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ABSTRACT One of the biggest problems in itemset mining is the requirement of developing a data structure
or algorithm, every time a user wants to extract a different type of itemsets. To overcome this, we propose
a method, called Generic Itemset Mining based on Reinforcement Learning (GIM-RL), that offers a unified
framework to train an agent for extracting any type of itemsets. In GIM-RL, the environment formulates
iterative steps of extracting a target type of itemsets from a dataset. At each step, an agent performs an action
to add or remove an item to or from the current itemset, and then obtains from the environment a reward
that represents how relevant the itemset resulting from the action is to the target type. Through numerous
trial-and-error steps where various rewards are obtained by diverse actions, the agent is trained to maximise
cumulative rewards so that it acquires the optimal action policy for forming as many itemsets of the target
type as possible. In this framework, an agent for extracting any type of itemsets can be trained as long as
a reward suitable for the type can be defined. The extensive experiments on mining high utility itemsets,
frequent itemsets and association rules show the general effectiveness and one remarkable potential (agent
transfer) of GIM-RL. We hope that GIM-RL opens a new research direction towards learning-based itemset
mining.

INDEX TERMS Data mining, itemset mining, knowledge discovery, reinforcement learning.

I. INTRODUCTION
Much research effort has been made on itemset mining that
aims to discover interesting relations among items in a large-
scale dataset [1]. The dataset consists of a large number of
transactions each of which contains different items. From
such a dataset, the goal of itemset mining is to extract inter-
esting sets of items (i.e., itemsets) in terms of a user-specified
interestingness measure [2]. Depending on the user’s needs,
different interestingness measures can be chosen to extract,
for instance, Frequent Itemsets (FIs) consisting of frequently
co-occurring items, Association Rules (ARs) comprised of
correlated items, High Utility Itemsets (HUIs) formed by
highly profitable items, and so on. From a more general per-
spective, items in a transaction can be viewed as attributes in
one data instance like image, sensor recording and amino acid
set. Thus, starting from customer transaction analysis [3],
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itemset mining is utilised in various applications such as
image classification, healthcare, bioinformatics and so on [1].

Itemset mining is difficult because of the huge search
space. Assuming that there are M distinct items in a dataset,
the search space is defined as the set of all the possible
2M−1 itemsets. The naive approach to examine each of these
itemsets is clearly infeasible. Hence, researchers have devel-
oped various data structures and algorithms to effectively
prune the search space by considering a property specific to a
target itemset type. The most popular one is the ‘‘downward
closure property’’ for FIs, meaning that any subset of an FI
must also be frequent [1], [3]. Apriori algorithm utilises this
property to dramatically prune the search space by ignor-
ing itemsets that contain one or more infrequent subsets
of items [3]. In addition, the downward closure property is
used to construct FP-tree (Frequent Patten tree) that offers
efficient, hierarchical organisation of items related only to
FIs [4]. Also, considering the lack of the downward closure
property for HUIs, upper bound utilities are defined so that
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the property is maintained among ‘‘potential’’ itemsets that
have possibilities to be HUIs [5], [6]. These upper bound
utilities are exploited to construct a tree structure that hier-
archically maintains items related only to potential itemsets.

However, the above kind of itemset mining methods are
inflexible because a specific data structure or algorithm is
needed to extract a different type of itemsets. Especially,
one itemset type is defined by an interestingness measure
and there exist many such measures as listed in [2]. It is
clearly impractical to develop a data structure or algorithm for
each of these itemset types. In other words, diverse types of
itemsets remain undiscovered because neither data structure
nor algorithm is available. Therefore, one crucial issue in
itemset mining is the development of a unified framework to
extract different types of itemsets.

For this issue, we propose Generic Itemset Mining based
on Reinforcement Learning (GIM-RL). The main idea comes
from how human searches for a target type of itemsets in
a dataset. Most probably, human begins with briefly going
through the dataset to get rough knowledge about which items
seem to be important (or unimportant) for the target type,
which items are related to each other and so on. Then, he/she
makes a ‘‘plausible itemset’’ consisting of some important
items, and examines whether it matches the target type or not.
Afterwards, based on knowledge obtained in the past search
experiences, human edits the plausible itemset by adding
or removing items to create a new plausible itemset. One
important point is that human adaptively changes an approach
to make plausible itemsets depending on a target type as well
as past experiences. Hence, human’s itemset search is consid-
ered a key for devising a unified itemset mining framework.

We focus on Reinforcement Learning (RL) that is rooted
in behavioural psychology and provides a framework where
an artificial agent interacts with an uncertain environment to
adaptively acquire the optimal policy of sequential decision-
making [7]–[9]. The agent takes an action at each time step
and the environment produces a reward as the response to the
action. This trial-and-error step is repeated numerous times
to accumulate rewards obtained by various actions at diverse
states of the environment. Thereby, RL attempts to find the
optimal policy that enables the agent to decide a sequence of
actions which maximise cumulative rewards.

RL is utilised in GIM-RL to train an agent for extracting
a target type of itemsets from a dataset in the following way:
First, the agent performs an action to update an itemset by
adding or removing an item. Then, the environment charac-
terised by the dataset generates a reward that expresses how
relevant the itemset updated by the agent is to the target type.
GIM-RL collects a large number of trial-and-error steps in
which the agent sometimes succeeded or sometimes failed in
forming itemsets of the target type. By analysing these trial-
and-error steps, the agent is trained to have the optimal policy
for adding or removing items to form itemsets of the target
type. Note that GIM-RL can extract any type of itemsets as
long as one can define a reward that appropriately represents
the relevance of an itemset to the type. We demonstrate that

GIM-RL can be generally applied to mining of HUIs [5], [6],
[10], [11], FIs [1], [3], [4] and ARs [1], [3], [12].

One big by-product of GIM-RL is that it outputs not only
extracted itemsets but also a trained agent. On the other
hand, most of existing methods leave nothing behind except
extracted itemsets. In other words, GIM-RL retains knowl-
edge obtained in the mining process as the trained agent,
while it is quite wasteful that most of existing methods throw
such knowledge out. With respect to this, there exist many
cases where the same mining process is performed on mul-
tiple related datasets. For example, one may want to inspect
trend changes by extracting HUIs from two datasets collected
in different terms. It is reasonable to use knowledge obtained
from one of these datasets to speed up the mining process on
the other dataset. Moreover, if the latter dataset is too huge
to perform itemset mining from scratch, knowledge from the
former dataset may be useful for accomplishing adequate
mining on the latter one.

Based on the above consideration, we investigate
GIM-RL’s novel potential called agent transfer. This means
that an agent is firstly trained on a source dataset, and then it
is transferred to another compatible agent for a target dataset.
If the source and target datasets are related to each other, they
are thought to be characterised by similar relations among
items. Thus, the agent for the source dataset is expected to
be useful also for the target dataset. That is, the transferred
agent only needs fine-tuning and offers more efficient itemset
mining on the target dataset, compared to an agent trained
from scratch. Unlike itemset mining, this kind of ‘‘transfer
learning’’ is popular in different application domains where a
model pre-trained on a source dataset is transferred to another
model designed for a target dataset [13], [14]. We bring
transfer learning into itemset mining as agent transfer, and
show its possibility to significantly accelerate itemset mining.

This paper is organised as follows: The next section pro-
vides a survey of existing itemset mining methods to clarify
the advantages of GIM-RL. Section III presents a method-
ological explanation of GIM-RL together with our reward
designs to extract HUIs, FIs and ARs. The experimental
results using GIM-RL based on these rewards are shown in
Section IV. Here, our agent transfer approach and the results
demonstrating its effectiveness are also described. Section V
concludes this paper by discussing several future directions
to extend GIM-RL. In addition to the above-mentioned main
contents, Appendixes A to E give implementation details
of GIM-RL, additional experiments and a small remark of one
experimental dataset. Finally, many abbreviations and math-
ematical symbols are used in this paper. Thus, Appendix F
offers a list of abbreviations and the one of symbols in order
for readers to follow this paper more easily.

II. RELATED WORK
Existing itemset mining methods are roughly divided into
two categories, exhaustive and non-exhaustive. The former
includes methods that enumerate all the itemsets matching
a target type. However, the runtime of exhaustive methods

VOLUME 10, 2022 5825



K. Fujioka, K. Shirahama: Generic Itemset Mining Based on Reinforcement Learning

significantly degrades as a dataset enlarges, especially, the
increase in the number of distinct items causes the exponen-
tial expansion of the search space. To overcome this, non-
exhaustive methods generate an approximate set of itemsets
matching the target type. Below we first review several exist-
ing methods in the exhaustive and non-exhaustive categories,
and then clarify the advantages of GIM-RL compared to those
methods.

In general, an exhaustive method uses a data structure or
algorithm specialised to a target type. For example, consid-
ering the downward closure property for FIs, Apriori algo-
rithm [3] and FP-growth (Frequent Pattern growth) algorithm
based on FP-tree [4] are developed for efficient enumeration
of FIs. Apart from FIs, a divide-and-conquer approach based
on a bitwise vertical representation of a dataset is developed
to extract closed FIs, each of which has no superset supported
by the same set of transactions [15]. The method in [16]
enumerates maximal FIs that are included in no other FI,
by devising a depth-first itemset expansion and dataset reduc-
tions. For efficient extraction of weighted FIs consisting of
items associated with high weights, FP-growth is extended by
crafting upper bound weights, three pruning techniques and a
parallel mining algorithm [17]. Infrequent weighted itemsets
consisting of rare and lowly weighted items are extracted
by revising FP-growth with a specialised interestingness
measure and a technique of early discarding unpromising
items [18] (please see [19] for a survey of existing infrequent
itemset mining methods and [20] for an up-to-date survey).
An HUI is an extension of a weighted FI in the sense that
its utility is computed by considering both the weight and
quantity of each item in a transaction. To efficiently extract
all the HUIs, researchers have developed a list that facilitates
the expansion of an itemset and the corresponding utility
calculation [10], and a tree structure based on the downward
closure property of upper bound utilities [5], [6]. Finally,
to extract FIs satisfying certain constraints like ‘‘the median
of weights of items in an FI must be larger than a threshold’’,
those constraints are converted so as to exhibit the downward
closure property, and incorporated into FP-growth [21].

Exhaustive methods reviewed above are inflexible because
a different data structure or algorithm is needed to extract a
different type of itemsets. In contrast, GIM-RL can extract
diverse types of itemsets only by defining a reward suitable
for each type. By referring to the reward definitions for HUIs
and FIs in Section III-B, one can easily design rewards for
weighted FIs and infrequent weighted itemsets. In addition,
it is expected that most of maximal FIs can be extracted using
a reward, which is computed by checking the frequency of an
itemset and the existence of its supersets in the set of already
explored itemsets. This reward leads an agent to form itemsets
that not only are frequent but also include more items. Closed
FIs are likely to be extracted using a similar reward. Further-
more, many types of itemsets like ARs are divided into the
antecedent and consequent, and let us assume the extraction
of itemsets characterised by a consequent with one item.
Under this setting, by exploiting the approach described in

Section III-B3, GIM-RL is expected to train an agent that can
extract itemsetsmatching each of 38 interestingnessmeasures
listed in [2].

One of the most popular non-exhaustive itemset mining
approaches is Evolutionary Computation (EC) that offers a
metaheuristic where nature-inspired operators are iteratively
used to update itemsets into better ones in terms of a fitness
function [22]. One feature of EC-based methods is their pre-
dictable runtimes because itemset extraction is terminated by
a specified number of iterations and no complicated process
is needed for updating itemsets. One main class of EC-based
methods is characterised by Genetic Algorithm (GA) that
iteratively selects promising itemsets using a fitness function,
and exploits them to create new itemsets based on crossover
and mutation operators [23], [24]. Another main class is
based on swarm intelligence-based algorithms that iteratively
update itemsets based on operations inspired by the collective
behaviours of swarms like ants, bees and bats [11], [22].

Since there is no guarantee that GIM-RL can extract all the
itemsets of a target type, it is classified as a non-exhaustive
method and has a high similarity to EC-based methods. This
is because a reward in GIM-RL corresponds to a fitness func-
tion in EC-based methods, and any type of itemsets can be
extracted by defining a suitable fitness function for the type.
However, the biggest difference is that each EC-basedmethod
relies on a heuristically pre-defined strategy (i.e., metaheuris-
tic) to extract itemsets, while GIM-RL analyses a dataset
and learns such a strategy as a trained agent. In other words,
the former only outputs extracted itemsets, whereas GIM-RL
produces those itemsets as well as the trained agent that
captures generalised characteristics of items in the dataset and
can be transferred to another similar dataset.

Another popular approach to non-exhaustive itemset
mining is pattern sampling that approximates a probability
distribution over the search space by associating each itemset
with a probability, which is proportional to its relevance to a
target type in terms of an interestingness measure [25], [26].
Thus, itemsets sampled according to this probability distri-
bution are a representative subset of itemsets matching the
target type. However, only a limited number of itemset types
can be treated by pattern sampling because of their compat-
ibilities with sampling algorithms, for instance, an itemset
type needs to be represented by a specified weight function
form [25] or by a combination of XOR constraints [26].
GIM-RL can extract a muchmore variety of itemsets. In addi-
tion, no consideration is given on whether a probability dis-
tribution approximated for a source dataset can be transferred
to the one for a target dataset. For this, GIM-RL offers a very
flexible agent transfer in which an agent can be transferred
between the source and target datasets even if they are char-
acterised by different sets of distinct items.

Agent transfer is related to incremental itemset mining
where a dataset is updated by adding, deleting and modifying
transactions [1], [5], [27], and itemset mining in a stream
where transactions arrive in rapid succession [1], [28]. While
these two tasks treat datasets that change over time, source
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and target datasets for agent transfer are fixed before extract-
ing itemsets. As another substantial difference, the above
two tasks focus on data structures to efficiently manage or
summarise information necessary for extracting itemsets [5],
[27], [28]. In agent transfer, such information is held by an
agent (neural network) that captures generalised relations
among items in the source or target dataset.

Another related approach is multitask itemset mining
that performs joint analysis of multiple related datasets to
extract ‘‘global’’ itemsets which are eligible on most of those
datasets [29]. Compared to this, agent transfer carries out
ordered analysis of source and target datasets because an
agent is firstly trained on the former and then transferred
to the latter. In addition, the method in [29] extracts global
itemsets by directly holding and checking ‘‘local’’ itemsets
extracted from each of multiple datasets. With respect to this,
instead of itemsets extracted from the source dataset, agent
transfer holds the trained agent as the abstracted information
of those itemsets.

To our best knowledge, GIM-RL is the first method that
adopts RL to train a machine learning model (i.e., agent
defined by a neural network) for itemset mining. Correspond-
ingly, agent transfer is not explored in any existing work.
As discussed in Section IV-C, one problem of GIM-RL is its
slow runtime because it needs multiple scans over a dataset
to compute rewards and states of an environment. Of course,
fast reward/state computation is one important future work.
But, we believe that the efficiency of GIM-RL cannot be
measured only by its runtime. The reason is that, according
to a user-defined reward for a target type, GIM-RL adaptively
trains an agent that can extract itemsets of this type, although
one or more days may be needed. This seems much more
efficient compared to a case where someone spends one or
more months to implement a specialised data structure or
algorithm for the target type.

III. GIM-RL
In this section, we first describe GIM-RL’s general frame-
work that can be commonly used to extract various types
of itemsets. Then, we provide specific reward definitions to
extract HUIs, FIs and ARs. Finally, the agent training process
of GIM-RL is intuitively illustrated using a small example
dataset. Also, a list of mathematical symbols used to explain
GIM-RL is provided in Appendix F to make this section
easier to follow.

A. GENERAL FRAMEWORK
Let D = {T1, · · · ,TN } be a dataset containing N transac-
tions, and I = {i1, · · · , iM } be the set of M distinct items
each of which is included in at least one transaction in D.
Each transaction Tn (1 ≤ n ≤ N ) in D is a subset of I
(i.e., Tn ⊆ I). Letting |Tn| denote the number of items in Tn,
we describe Tn = {in,1, · · · , in,|Tn|} where in,l (1 ≤ l ≤ |Tn|)
is the lth item in Tn (i.e., in,l ∈ I). We denote by X an itemset
consisting of items in I (i.e., X ⊆ I). Let us consider an
interestingness measure ϕ(X ) that takes X as input, analyses

transactions inD and outputs a value expressing the relevance
of X to a target type. For example, ϕ(X ) for FIs returns the
support (frequency) of X inD and ϕ(X ) for HUIs outputs X ’s
utility. In addition, ϕ(X ) can be flexibly used for an itemset
type requiring multiple conditions. For instance, to extract
ARs by considering the support and confidence of X , one
can design ϕ(X ) that outputs a value depending on whether
X meets either or both of support and confidence thresholds.
Under the setting described above, the goal of itemset mining
is to extract from D every itemset X for which ϕ(X ) is larger
than a pre-defined threshold ξ (i.e., ϕ(X ) ≥ ξ ).
We formulate itemset mining as an RL problem shown in

Fig. 1. It is assumed that the environment signifies one step
of the mining process. Specifically, the kth step is performed
to modify the itemset defined by a bit-vector bk into a new
one that is likely to match a target type. Formally, bk =(
bk,1, · · · , bk,M

)T is an M -dimensional binary vector where
bk,m ∈ {0, 1} (1 ≤ m ≤ M ) represents the inclusion of the
mth item im in I, namely, bk,m = 1 indicates im is included,
otherwise not-included. We express the itemset defined
by bk as X (bk ). The environment produces a state sk =(
sk,1, · · · , sk,M

)T having the same dimensionality to bk .
Here, sk,m (1 ≤ m ≤ M ) exhibits how useful it is to change
bk,m for forming an itemset of the target type. In our imple-
mentation, sk,m is computed based on the simulation of the
one-step-ahead future, in which bk,m is virtually changed to
create the bit-vector b′k and the corresponding itemset X (b′k ).
That is, X (bk ) and X (b′k ) differ only in the inclusion
of im. Then, sk,m is calculated as ϕ(X (b′k )) by apply-
ing the interestingness measure ϕ(X ) to X (b′k ). Please
see Appendix B for more details to compute sk,m. Since
the computation of sk needs to check transactions in D,
sk in Fig. 1 is connected with the non-filled arrow
from D.
sk shows hints about which items are likely to be included

or excluded to form an itemset of the target type. Thus,
as illustrated by the solid arrow from sk to the agent in Fig. 1,
sk is fed into the agent to decide an action of changing one
value in bk . As a result, bk is updated into bk+1, meaning that
the new itemset X (bk+1) is created by adding or removing
one item to or from X (bk ). The agent’s action is designed
based on human’s itemset search where he/she modifies an
itemset by thinking about which item’s inclusion or exclusion
is crucial for the target type. Then, the environment generates
a reward rk that has a close relation to ϕ (X (bk+1)). Like sk ,
the computation of rk needs to check occurrences of X (bk+1)
in D, so a non-filled arrow is placed between the bit-vector
(that is now bk+1) andD in Fig. 1. As depicted by the dashed
arrow in Fig. 1, the agent receives rk as an evaluation score
for the action taken at the kth step. If X (bk+1) matches the
target type, the agent obtains high rk . Afterwards, the envi-
ronment creates a new state sk+1 based on which the agent
updates bk+1 into bk+2 and receives rk+1. This way, the agent
iteratively updates the bit-vector to form various itemsets
that possibly match the target type. In this framework, our
goal is to train the agent that maximises cumulative rewards
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FIGURE 1. An overview of GIM-RL.

over steps. This means that the agent can extract as many
itemsets matching the target type as possible.

It should be noted that sk only provides the information
for selecting one action, and does not include information for
determining a sequence of multiple actions. In other words,
the target type of itemsets are not necessarily extracted by
greedily changing bk ’s value that corresponds to sk ’s highest
value. Instead, the agent needs to have an intelligent policy to
select an action at the current step by considering what kind
of itemsets will be obtained at the future steps. Intuitively,
we aim to train an agent that takes actions causing itemsets of
non-target types at some consecutive steps, in order to extract
many itemsets of the target type after those steps.

To this end, we employ Q-learning that trains an agent
characterised by aQ functionwhich takes as input an action a
and a state s of the environment, and outputs a’s quality
at s [7]–[9]. Ideally, the optimal Q functionQ∗(s, a) quantifies
a’s quality as follows:

Q∗(s, a) = max
π

E

[
K∑

k ′=k

γ k
′
−krk ′

∣∣∣ s̃k = s, ãk = a, π

]
, (1)

whereK is the final step of themining process, γ is a discount
factor by which a reward at a further future step is discounted
more strongly, and π represents a policy for action selection.
Eq. 1 means that a’s quality at s is computed as the maximum
expected cumulative reward, which is achievable after seeing
s at the kth step and taking a. Here, s and a are assigned to
the variables s̃k and ãk for representing a state and an action at
the kth step, respectively. Simply speaking, in itemset mining,
Q∗(s, a) indicates the maximum number of itemsets of the
target type after taking a at s. However, it is impractical to
directly build Q∗(s, a) because of the huge number of state-
action combinations. Thus, considering the recent success
of deep Q-learning [7]–[9], we approximate Q∗(s, a) by a
neural network, called Deep Q-Netwrok (DQN), defined by
a set of parameters Θ . Therefore, Q∗(s, a) is parametrised as
Q(s, a;Θ), and our goal is to optimise Θ of the DQN so that
actions selected based on Q(s, a;Θ) form many itemsets of
the target type. Note that we interchangeably use the terms

‘‘agent’’ and ‘‘DQN’’ and the notation ‘‘Q(s, a;Θ)’’ in the
following discussions.

Let A be a set of possible actions. In Fig. 1, Q(s, a;Θ) is
used to compute Q(sk , a;Θ) that approximates the quality of
each action a ∈ A at the specific state sk of the kth step.
Then, the action ak is chosen as the one corresponding to the
highest value of Q(sk , a;Θ). With no deep elaboration, one
may define A to include M actions each of which changes
bk,m in bk (i.e., |A| = M ). But, as depicted by the bold-lined
rectangle at the bottom-right of Fig. 1, in order to help
the agent explore diverse itemsets, we add to A one more
action that randomly initialises the bit-vector. This means that
the agent is given an opportunity to stop updating bk and
re-start itemset mining from the initialised bit-vector. As an
implementation detail, the random bit-vector initialisation is
performed based on the probability distribution where the
probability of bk,m = 1 is proportional to the frequency of the
mth item im in D, and is repeated until the bit-vector defines
an itemset that exists in D. In other words, it is meaningless
to examine itemsets not-existing in D.

Also, an (M+1)-dimensional vector qk = (qk,1, · · · , qk,M ,
qk,M+1)T is defined to represent the collection of
Q(sk , a;Θ)s for all the M + 1 actions at the kth step,
as depicted at the bottom-right of Fig. 1. That is, qk,m (1 ≤
m ≤ M ) indicates an approximate quality of the action to
change the inclusion of the mth item im in X (bk ), and qk,M+1
expresses an approximate quality of the random bit-vector
initialisation. qk will be used to simplify the descriptions in
Section IV-A and Appendix B.
According to Bellman equation, the optimisation of Θ

is done by making Q(sk , ak ;Θ) and rk + γ maxa′∈A
Q(sk+1, a′;Θ) as close as possible [7]–[9]. An intuitive inter-
pretation is that if Q(s, a;Θ) is a good approximation of
Q∗(s, a), the maximum expected cumulative reward esti-
mated for taking ak at sk should be equal or very similar
to the sum of rk obtained by taking ak at sk with the max-
imum expected cumulative reward estimated for the action
at the next state sk+1. However, the following two issues
make it unstable to optimiseΘ by directly usingQ(sk , ak ;Θ)
and rk + γ maxa′∈AQ(sk+1, a′;Θ). First, the agent’s experi-
ences (sk , ak , rk , sk+1)s obtained at consecutive steps are very
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similar because only one value in bk is changed at each step
except its random initialisation. As a result,Q(s, a;Θ) trained
on those experiences is very biased. To overcome this, we use
a replay memoryP that is a queue to store the recent |P| expe-
riences, and optimise Θ on experiences randomly sampled
from P [7], [8]. Second, Θ is included in the ‘‘target value
rk + γ maxa′∈A Q(sk+1, a′;Θ)’’ that Q(sk , ak ;Θ) targets to
approximate. That is, the target value changes every time
Θ is updated, which makes the optimisation of Θ unstable.
To address this, separate DQNs are used for Q(sk , ak ;Θ)
and the target value [7], [8]. The parameters Θ of the DQN
Q(s, a;Θ) are updated every step. On the other hand, the
DQN Q(s, a;Θ−) used for the target value is called target
network and characterised by the parameters Θ− that are
periodically updated every a certain number of steps. To sum
up, as shown in the following equation, Q(s, a;Θ) is trained
by minimising the squared difference between Q(sk , ak ;Θ)
and the target value rk+γ maxa′∈AQ(sk+1, a′;Θ−) on expe-
riences randomly sampled from P:

E(sk ,ak ,rk ,sk+1)∼P

[(
rk + γ max

a′∈A
Q(sk+1, a′;Θ−)

−Q(sk , ak ;Θ)
)2]

(2)

Finally, GIM-RL to train an agent Q(s, a;Θ) is sum-
marised in Algorithm 1 of Appendix A. Overall, GIM-RL
executes E episodes consisting of K steps where the agent
updates a bit-vector to form different itemsets. Here, each
episode is used as a unit of itemset mining in the sense that
a new mining process is initiated by a randomly initialised
bit-vector, as shown at line 7 in Algorithm 1 of Appendix A.
Although itemsetmining is not episodic, we believe that using
episodes is useful for the agent to reinitialise the itemset
search and explore diverse itemsets.

B. REWARD DEFINITION
We explain our definitions of rewards used to extract HUIs,
FIs and ARs. Of course, it is possible to define better rewards
than ours below. All the rewards in this paper are based on
the common scheme dealing with the following four cases:
Case 1: The itemset X (bk+1) resulting from the action ak at
the state sk does not exist in D. The agent receives a reward
of−1, so that it is guided to not perform ak at sk as well as at
a similar state.
Case 2: The interestingness measure value ϕ(X (bk+1))
is less than the quarter of a pre-specified threshold ξ

(i.e., ϕ(X (bk+1)) < ξ/4) and the agent receives a reward
of 0. This means that taking ak at sk or a similar state has
no important impact on forming the target type of itemsets.
Case 3: ϕ(X (bk+1)) ≥ ξ/4 is the condition of this case, which
is further divided into four sub-cases, ξ/4 ≤ ϕ(X (bk+1)) <
ξ/2, ξ/2 ≤ ϕ(X (bk+1)) < 3ξ/4, 3ξ/4 ≤ ϕ(X (bk+1)) < ξ

and ξ ≤ ϕ(X (bk+1)), in which the agent receives rewards of 1,
2, 3 and 4, respectively. These rewards are defined according
to how close X (bk+1) is to the target type. Thereby, the agent
is informed of how important it is to take ak at sk or a similar

state for forming itemsets of the target type. The reason why
the last sub-case ξ ≤ ϕ(X (bk+1)) is included is explained
below.
Case 4: This case is defined by two conditions. The first
examines whether X (bk+1) matches the target type (i.e., ξ ≤
ϕ(X (bk+1))), and the second checks whether X (bk+1) has not
yet been extracted in the current episode. X (bk+1) satisfying
these two conditions is a newly extracted itemset of the target
type, and we aim to extract such itemsets. Thus, by providing
a very high reward of 100, the agent is led to extract many
unique itemsets of the target type. Also, if X (bk+1) is an
already extracted itemset, it seems unreasonable to regard ak
as meaningless because X (bk+1) anyway matches the target
type. This situation is captured by the last sub-case in Case 3,
and the agent gets a reward (4) that is much smaller than the
one (100) in this case.

To complete the above-mentioned scheme, we describe the
computation of ϕ(X (bk+1)) for each of HUI, FI and AR.

1) ϕ(X (bk+1)) FOR HUI EXTRACTION
For the nth transaction Tn = {in,1, · · · , in,|Tn|} in D, the lth
item in,l (1 ≤ l ≤ |Tn|) is associated with the item-specific
utility p(in,l) and the quantity q(in,l) in Tn. Under this setting,
ϕ(X (bk+1)) representing the utility of X (bk+1) is computed
as follows [5], [6], [10], [11]:

ϕ(X (bk+1))

=

∑
X (bk+1)⊆Tn∧Tn∈D

∑
in,l∈X (bk+1)∧in,l∈Tn

p(in,l) q(in,l) (3)

The inner summation refers to each transaction containing
X (bk+1) as Tn, and computes the sum of item-specific utilities
weighted by their corresponding quantities for all items in
X (bk+1). As signified by the outer summation, ϕ(X (bk+1)) is
calculated as the total of such weighted sums for all transac-
tions containing X (bk+1).

2) ϕ(X (bk+1)) FOR FI EXTRACTION
ϕ(X (bk+1)) is defined as sup(X (bk+1)) representing the sup-
port (frequency) of X (bk+1) in D, that is, the number of
transactions containing X (bk+1).

3) ϕ(X (bk+1)) FOR AR EXTRACTION
To define an AR, an itemset X is firstly divided into two
subsets Xa and Xc (i.e., X = Xa ∪ Xc), and a rule Xa →
Xc is created by viewing Xa and Xc as the antecedent and
consequent, respectively. Xa → Xc is regarded as an AR if
sup(X ) is larger than the minimum support thresholdmin_sup
and the confidence, which is the conditional probability of Xc
given Xa (i.e., sup(X )/sup(Xa)), is larger than the minimum
confidence threshold min_conf . GIM-RL extracts ARs using
ϕ(X (bk+1)) that jointly considers the support and confidence
conditions.

As one remark, the current GIM-RL is limited to extracting
ARs each of which is characterised by Xc with one item. But,
focusing only on such ARs is considered reasonable because
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FIGURE 2. An illustration of how an agent Q(s,a;Θ) for FI extraction is trained in GIM-RL.

allowing Xc to include multiple items often produces an
extremely large number of ARs. In addition, several existing
methods address the extraction of ARs with Xcs characterised
by single items [30], [31]. Moreover, assuming that human
is paying attention to one itemset, he/she is likely to think
whether a rule is created by regarding the itemset as Xa and
a new item as Xc, or by seeing an item in the itemset as Xc
and the other items as Xa. GIM-RL implements this human’s
search based on the difference between X (bk ) and X (bk+1).
If X (bk+1) is the itemset created by adding one item to X (bk ),
we consider that the agent takes the action to use X (bk ) and
the added item as Xa and Xc, respectively. For an inverse
case where X (bk+1) is the itemset created by removing one
item from X (bk ), the agent’s action is to use X (bk+1) and the
removed item as Xa and Xc, respectively.

Such an agent’s action to decide Xa and Xc that may consti-
tute an AR, is evaluated by a reward based on two interesting
measures ϕ1(X (bk+1)) and ϕ2(X (bk+1)). The former is used
in Cases 2 and 3 to check the support of Xa ∪ Xc which is
the itemset includingmore items betweenX (bk ) andX (bk+1).
For Case 3 where ϕ1(X (bk+1)) = sup(Xa ∪ Xc) is equal to or
larger than ξ1/4 = min_sup/4, the agent gets a reward of 1, 2,
3 or 4. This is because theseXa andXc are close to constituting
an AR in terms of the support condition. ϕ2(X (bk+1)) is used
in Case 4 and checks the confidence of Xa → Xc, that is,
ϕ2(X (bk+1)) = sup(Xa∪Xc)/sup(Xa). Note that Case 4 is trig-
gered onlywhenCase 3 is passed bymin_sup ≤ ϕ1(X (bk+1)).
Thus, if ξ2 = min_conf ≤ ϕ2(X (bk+1)), Xa and Xc obtained
by the agent action are verified as the AR Xa → Xc and a
reward of 100 is given. Otherwise, the agent gets a reward of
4 resulting from Case 3.

Finally, it is possible to extract ARs that are individually
characterised by Xc with multiple items, by allowing an agent
to take actions for changing multiple values in the bit-vector.
However, this causes an exponential increase of the agent’s

action space, so a smart approach is needed. This issue is left
as our future work.

C. ILLUSTRATIVE EXAMPLE
For clear understanding of GIM-RL, we explain an intuitive
example of how an agent Q(s, a;Θ) is trained by referring to
Fig. 2. First of all, let us assume that an agent for FI extraction
is trained using the dataset D shown in Fig. 2 (a). Here,
D contains N = 7 transactions T1, · · · ,T7 defined on
M = 5 distinct items i1, · · · , i5. The minimum support
threshold ξ = min_sup is set to five. Hence, the agent is
trained by optimising its parameters Θ to extract itemsets
appearing five or more times in D as FIs.

Fig. 2 (b) depicts some example cases that can possibly
occur at the kth, (k+1)th and (k+2)th steps to train an agent
onD. The centre of Fig. 2 (b) shows four cases that originate
from the bit-vector at the kth step bk = (0, 1, 1, 0, 0)T

defining the itemset X (bk ) = {i2, i3}. The case at the top is
characterised by bk+1 = (0, 1, 1, 1, 0)T resulting from the
action to change i4’s inclusion in X (bk ). According to our
reward definition, the reward rk = −1 is given to the agent
because X (bk+1) = {i2, i3, i4} defined by bk+1 does not exist
in D. As a result, Θ is updated so that Q(s, a;Θ) outputs a
very small value for the action to change i4’s inclusion at the
state sk computed from bk . To put it more simply, the agent
becomes to not select this action for bk .

It should be noted that the above-mentioned update of
Θ affects action selection also for a bit-vector which is
‘‘statistically similar’’ to bk , although illustrating this in
Fig. 2 is difficult. The key is that Q(s, a;Θ) is defined on a
state s represented by a continuous vector. Regarding this, two
bit-vectors are considered statistically similar if items con-
tained in the itemsets defined by them have similar statistical
characteristics. Accordingly, the states computed from these
bit-vectors are characterised by similar continuous vectors,
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for which Q(s, a;Θ) outputs similar values. Thus, whenΘ is
updated to select (or not select) a certain action at a particular
state, this action selection is propagated to states computed
from statistically similar bit-vectors. In what follows, such
bit-vectors are not described for the sake of brevity. But,
please note that Θ’s updates described below influence on
action selection for statistically similar bit-vectors.

The cases shown at the second-top, third-top and bottom
of the centre of Fig. 2 (b) can be interpreted in a similar
way to the case at the top. The case at the second-top is
based on bk+1 = (0, 1, 1, 0, 1)T obtained by the action to
change i5’s inclusion in X (bk ). Since X (bk+1) = {i2, i3, i5}
appears once in D, the agent receives the reward rk = 0.
This means to postpone the evaluation of the action to change
i5’s inclusion at the state sk computed from bk . Because
of rk = 0, Eq. 2 requires Q(sk , ak ;Θ) to be close to
γ maxa′∈AQ(sk+1, a′;Θ−). That is,Q(s, a;Θ) for the action
to change i5’s inclusion in X (bk ) depends on what rewards
will be obtained at the (k + 1)th and later steps. For the case
at the third-top, changing i1’s inclusion in X (bk ) produces
X (bk+1) = {i1, i2, i3} appearing twice in D. Since this case
is categorised as the first sub-case of Case 3 in our reward
definition (i.e., ξ/4 < sup(X (bk+1)) = 2 < ξ/2), the agent
receives the reward rk = 1. As a result, Q(s, a;Θ) is refined
to output a relatively high value for the action to change i1’s
inclusion at sk , making the agent possibly select this action.
The case at the bottom is triggered by the action to change
i3’s inclusion in X (bk ) and the resulting X (bk+1) = {i2}
appears six times in D and is extracted as an FI. The reward
rk = 100 guides Q(s, a;Θ) to output a high value for the
action to change i3’s inclusion at sk , making the agent likely
to select this action.

One important remark is that Q(s, a;Θ) approximates the
maximum expected cumulative reward defined in Eq. 1.
Thus, training of Q(s, a;Θ) considers not only the reward rk
at the kth step, but also rewards at future steps. In fact, as seen
from Eq. 2, Q(s, a;Θ) is not trained to directly approx-
imate rk , but to achieve a situation where the maximum
expected cumulative reward approximated at the kth step is
close to the sum of the actual reward rk at the kth step and the
maximum expected cumulative reward approximated at the
(k + 1)th step.1 Thereby, Q(s, a;Θ) reflects the estimation
of what rewards will be acquired at future steps after taking
a at s. This is illustrated in the case shown at the right of
Fig. 2 (b). This case is provoked by the action to change i3’s
inclusion in X (bk+1) and the resulting X (bk+2) = {i1, i2}
appearing five times in D is extracted as an FI. The reward
rk+1 = 100 obviously supervises Q(s, a;Θ) to output a high
value for the action to change i3’s inclusion at sk+1 computed
from bk+1. In addition to this, Q(s, a;Θ) for the action to

1This objective progresses training of Q(s, a;Θ). The reason is that
thanks to the consideration of the actual reward rk , the target value rk +
γ maxa′∈A Q(sk+1, a′;Θ−) is usually a more accurate approximation of
the maximum expected cumulative reward than Q(sk , ak ;Θ). Hence, the
approximation by Q(sk , ak ;Θ) can be more accurate by reducing the dif-
ference between it and the target value.

change i1’s inclusion at sk is also increased, because this
action is now linked to the FI extracted at the (k + 2)th step.
This way, in GIM-RL, an agent is trained to select an action
that leads to not only the immediate extraction of an FI at the
current step but also the extraction of many FIs at future steps.

IV. EXPERIMENTAL RESULTS
We test GIM-RL using the five datasets shown in Table 1.
These datasets are chosen because they have different char-
acteristics in terms of numbers of transactions, numbers of
distinct items and average numbers of items in one transac-
tion, as exhibited in rows N , M and ‘‘Avg. |Tn|’’ in Table 1,
respectively. In addition, the datasets in Table 1 are popularly
used in many existing works [11], [12], [24]–[26]. Through
the extractions of HUIs, FIs and ARs from these datasets,
we aim to demonstrate the generality of GIM-RL.

TABLE 1. Statistics about the experimental datasets.

A. RESULTS FOR ITEMSET MINING
For each of the HUI, FI and AR extractions, the following two
evaluations are performed: First, we use a baseline method
that is developed to exhaustively enumerate all the itemsets
of a target type. The number of itemsets extracted by the
baseline method is maximum, so we examine how close the
number of itemsets extracted by GIM-RL is to this maximum.
Second, the effectiveness of agents trained by GIM-RL is
examined by comparing the five agents below. Note that these
agents commonly take sk as input and output ak to change the
value of one dimension in bk in Fig. 1, but they are different
in how to decide ak based on sk .
Ramdom: This agent just changes the value of a randomly
selected dimension in bk . With Random, we aim to show
the difficulty of each itemset extraction task where randomly
changing values in bk yields few itemsets of the target type.
State-ε: As described in Section III-A, each dimension’s
value in sk represents the usefulness of changing the value of
the corresponding dimension in bk based on the simulation
of the one-step-ahead future. One may think that sk already
contains enough information about which value in bk should
be changed. To answer this, we test State-ε that changes the
value of bk ’s dimension corresponding to the highest value
in sk with the probability 1 − ε, while changing the value
of a randomly selected dimension with the probability ε to
preserve the variety of itemsets to be explored.
State-prob: The motivation for testing this agent is the same
to the one for State-ε. But, different from State-ε, State-
prob determines ak by random sampling according to the
probability distribution, where the probability of changing the

VOLUME 10, 2022 5831



K. Fujioka, K. Shirahama: Generic Itemset Mining Based on Reinforcement Learning

value of one dimension in bk is proportional to the value of
the corresponding dimension in sk .
GIM-RL-Basic: This is the basic version of GIM-RL. A DQN
that accepts sk and outputs qk is trained in the framework
of Fig. 1. Each dimension in qk indicates an approximate
quality of taking one of M + 1 actions including the random
bit-vector initialisation, as described in Section III-A. DQNs
with the same architecture are trained for extracting HUIs
and ARs, while simpler DQNs are used for FIs. Please see
Appendix B (especially Fig. 6) for details on the architectures
of these DQNs.
GIM-RL-Fusion: This is an extended version of GIM-RL-
Basic by defining the output as the sum of qk and sk . To be
precise, sk misses the dimension for the random bit-vector
initialisation, so s′k is created by appending to sk one dimen-
sion with the very small value ‘‘0.02 × (average of sk )’’
for the initialisation. Then, the output of GIM-RL-Fusion is
computed as q′k = λs

′
k + (1− λ)qk . Of course, the additional

use of s′k is expected to make q′k attain better action selection
than qk . But, q

′
k plays a more important role to advance

training of an agent. In principle, the agent can be trained
when positive rewards are obtained. In other words, training
of the agent does not proceed as long as rewards are zero
or negative. Regarding this, at the beginning of training, it is
statistically difficult for the agent to find ‘‘positive itemsets’’
that offer positive rewards using the imperfect Q(s, a;Θ).
For this, s′k significantly increases the probability of finding
positive itemsets because it represents rough estimation of
which items are likely to constitute positive itemsets. After
finding some positive itemsets, the agent can be trained to
some extend. This boosts the probability that the agent can
find positive itemsets by its own exploitation of the trained
Q(s, a;Θ), that is, the agent can do further training by itself.
Considering this, λ in q′k is gradually reduced to weaken the
effect of s′k as training proceeds. Please see Appendix C for
the specific setting of λ.

1) RESULTS FOR HUI MINING
Table 2 summarises the results for HUI mining. First, HUI-
Miner [10] implemented in SPMF library [32] is used as
a baseline to extract all the HUIs from each dataset. The
thresholds in the second row of Table 2 are the same to the
ones used in [11], [24].2 As shown in Table 2, 100% or
nearly 100% of HUIs are extracted from each of the four
datasets using GIM-RL-Fusion. This verifies the effective-
ness of GIM-RL to train agents for extracting HUIs. Also, the
fact that no HUI is extracted by Random implies the difficulty
of HUI extraction. In addition, the poor performances of
State-ε and State-prob indicate the ineffectiveness of directly
using sk . In what follows, Random, State-ε and State-prob
are sometimes called ‘‘non-training agents’’ because their
action selection policies are fixed in advance and are not
optimised. Finally, the main reason why no HUI is extracted

2Also for the other threshold settings used in [11], [24], we have obtained
results to validate the effectiveness of GIM-RL.

TABLE 2. An overview of the HUI mining results.

by GIM-RL-Basic for Accidents_10% is that it fails to find
first some positive itemsets, so its training does not proceed.
In contrast,GIM-RL-Fusion aided by s′k stably produces very
good performances on all the datasets.

2) RESULTS FOR FI MINING
Table 3 shows the results for FI mining. FP-growth [4] imple-
mented in SPMF library [32] is selected as a baseline to
extract all the FIs. By referring to [12], the thresholds in the
second row are determined so that moderate numbers of FIs
(1000-10000 FIs) are extracted. Note that FIs are extracted by
the non-training agents, although numbers of extracted FIs
significantly vary depending on datasets. For this, we point
out the following two reasons attributed to the random bit-
vector initialisation. First, a bit-vector is initialised according
to the probability distribution based on the frequency of each
item, so the itemset defined by this initialised bit-vector
has a relatively high probability to be an FI. In addition,
updating this bit-vector leads to finding other FIs with not-
low probabilities. Second, the initialisation is repeated until
the bit-vector defines an itemset that exists in D. Focusing
only on such itemsets dramatically reduces the search space,
especially for small datasets like Chess. Because of the above
two reasons, even Random can extract FIs. But, despite the
fact that the non-training agents occasionally extract many
FIs, GIM-RL-Fusion or GIM-RL-Basic extracts the highest
numbers of FIs for all the datasets. This validates the effec-
tiveness of GIM-RL also for extracting FIs.3

TABLE 3. An overview of the FI mining results.

3For Chess, 7901 FIs (96.0% of FIs) are extracted by GIM-RL-Fusion
using a DQN with the architecture for the HUI and AR extractions.
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3) RESULTS FOR AR MINING
In Table 4, the results for ARmining are presented. Our base-
line method first uses FPGrowth_association_rules imple-
mented in SPMF library [32] to extract all the ARs, and then
retains ARs each of which is characterised by a consequent
with one item. The thresholds ξ1 = min_sup and ξ2 =
min_conf are set based on [12], so that a reasonable number
of ARs are extracted from each dataset. The trend of the
results in Table 4 is similar to the one in Table 3. Because
of the random bit-vector initialisation, the non-training agents
can extract ARs from each dataset, but their performances sig-
nificantly degrade on large datasets like Pumsb and Connect.
In contrast,GIM-RL-Fusion can stably extract almost all ARs
from each of the datasets.

TABLE 4. An overview of the AR mining results.

We describe a deeper insight in the AR extraction on
Connect. Fig. 3 shows how many ARs are extracted in each
episode byRandom, State-prob,GIM-RL-Basic andGIM-RL-
Fusion. State-ε is omitted because of the very low number
of extracted ARs. In Fig. 3, for each agent, the number of
extracted ARs in one episode is counted without consider-
ing whether each AR is already extracted or not. Thus, the
sum of numbers of ARs extracted by the agent over all the
episodes is the total cumulative number of ARs. As shown
in Fig. 3, the numbers of ARs extracted by the non-training
agents are constantly low over episodes, and they are nearly
invisible. On the other hand, GIM-RL-Basic is trained to
extract ARs during about the first 50 episodes, and afterwards
keeps extracting ARs although the extraction is unstable as
illustrated by the significantly varied numbers of ARs over
episodes. Compared to this, GIM-RL-Fusion aided by s′k is
trained to extract ARs in the first 200 episodes, and continues
to stably extract the large numbers of ARs.

B. RESULTS FOR AGENT TRANSFER
We investigate agent transfer where an agent trained on a
source dataset is transferred into another agent for a target
dataset which is related to the source one. For this pur-
pose, each of the datasets in Table 1 is split into two parts,
especially, the first 60% of transactions and the remaining
40% constitute the source and target partitions, respectively.
As shown in Table 5, one characteristic is that the number of
distinct items in the source partition (Msrc) is different from
the one in the target partition (Mtgt ). That is, some items are

FIGURE 3. The transition of numbers of ARs extracted by each of
Random, State-prob, GIM-RL-Basic and GIM-RL-Fusion
over the passage of episodes (the dataset is connect).

included only in the source or target partition.We perform and
test agent transfer between these source and target partitions.

TABLE 5. The difference between the number of distinct items in the
source partition (Msrc ) and the one in the target partition (Mtgt ) for each
of the experimental datasets.

Let DQNsrc and DQNtgt be agents that are defined for the
source and target partitions of a dataset, respectively. Based
on the experimental results in the previous section, both of
DQNsrc and DQNtgt are based on GIM-RL-Fusion that stably
yields high performances. In addition, as with the previous
section, DQNs with the same structure are used for extracting
HUIs and ARs, and simpler DQNs are for FIs. Our idea of
agent transfer is very simple. All the parameters of DQNsrc
trained on the source partition are transferred to DQNtgt ,
except the first and output layers that need to treat the differ-
ence of distinct items between the source and target partitions.
That is, DQNsrc and DQNtgt have the same structure with the
same parameters except their first and output layers. Each
unit in DQNsrc’s first layer has a weight for each item. More
precisely, it is used to weight sk ’s value, which represents
the usefulness of changing the item’s inclusion in X (bk ) (the
itemset defined by bk ). Thus, weights of DQNsrc’s first layer
for items that are included in both the source and target
partitions are replicated on DQNtgt ’s first layer. On the other
hand, weights of DQNsrc’s first layer for items included only
in the source partition, are discarded. For items included only
in the target partition, new randomly initialised weights are
added to DQNtgt ’s first layer. The same replication, discard-
ing and initialisation of weights are carried out for DQNsrc’s
and DQNtgt ’s output layers, which individually output qk
to select an action for changing the inclusion of an item in
X (bk ). After the above-mentioned agent transfer, DQNtgt is
retrained on the target partition. Assuming that the source
and target partitions have similar relations among items and
parameters transferred from DQNsrc to DQNtgt are useful for
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FIGURE 4. A comparison between the increase of the number of unique itemsets extracted by a transferred agent DQNtgt (orange) and the one by an
ordinarily trained agent DQNscratch (blue) over the passage of 500 episodes for each dataset and each itemset extraction task.

capturing those relations, retraining DQNtgt is expected to be
much faster than training a DQN from scratch on the target
partition. For simplicity, the latter DQN is called DQNscratch.

In Fig. 4, DQNtgt is compared to DQNscratch on the target
partition of each dataset. Here, the increase of the number
of unique itemsets extracted by DQNtgt over 500 episodes
is plotted in orange, and such an increase for DQNscratch
is drawn in blue. That is, Fig. 4 visualises how fast each
of DQNtgt and DQNscratch is trained to extract itemsets in
the target partition. As illustrated in this figure, in all the
12 cases, DQNtgt finally extracts more itemsets or at least
the same number of itemsets to DQNscratch. Especially, the
7 cases depicted by the dotted-line rectangles objectively
indicate that DQNtgt extracts many itemsets of a target type
more quickly than DQNscratch. This suggests the potential
effectiveness of agent transfer to realise DQNtgt ’s efficient
itemset extraction with the help of DQNsrc.
In addition, let us focus on Chess, Accidents_10%, Con-

nect in the HUI extraction and Pumsb and Connect in the
AR extraction in Fig. 4. In each of these cases, DQNtgt
extracts no or few itemsets at the beginning, but once it
starts to extract itemsets, it becomes to extract many item-
sets very fast. This can be thought as follows: Although
parameters transferred from DQNsrc to DQNtgt are useful,
they are not directly compatible with a target partition. But,
once these parameters are adapted to the target partition, their
usefulness brings in extracting many itemsets very quickly.
To improve agent transfer in terms of this parameter adap-
tation, we plan to explore model-based RL that uses an
internalmodel summarising an environment (i.e., dataset) and
adaptively updates this model depending on changes of the
environment [33].

C. RUNTIME ANALYSIS
Table 6 presents the runtimes of GIM-RL-Fusion for
each itemset extraction task. These runtimes are mea-
sured on a desktop PC equipped with Intel Core i9-9900K
(3.60GHz), 32GB RAM and NVIDIA GeForce RTX 2080Ti.
GIM-RL-Fusion implemented with Pytorch is run on Ubuntu
20.04-LTS. All the source codes for GIM-RL-Fusion as well
as the other agents are available on our Github repository,
as described in Appendix C. As can be seen from Table 6,
GIM-RL-Fusion requires at least more than 30 minutes to
finish one task. But, we believe that this slowness is sur-
passed by GIM-RL-Funsion’s great flexibility that any type
of itemsets can be extracted as long as a reward for the type
can be defined. In other words, GIM-RL-Funsion can extract
any user-defined type of itemsets with no need to develop a
specialised data structure or algorithm for the type.

TABLE 6. GIM-RL-Fusion’s runtimes expressed in the form of ‘‘hh:mm:ss.’’
Column ‘‘Acc. / Pumsb’’ means that Accident_10% is used for the HUI
extraction, and Pumsb is used for the FI and AR extractions.

The main reason for GIM-RL-Fusion’s slow runtime is
the need of scanning a dataset to compute a state sk and a
reward rk , as illustrated by the non-filled arrows in Fig. 1.
Here, sk and rk are computed at each step and GIM-RL-
Fusion (or more generally GIM-RL) involves E episodes
each of which consists ofK steps, as seen fromAlgorithm 1 in
Appendix A. Thus, sk and rk are computed in total EK times.
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Furthermore, M values in sk are based on interestingness
measure values for different itemsets, each of which is created
by changing one item’s inclusion in the itemset X (bk ) defined
by the current bit-vector bk . Since the computation of an inter-
estingness measure value requires one scan of the dataset,
the computation of sk involves M scans. Moreover, rk needs
the interestingness measure value for the updated itemset
X (bk+1), so its computation also involves one dataset scan.
Hence, the computation of sk and rk at each step demands
M + 1 dataset scans. Letting scan_time be an approximate
time required for one scan of the dataset, the computa-
tional complexity of GIM-RL-Fusion can be expressed as
O (EK (M + 1)× scan_time). Compared to scan_time, the
other processes shown in Algorithm 1 of Appendix A require
negligible times.

The reduction of scan_time is obviously crucial for speed-
ing upGIM-RL-Fusion. But, wewill not develop a specialised
data structure or algorithm to accomplish fast scan of a
dataset. Instead, inspired by the work in [34], we will explore
to encode the dataset into a neural network. Its input is an
itemset given as a query, and the output is an approximate
interestingness measure value for the itemset. This kind of
speed-up of dataset scan is especially essential to extend
GIM-RL-Fusion for more complex patterns like sequential
or trajectory patterns. While an itemset can be defined by a
bit-vector, the representation of a sequential pattern needs a
‘‘bit-matrix’’ where one row is a bit-vector representing an
itemset observed at one time point, and the one of a trajec-
tory pattern requires a ‘‘bit-tensor’’ where each bit-matrix
at one time point indicates the x-y location of an object.
The above-mentioned dataset encoding is necessary for fast
querying a dataset in terms of these sequential or trajectory
patterns.

V. CONCLUSION AND FUTURE WORK
In this paper, we introduced GIM-RL that offers a unified
RL framework to extract various types of itemsets only by
changing a reward definition. The general effectiveness of
GIM-RL is verified through the experiments on the HUI,
FI and AR extractions. The experimental results also suggest
one remarkable potential of GIM-RL, namely agent transfer,
which realises efficient itemset mining on a dataset with the
help of an agent trained on another related dataset.

Before moving to detailed descriptions of our future work,
let us clean up the main concept of how GIM-RL is formu-
lated in the framework of RL by referring to Fig. 5. GIM-RL
presented in this paper is based on the most basic RL where
an environment produces a state sk based on which an agent
takes an action ak . Then, from the environment, the agent
receives a reward rk as an evaluation of taking ak at sk as
well as the updated state sk+1 to take the next action ak+1.
Under this iterative interaction, RL aims to train the agent so
that it can take a sequence of actions to maximise cumulative
rewards. GIM-RL is formulated by defining the following sk ,
ak and rk , as highlighted in bold italic font in Fig. 5. First,
an itemset is defined by a bit-vector indicating the inclusion

FIGURE 5. A conceptual illustration of how GIM-RL is formulated in the
framework of RL.

of each of distinct items. Based on this, sk is defined as a hint
for how to update the bit-vector to form an itemset of a target
type. In addition, ak is defined as an update of the bit-vector
based on sk , and rk is an evaluation of whether the updated
bit-vector expresses an itemset of the target type. According
to the above-mentioned formulation, GIM-RL trains an agent
that maximises cumulative rewards, namely extracts as many
itemsets of the target type as possible.

Since our main purpose in this paper is to empirically
verify the possibility and potential of GIM-RL, its current
implementation is simple and involves many research topics
that need further investigations in the future. Below, some
of them are outlined in association with the components of
GIM-RL’s formulation in Fig. 5. As an extension of an envi-
ronment, dataset encoding described in Section IV-C aims to
speed-up the computation of sk and rk . Besides, model-based
RL in Section IV-B focuses on building a model that simu-
lates the dynamics of an environment to generate ‘‘virtual’’
experiences, which are useful for faster agent training. Also,
an agent can be enhanced by adopting a planning mechanism
to infer itemsets that will be possibly obtained at the multiple-
step-ahead future [35]. Moreover, an agent can be extended to
take continuous-valued actions to extract itemsets that consist
of items representing quantitative features (e.g., age, height
and weight).

Apart from an environment and agent, it is also an impor-
tant topic to design a new or more sophisticated state, action
and reward. Especially, one invaluable attempt is to design a
reward for extracting a previously unexplored type of item-
sets. Another key topic is the adoption or development of a
more advanced RL algorithm compared to Q-learning used
in this paper (although the components in Fig. 5 are not
explicitly associated with this topic). For example, training
more accurateQ(s, a;Θ) is possible using double Q-learning
where the selection and evaluation of an action are done by
separate neural networks [36]. In addition, a policy gradient
method that directly learns an action selection policy without
relying on Q(s, a;Θ) is useful for training an agent that
takes continuous-valued actions [9]. Finally, we believe that
GIM-RL opens a new research direction towards so-called
‘‘learning-based itemset mining’’ which involves many inter-
esting topics described above.
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APPENDIX A
PSEUDO-CODE OF GIM-RL
Algorithm 1 shows a pseudo-code of GIM-RL to train an
agent Q(s, a;Θ) that extracts itemsets satisfying ϕ(X ) ≥ ξ
from a datasetD. Overall, as expressed by the double for-loop
in lines 6-22, the agent is trained through E episodes consist-
ing of K steps. As seen at lines 10-12, at each step, the agent
receives a state sk and computes qk to decide an action ak
for updating the bit-vector bk into bk+1. After checking the
quality of the itemset X (bk+1) defined by bk+1 at lines 13-15,
the environment generates a reward rk and a new state sk+1
at lines 16 and 17. The tuple (sk , ak , rk , sk+1) is then stored
into a replay memory P as one experience of the agent at
line 18. Subsequently, the agent’s parameters Θ are updated
at line 19, while as written at line 21 the target network’s
parameters Θ− are updated every e− episodes by copy-
ing Θ to Θ−. For GIM-RL-Fusion in Section IV, qk at
lines 10 and 11 is replaced with q′k = λs

′
k + (1− λ)qk .

Algorithm 1 GIM-RL (Generic Itemset Mining Based on
Reinforcement Learning)
Input Dataset D, interestingness measure ϕ(X ), threshold ξ
Output A set X containing itemsets meeting ϕ(X ) ≥ ξ

1: Initialise Q(s, a;Θ) with He’s parameter initialisa-
tion [37]

2: Initialise a target network as Q(s, a;Θ−) = Q(s, a;Θ)
3: Initialise a replay memory as P ← {}
4: Filter out items that individually have no possibility to be

an element of itemsets of the target type.
5: X ← {}
6: for e = 1, · · ·E do
7: Randomly initialise the bit-vector b1
8: Generate the first state s1 based on b1 and D
9: for k = 1, · · ·K do
10: Compute qk by feeding sk into Q(s, a;Θ)
11: Decide an action ak by the ε-greedy strategy on qk
12: Update bk into bk+1 by ak
13: if ϕ(X (bk+1)) ≥ ξ then
14: X ← X ∪ {X (bk+1)} // An itemset is extracted
15: end if
16: Compute a reward rk based on bk+1 and D

(Section III-B)
17: Compute sk+1 based on bk+1 and D
18: P ← P ∪ {(sk , ak , rk , sk+1)}
19: UpdateΘ ofQ(s, a;Θ) using experiences randomly

sampled from P
20: end for
21: Update Θ− of Q(s, a;Θ−) as Θ− = Θ (every e−

episodes)
22: end for
23: return X

We mention the following three implementation details:
First, the search space reduction before extracting itemsets
is done at line 4. Specifically, for the extraction of HUIs,

items whose upper bound utilities (transaction weighted util-
isations [5], [6], [10], [11]) are less than the threshold ξ
are discarded, and for the extractions of FIs and ARs, items
whose supports are less than the minimum support threshold
(ξ for FIs, and ξ1 for ARs) are eliminated. Second, at line 7,
b1 in each episode is obtained by the random bit-vector
initialisation described in Section III-A. For this initialisation,
we assume that the more frequently an item occurs in D,
the more likely it is to be included in HUIs, FIs or ARs.
The above-mentioned search space reduction and random
bit-vector initialisation need to be modified when targeting
another type of itemsets like infrequent itemsets. Last, to help
the agent explore a variety of itemsets, line 11 shows that
ak is decided using the ε-greedy strategy. Here, ak is chosen
as the action corresponding to the highest value in qk with
the probability 1 − ε, while ak is set to the action to change
the value of a randomly selected dimension in bk with the
probability ε.

APPENDIX B
DQN ARCHITECTURES
Figs. 6 (a) and (b) show the DQN architecture for extract-
ing HUIs and ARs and the one for FIs, respectively. These
architectures are common with respect to the input and out-
put layers. The input layer accepts an M -dimensional state
vector sk =

(
sk,1, · · · , sk,M

)T where sk,m (1 ≤ m ≤ M )
represents an estimated usefulness of changing themth item’s
inclusion in the itemset X (bk ). The output layer produces an
(M+1)-dimensional vector qk = (qk,1, · · · , qk,M+1)T where
qk,m (1 ≤ m ≤ M ) and qk,M+1 indicate an approximate
quality of the action to change the mth item’s inclusion and
the one for the random bit-vector initialisation, respectively.
As illustrated by the three dotted arcs in Fig. 6 (a), the
DQN for the HUI and AR extractions has three blocks each
of which consists of a Fully-Connected (FC) layer, a batch
normalisation layer and an activation layer defined by leaky
ReLU (Rectified Linear Unit). Similarly, as shown in Fig. 6
(b), the DQN for the FI extraction is comprised of one block
with an FC layer having a large number of units. Based on
our preliminary experiments, the structural complexity of a
DQN may be related to the complexity of a target type. That
is, FIs are simpler than HUIs and ARs, so a simpler DQN
seems enough for extracting FIs compared to the one for HUIs
and ARs.

We describe details of how to compute sk,m in sk . First of
all, ϕ(X ) has a huge value range. For example, assuming that
ϕ(X ) outputs the support of an itemset X , one itemset may
have a support of 1000while the support of a rare itemset may
be 1. Thus, if sk,m is defined directly as ϕ(X (b′k )) whereX (b

′
k )

is the itemset created by changing the mth item’s inclusion in
X (bk ) (please see Section III-A), sk,m’s value range can be
huge, and sk is often very biased in the sense that only some
dimensions have very large values. To alleviate this bias, sk,m
is computed by normalising ϕ(X (b′k )) as follows:

sk,m = log
(
ϕ(X (b′k ))

Z
+ 1

)
, (4)
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FIGURE 6. DQN architectures used for the HUI, FI and AR extractions.

where Z is a normalisation factor to put ϕ(X (b′k ))/Z between
0 and 1. For this, using Z is common in itemset mining, for
instance, in FI extraction, Z is the number of transactions
in D to compute the ‘‘relative’’ support of an itemset [1],
[3], [4], and in HUI extraction, relative utilities are calcu-
lated by setting Z to the sum of utilities for all transactions
(i.e., sum of transaction utilities) in D [6], [10], [11], [24].
These definitions of Z are also used in Eq. 4, which then takes
log of (ϕ(X (b′k ))/Z + 1) to further reduce value differences
among sk,1 · · · , sk,M in sk .

One natural extension of sk is performed for AR extrac-
tion involving two interestingness measures ϕ1(X ) and ϕ2(X )
that output the support and confidence of X , respectively.
Specifically, we compute a 2M -dimensional state vector sk .
Here, sk,m in the first M dimensions is computed based on
ϕ1(X (b′k )) and Z being the number of transactions in D.
On the other hand, sk,m in the last M dimensions is com-
puted based on ϕ2(X (b′k )) and Z = 1, because ϕ2(X (b′k ))
representing the confidence of the rule defined by X (bk ) and
X (b′k ) already lies between 0 and 1. Finally, sk is fed into a
batch normalisation layer to normalise values by ϕ1(X (b′k ))
and ϕ2(X (b′k )), and the resulting normalised sk is used as the
input of the DQN architecture in Fig. 6 (a). For GIM-RL-
Fusion, the first M dimensions based on ϕ1(X (b′k )) are used
to create s′k .

APPENDIX C
HYPER-PARAMETER SETTING
Referring to Algorithm 1 in Appendix A, the number of
episodes E is set to 500 for the HUI extraction and 1000 for
the FI and AR extractions in Section IV-A, and to 500 for
all the experiments of agent transfer in Section IV-B. The
number of steps in one episode is always K = 500. The
size of a replay memory P is set to 10000. Each update
of an agent’s parameters Θ is based on Eq. 2 where the

discount factor γ is set to 0.95. This update of Θ is done
using RAdam [38] (with the initial learning rate α = 0.001)
as an optimiser on a mini-batch of 512 experiences randomly
sampled fromP . Furthermore, e− which is the episode period
to update a target network’s parametersΘ− is set to 5, that is,
Θ− is updated every e− = 5 episodes.
λ in q′k = λs

′
k+(1−λ)qk ofGIM-RL-Fusion is dynamically

changed. As described in Section IV-A, at the beginning of
training an agent, λ is large in order to facilitate finding pos-
itive itemsets based on s′k , and is gradually reduced to priori-
tise the agent’s exploitation based on the trained Q(s, a;Θ).
Inspired by the ε-greedy strategy, we implement this dynamic
change of λ as follows:

λ = λend + (λstart − λend ) exp
(
−
ktotal
∆

)
, (5)

where λstart and λend are the maximum and minimum values
of λ, respectively. ktotal is the total number of steps the agent
has experienced, that is, ktotal = e × K + k for the kth step
in the eth episode. In Eq. 5, λ is λstart when ktotal = 0,
and gradually converges to λend as ktotal increases. ∆ is a
hyper-parameter to control the speed of this convergence.

First, ∆ is set to 200 in all the experiments in Section IV.
In Section IV-A, λstart = 0.999 and λend = 0.5 are
used for extracting HUIs and ARs, and λstart = 0.999 and
λend = 0.6 are for FIs. For these settings of λstart and
λend , we think that sk provides ‘‘dataset-dependent’’ informa-
tion for changing each item’s inclusion in X (bk ) by actually
checking transactions in a dataset, while qk represents more
general information obtained from a DQN. According to this
thought, HUIs and ARs are more complex than FIs, so the
smaller λend = 0.5 is used to put a higher priority on qk .
For the experiments of agent transfer in Section IV-B, λstart

and λend are set depending on source and target datasets, and
itemset types. For the HUI extraction, λstart = 0.999 and
λend = 0.5 are used to train an agent on a source dataset,
and λstart = λend = 0.5 (i.e., λ is constant at 0.5) is
used on a target dataset in order to take more advantage of
qk obtained from the source dataset. For the FI extraction,
λstart = 0.999 and λend = 0.6 are used for both source
and target datasets, to takemore account of dataset-dependent
information for the target dataset. For the AR extraction,
we use λstart = λend = 0.5 on a source dataset to obtain
general information about items as qk , and then λstart =
0.999 and λend = 0.5 are used to gradually adapt qk to a
target dataset by considering dataset-dependent information.
Wewill explore a more sophisticated approach to define λstart
and λend based on statistical characteristics of source and
target datasets.

Finally, all the source codes (including the codes for data
download) used in this paper are available on our Github
repository.4

4https://github.com/Wisteria30/GIM-RL
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FIGURE 7. Transitions of numbers of HUIs extracted from Chess by changing one or two hyper-parameters of GIM-RL-Fusion.

APPENDIX D
EFFECTS OF HYPER-PARAMETERS
This section is devoted to examining effects of GIM-RL’s
hyper-parameters on itemset mining results. Due to the com-
putational cost and the presentation brevity, the following
experiments especially address the HUI extraction on Chess,
where themaximum number of extractable HUIs is 176 based
on the threshold ξ in Table 2 of Section IV-A. In addi-
tion, GIM-RL-Fusion is particularly used because it sta-
bly achieved the top or nearly top performance on all the
experiments.

Fig. 7 illustrates transitions of numbers of HUIs extracted
by changing one or two hyper-parameters ofGIM-RL-Fusion.
Note that all hyper-parameters except the changed ones are
kept the same to the ones in Section IV-A (please see the pre-
vious section for the concrete values of the unchanged hyper-
parameters). Each of Figs. 7 (a) to (d) presents a transition
of numbers of HUIs extracted using hyper-parameter values
shown on the horizontal axis. Here, considering the random-
ness involved in GIM-RL-Fusion, a box-plot is adopted by
running it 10 times for each hyper-parameter value. The line is
drawn by connecting the average numbers of HUIs extracted
in 10 runs for neighbouring hyper-parameter values.5

Figs. 7 (e) and (f) employ three-dimensional histograms that
are individually based on hyper-parameter pairs defined by
the bottom plane. The vertical axis of each histogram indi-
cates the average of numbers of HUIs extracted in 10 runs

5The line lying outside the box for e− = 50 in Fig. 7 (b) is caused by one
exceptionally small number of extracted HUIs. In addition, the long box for
γ = 0.6 in Fig. 7 (d) results from the mixture of runs where all the HUIs are
extracted and the ones where no HUI is extracted.

with each hyper-parameter pair (the standard deviation is
omitted for the presentation brevity).

Let us focus on Figs. 7 (b) regarding e− to handle the
episode period for updating a target network, (c) regarding ε
to control the probability of a random action in the ε-greedy
strategy, and (e) regarding λstart and λend to adjust the mixing
weight between an extended state s′k and a vector of estimated
action qualities qk . For these hyper-parameters, all the 176
HUIs are extracted as long as they are set to moderate val-
ues like 5-25 for e−, 0.05-0.5 for ε and 0.01-0.8 for λstart
and λend . The initial learning rate α in Fig. 7 (a) needs
special attention like usual training of a neural network.
Fig. 7 (a) indicates that setting α to a very small value slows
down agent training, consequently a much smaller number of
HUIs can be extracted in the same episode and step numbers.
Fig. 7 (d) treats a discount factor γ to control the degree of
lowering rewards at future steps. More intuitively, γ manages
the future range that an agent considers to select an action
at the current step. Fig. 7 (d) exhibits that more HUIs are
extracted as the further future is considered using larger γ .
For Fig. 7 (f) concerning E and K to control the episode and
step numbers, it is clear that the number of HUIs decreases as
these hyper-parameters are set to smaller values. On the other
hand, setting them to larger values leads to extracting all the
HUIs although it lengthens the runtime of GIM-RL-Fusion.

In Fig. 7, all the HUIs are extracted by multiple values of
a hyper-parameter. Thus, more detailed analysis is conducted
by adopting another evaluation criteria about the efficiency
of itemset mining. Based on Section IV-C, when targeting a
particular dataset, the time needed for each step of GIM-RL
is assumed to be nearly the same, because the number of
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FIGURE 8. Transitions of total step numbers required to extract all the HUIs in Chess by changing one or two hyper-parameters of GIM-RL-Fusion.

distinct itemsM is fixed and the time scan_time required for
one dataset scan should be approximately constant. Hence,
we define the efficiency of GIM-RL’s itemset mining as the
total number of steps required to extract a certain number
of itemsets, especially, all the itemsets. For simplicity, this
number is abbreviated as a total step number. To be precise,
it is computed as e′ × K + k ′ if all the itemsets are extracted
at the k ′th step in e′th episode.
Fig. 8 shows transitions of total step numbers required to

extract all the HUIs in Chess by changing each of α, e−,
ε, γ and the pair of λstart and λend (a graph for E and K is not
created because they obviously have no influence on total step
numbers). Since a total step number can be calculated only
in the case where all the HUIs are extracted, Fig. 8 focuses
on hyper-parameter values leading to this case in Fig. 7.
That is, nothing is depicted in Fig. 8 for hyper-parameter
values with which all the HUIs are not extracted in Fig. 7.
In each of Figs. 8 (a) to (d), GIM-RL-Fusion is run 10 times
and a box-plot of total step numbers is drawn based on the
runs where all the HUIs are extracted. The three-dimensional
histogram in Fig. 8 (e) displays the average of total step
numbers obtained in 10 runs using each pair of λstart and λend .
Fig. 8 shows that even if multiple hyper-parameter val-

ues result in extracting all the HUIs, total step numbers
for them are quite different. That is, GIM-RL’s runtime to
extract all the itemsets significantly varies depending on
hyper-parameter values. And, analysis of total step numbers
is useful for finding hyper-parameter values with which many
itemsets can be efficiently extracted in a short runtime. With
respect to this, it is often infeasible or takes very long time
to extract all the itemsets in a huge real-world dataset, so

TABLE 7. A list of abbreviations.

computing total step numbers for different hyper-parameter
values is impossible or impractical. Nevertheless, random
sampling of transactions in the original dataset can be per-
formed to create a moderate-size dataset for which total step
numbers are computed reasonably. This way, even for real-
world datasets, it is possible to tune hyper-parameters so as
to find a good tradeoff between GIM-RL’s runtime (i.e., total
step number) and the number of extracted itemsets.

APPENDIX E
SMALL REMARK ABOUT MUSHROOM
TheWeb page6 of SPMF library [32] provides two versions of
Mushroom, one for the HUI extraction and the other for the FI
and AR extractions. Regarding the number of distinct items

6http://www.philippe-fournier-viger.com/spmf/index.php?link=
datasets.php
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TABLE 8. A list of mathematical symbols defined to explain the
framework of GIM-RL in Section III.

in a source partitionMsrc and the one in a target partitionMtgt
in Table 5 of Section IV-B, these two versions have a small
difference. Mushroom for the HUI extraction is divided into
the source parition with Msrc = 98 and the target one with
Mtgt = 109, and the source and target partitions ofMushroom

for the FI and AR extractions are characterised by Msrc =

78 and Mtgt = 106, respectively. Only the latter Msrc and
Mtgt are shown in Table 5 for ease of understanding.

APPENDIX F
ABBREVIATIONS AND SYMBOLS
Below, a list of abbreviations (Table 7) and two lists of
mathematical symbols (Tables 8 and 9) are provided to make
this paper easier to understand. Especially, Tables 8 and 9 are
created by categorising symbols based on whether they are
defined to explain the framework of GIM-RL in Section III
or describe details of our implementation and experiments in
and after Section IV.

TABLE 9. A list of mathematical symbols defined to describe details of
our implementation and experiments in and after Section IV.
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