S-LSTM were not significantly dif-
ferent from the target data. Similarly, the p-values of the
likelihood-ratio test are less than 0.05, and the goodness of fit
to the target data of the proposed method S-LSTM is better
than the other methods.

B. RESULTS OF ARIMA
The errors of the experiments are shown in Table 7. The upper
two tables are comparisons of the RMSE from 2015/09 to

TABLE 5. p-values of t-test for S-LSTM concerning four ports.

TABLE 6. p-values of the likelihood-ratio test for S-LSTM against other
methods (CNN-LSTM, TCN, ARIMA, AR and XGBoost).

2016/02. The optimal estimation was not obtained by using
LSTM. A plausible result was obtained by L-ARIMA. The
averaged error for 10 estimations by using L-ARIMA is
presented for each month in the lower table.

TABLE 7. Comparison of long-time forecasting errors. The upper two
tables are comparisons of the RMSE from 2015/09 to 2016/02. The
optimal estimation was not obtained by using LSTM. A plausible result
was obtained by L-ARIMA. The averaged error for 10 estimations by using
L-ARIMA is presented for each month in the lower table.

The experimental results indicate that the forecasting error
is reduced after the LSTM layer, which is capable of handling
the water temperature data, is added to the ARIMA model.
The variation characteristics of water temperature help the
networkmodel to learn the variation patterns of the catch data.
Although certain individual data are far from the real data, the
forecast data still fit the real data effectively in general and
could fit the trend of the real data appropriately. Moreover,
compared with pure ARIMA and other forecasting methods,
the L-ARIMA method achieve higher forecasting accuracy
despite data volume limitations. Notably, in the case of the
LSTM model used only for monthly catch forecasting, the
neural network model is not able to perform learning and
forecasting effectively, owing to the small amount of data.

C. ANALYSIS OF LONG-TERM AND SHORT-TERM FISH
CATCH DATA
We use monthly catch data from September to early Decem-
ber 2015 for Hokkaido and the port catch data to analyze
the correlation between the long-term and short-term catches,
as shown in Fig. 10. First, although the catches of the four
ports are not quantitatively the same, the trends in the timeline
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FIGURE 8. Forecasting results of daily catch per port using the proposed method.

FIGURE 9. Correlation of ports catch volume data, September–November
2015.

were very similar, and the increasing and decreasing changes
in the catches of each port were consistent. This is also
reflected in the correlation distribution of catches between
ports, as shown in Fig. 9. We analyze and compare the cor-
relation of catch data for the four ports from September 1,
2015, to November 30, 2015. Fig. 9 (a) is the correlation plot
generated from the real values of port captures, and Fig. 9 (b)
is the correlation plot generated from the results obtained by
our proposed network structure with two kinds of LSTM.
In Fig. 9 (b), the correlations are reduced due to the errors
in forecasting (especially between Habomai and Ochiishi).
However, a correlation among the catches of the four ports is
evident nonetheless. The variations in the catches among the
four ports in the same region are influenced by geographical
characteristics and are consistent to a certain extent. For this

reason, the correlations can contribute to the prediction of
catches in different ports in the same region. And as additional
information, the reference data between a related pair of two
ports in Fig. 9 might be available for the total forecasting of
port catch in eastern Hokkaido.

Second, the monthly catch in Hokkaido is a cumulative
value, and themagnitude of its change reflected the amount of
real-time catch by combining the monthly catch of the entire
island of Hokkaido and the changes in the catch data of its
eastern ports. It can be observed that at the beginning of Octo-
ber, when the rapid increase in the monthly catch in Hokkaido
approached its peak, the catch of each port also increased.
Moreover, when the catch of each port decreased after the
second half of October, the change in the monthly catch in
Hokkaido also tended to level off. Although the port catch
data are slightly inconsistent between the forecast results and
the real values, it is nonetheless evident that the real-time
changes in port catches are in line with the long-term trend
shown by the monthly catches.

According to the aforementioned analysis, there are cor-
relations in both the spatial and time scales between the
monthly Hokkaido catch as long-term data and the port catch
as short-term data. The analysis and forecasting of the two
data types also play a positive role in corroborating one
another and help in the analysis of the changes in the catches
from different perspectives.
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FIGURE 10. Comparison of fish catch from 2015–9 to 2015–12.

V. CONCLUSION
Twomodels were used to study the catch of Hokkaido. A neu-
ral network model was used to forecast the catch from the
local area, short-term data, represented by the daily catch
of the port, and the ARIMA model was used to study the
catch forecasting from the larger regional area, long-term
data, represented by the monthly catch of the entire island of
Hokkaido. The results demonstrated the feasibility of the pro-
posed approach adopting two models to forecast the data on
different scales; the models were able to perform forecasting
of catches with a certain accuracy. Furthermore, the forecast-
ing results can reflect the changing patterns of the catch on
different scales by forecasting and analyzing the catch from
different angles, which can aid practitioners in understanding
the overall data trends and reflect detailed short-term changes
to guide daily fishing work.

In futurework, we plan to start from the correlation of long-
and short-term data and explore the possibility of using long-
and short-term data to complement each other in a capture
forecasting problem to achieve scaling of the data over time
scales and thus improve forecasting accuracy.
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