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ABSTRACT This paper presents an effective blind image quality assessment (BIQA) method for screen
content images (SCIs) based on Fisher vector encoding, with the hypothesis that local statistics will be altered
with the change of distortions, and can be characterized by the fusion of statistical models and direction
vectors. Firstly, a specific Gaussian mixture model (GMM) is generated from a corpus of pristine SCIs
to simulate the local distribution of SCIs in spatial domain. Then, discriminative features are generated
to characterize the quality of test image with Fisher vector coding and generated GMM. Finally, support
vector regression is adopted to learn the mapping between discriminative features and subjective opinion
scores. To validate the performance of our method, extensive experiments are conducted on three public SCI
databases and the results well confirm its superiority over the existing relevant BIQA method of SClISs.

INDEX TERMS Blind image quality assessment, screen content image, Gaussian mixture model, fisher

vector coding.

I. INTRODUCTION
As an important medium for human-computer interaction,

Screen content images (SCls) are extensively used in remote
desktop, cloud computing, online education and virtual
screen sharing and so on [1]-[3]. Because they consist
of artificial image and natural images, the visual percep-
tion mechanism of SClIs is different from traditional natu-
ral images [4]-[6]. Meanwhile, as reference image is not
available in most cases, designing effective blind image
quality assessment (BIQA) method for SCIs is in an urgent
demand.

Up to now, there have been some prior efforts devoted
to BIQA of SCIs, including feature extraction methods and
deep learning methods. For these feature extraction methods,
Gu et al. extracted 13 perceptual-inspired features with the
free energy-based brain theory and structural degradation
model [7]. And then, Gu et al. extracted four types of features
descriptive, i.e., picture complexity, screen content statistics,
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global brightness quality, and sharpness of details, to improve
efficiency [8]. Min et al. integrated block-based corner and
edge features through a multi-scale weighting framework [9].
Lu et al. extracted orientation features and structure fea-
tures by orientation selectivity mechanism for quality pre-
diction [10]. Fang et al. incorporated luminance and texture
features with both local and global feature representation
[11]. Zheng et al. employed gray level co-occurrence matrix-
based local features (i.e., entropy, contrast, and local phase
coherence) and BRISQUE features [12], which were derived
from the distribution of normalized luminance and products
of neighboring normalized luminance in spatial domain [13].
In addition to these quality-aware features extracted from
spatial domain, Yang et al. represented the texture features of
SClIs by means of sparse coding, which were characterized by
local histogram of oriented gradient features [14]. And also,
Wu et al. leveraged sparse representation to extract the local
structural feature and the global feature from the rough and
smooth regions, luminance statistical feature and local binary
pattern property, respectively [15]. The key step of these tradi-
tional methods is to manually extract quality-aware features
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via analyzing the characteristics of SCIs, and demonstrated
moderate performance on the legacy benchmark databases.
With the development of neural network and related tech-
nology, many excellent deep learning models are designed
to characterize advanced semantic information of SClIs.
Zuo et al. proposed the first convolutional neural network for
SCIs by considering the visual differences between textual
and pictorial image patches [16]. Chen et al. designed a nat-
uralization module with an upsampling layer and a convolu-
tional layer for the quality prediction of SCIs [17]. Jiang et al.
treated the image patches with different strategies to modify
the convolutional neural network [18]. Yang et al. integrated
the contour and edge information with L-moment distribution
estimation to design an adaboosting back-propagation neural
network [19]. These deep learning methods automatically
capture the high-level features of SCIs, but lack intuition
and interpretability due to neural network characteristics, and
prone to underfitting or overfitting results considering the
scale of the database. In a word, all these methods were not
attempted in terms of statistical characteristics of SCIs. The
main reason is that, the artificial part in SCIs destroys the
natural scene statistics (NSS) features [20], which is widely
adopted for BIQA of natural images [21], [22]. Hence, how
to find particularly reliable statistical features, which can
be used to characterize the intrinsic quality variations of
SCIs, is still a difficult problem to be solved seriously and
thoroughly.

To solve this problem, this paper proposed a BIQA method
of SCIs based on Gaussian mixture model (GMM) and Fisher
vector coding (FVC), with the hypothesis that local statistics
will be altered with the change of distortions, and can be
characterized by the fusion of statistical models and direc-
tion vectors. Firstlyy, GMM is adopted as the mainstream
of generative model for modeling the local features [23].
Then, discriminative features are generated to characterize
the quality of test image with Fisher vector coding and gen-
erated GMM. Finally, the above features should be employed
directly for quality regression. The main contributions are as
follows:

(1) The proposed method can efficiently and theoretically
characterize the effect of distortions on quality degradation
of SCIs. On the one hand, the patch trained GMM is adopted
to simulate and approximate the local statistical model of
SCIs, due to the variable composition of the artificial and
natural parts. On the other hand, the quality-aware features
can be more accurately characterized with the dimension
elevation and direction extraction of the FVC. And exper-
imental results on three public databases confirmed this
hypothesis and demonstrated the efficacy of the proposed
method.

(2) The localized representation of statistical properties
is the precondition and foundation of quality prediction for
SCIs. The artificial portion of SCIs destroys the natural
scene statistics of natural scenes, and it is also impractical
to obtain a single and accurate statistical model due to the
variable composition in SCIs. For this, the strategy of local
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representation and multi-mode fusion is adopted by training
the GMM with each patch. That is, the corpus of SClIs is first
divided into many patches to simulate the local and variable
composition in SCIs, and then the corresponding Gaussian
models are constructed and combined as the target GMM.
Hence, the local features of SCIs can be modeled prelimi-
narily and used to characterize the quality-aware features of
degraded images.

(3) The change trend of statistical model is the critical step
to characterize image degradation. Among them, component
and direction are two important factors. For each degraded
image, the FVC is adopted in this paper to extract the quality-
aware features. As a coding method derived from the Fisher
kernel, the FVC can represent powerfully the local feature by
dimension elevation, almost without additional calculations.
And the obtained vectors contain not only component infor-
mation but also the information of mean and variance. Mean-
while, FVC is essentially a partial derivative of Gaussian
distribution, so we can directly obtain the direction of change
on the basis of Gaussian distribution. Hence, the extracted
features with FVC can more fully represent the distortion
characteristics of SCIs, and then predict its objective image
quality by quality regression.

The paper is organized as follows. Section II illustrates the
proposed method in detail. Experimental results are shown
and analyzed in Section III. Finally, Section I'V concludes the

paper.
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FIGURE 1. Framework of the proposed method.

Il. METHODOLOGY

Considering that the artificial part in SCIs destroys the NSS
feature of nature images, we build the quality-aware image
features inspired by FVC. The framework of the proposed
method is shown in Fig. 1 below. In general, the proposed
method consists of three parts: (1) GMM Construction,
which is to generate the target GMM from pristine SCI
database offline. (2) Feature Learning, which is to generate
the discriminative features with FVC and generated GMM.
(3) Quality Regression, which performs via support vector
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regression (SVR) based on the combined statistics differ-
ences. Detailed process is described as follows.

A. GMM CONSTRUCTION

The FVC is one of the most powerful local feature encoding
and image representation generation methods [24], [25]. But
when implement the FVC, how to specify the distribution
P = (X|A) is extremely important for this method, as the
artificial part in SCIs destroys the NSS features. Generally
speaking, the distribution resembles a Gaussian distribution
only within a local region of the feature space, and intuitively
each Gaussian distribution can be seen as a feature prototype.
For example, assume an SCI image is simply composed of
four components of Gaussian distribution as shown in Fig. 2,
where p; denotes i-th Gaussian distribution with each prior.
Obviously, the desired GMM can be formed by linear combi-
nation of these components, and it can theoretically approxi-
mate any type of probability density distribution, if there are
enough components. Hence, a certain number of Gaussian
distributions are generated as a measurement anchor in this
paper, to accurately depict the whole feature space of the
pristine SCI database.

FIGURE 2. Simplified schematic diagram of local probability distribution
of SCI image.

Specifically, for these collected SCIs, the raw image
patches, with n x n size in gray-scale domain, are all nor-
malized with divisive normalization transform, which has
been widely used in BIQA domain to mimic the early non-
linear processing in human visual system and then reduce
redundancies [26], [13].

arr o X0 —a
X)) = ————
B+4

where, x(i, j) and x(i,j) are the raw and normalized image
patches, respectively, and (i, j) are the indices sampled on a
regular grid over the entire image. « and S are the local mean
and standard deviation of each patch, and parameter § is the
constant set as 10 here to prevent instability when the denom-
inator approaches zero. In addition, a zero-phase component
analysis whitening process [27] is applied to further remove
the linear correlations between each patch.

Subsequently, we consider these normalized image patches
P, J) as local features, and choose VLFeat open-source

ey
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library to implement the GMM training [28]. For each image,
T normalized patches are extracted: X = [x{, X2, ...,X7] €
RP, where each column corresponds to one patch. The con-
structed GMM for X can be described as p(X |w, u, o2 ),
where w, u and o2 denote the prior, mean, and covari-
ance of each component in GMM. Among them, w; >
0, sum(w;) = 1. As the GMM model can theoretically fit
any type of distribution, it is particularly suitable to solve
the situation of containing multiple different distributions
in SCIs.

Besides, K clusters of GMM are constructed to capture
various distortion characteristics. Note that, (1) the process
is carried out offline; (2) the constructed GMM is no longer
required to be updated and can be directly used as the target
GMM for feature learning of the test image.

B. FEATURE LEARNING

With the constructed GMM, the tested image can be
coded with the FVC to extracted the quality-aware feature.
In essence, the FVC calculates the partial derivative of Gaus-
sian distribution for each local component, and characterize
an image with the gradient vector of likelihood function.
After the process of FVC, the dimension of image features
is greatly elevated, and the obtained vectors contain not only
component information but also the information of mean and
variance for each component, which can be better used to
describe the inherent information of SCI. Meanwhile, the
fisher vector, as the partial derivative, contains the direction
change of each Gaussian distribution component. So even
if we meet two SCIs with the same components, their con-
tent and degradation still can be effectively distinguished
based on the direction information in the obtained gradient
vectors.

Assuming that %, is drawn independent identical dis-
tribution from the distribution P(X|X), the sample X =
[X1, X2, ..., X7] can be described by the gradient vector of
the likelihood function with regard to the model parameter A
in the Fisher kernel as follows.

T
GY = Vi log P(X|3) = )V, log P(&; |%) )

t=1

Let F is called Fisher information matrix and is defined
asF = E [G?G?T], the Fisher kernel is then defined as

K(X,)Y) = Gi(TF_lGX, which measures the direct distance
between two samples (that is the similarity between two
samples), and generates the distortion impact on degradation
as the desired features. Meanwhile, the Fisher kernel as a
Kernel function can also simplify mapping space operation,
and use an equivalent low-dimensional calculation to avoid
the dimensional disaster caused by high-dimensional space
operation.

As a result, two samples can be directly compared by
the linear kernel of their corresponding normalized gradient
vectors which are often called Fisher vectors. Let u; (X) =
P(X|A), Fisher vectors of an image can be described as
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follows.

T T
12 —1/2 ~
GX =Y F =Y F"*ViloguwG) (3
t=1 t=1

For the generated GMM with the parameter A =

{wr, uk, ok, k=1,..., K}, then
K
() =Y g pui(x) )
K

where, > wy = 1, and ug(x) can be calculated by

k=1

exp{—3(x — i) oy ' (x — i)}
Mi(x) =

@m)P/2 oy |12

Subsequently, the quality-aware features can be obtained
with normalized Fisher vectors as follows.

Gox =7 J_ Zy,(k)(xt — ) )
1 Xt = [k
Gl = T Zyz(k)( —) ©)
2
Gy = t(k)[—“") o

N_; 7

where, y;(k) is the probability that generated by the k-th
Gaussian component for x;, that is y; (k) = P(k |x;, A).

And then, both the quality-aware features are concatenated
to a single long quality-aware feature: f = Gﬁ—lz, GXT] k=
1,2, ..., K. Furthermore, there are some similar contents in
SClIs and similar quality scores in subjective opinion scores,
and these similarities will increase image feature similarity,
then severely decrease the contribution of other important
dimensions and hurt the overall feature effectiveness. Hence,
element wise signed power normalization is adopted on the
aggregated features to alleviate the corruption caused by these
similarities [29]. Specifically, each local feature f can be
obtained as follows.

f = sign(H) If1* (8)

where, A is the parameter to control the inhibition degree on
the frequent components and f is one of the feature values.
Finally, the entire quality-aware features, which are used to

quality regression, can be denoted by F = [fl, fz, .. fK ]e
RDxK ><2.

C. QUALITY REGRESSION

After feature learning, the quality evaluation is achieved using
SVR to create a fair comparison with the state-of-the-art
BIQA methods. Specifically, SVR model is first learned using
a set of training SCIs, then the trained SVR model is used to
evaluate the quality of testing SCIs. Here, SVR with radial
basis function kernel is adopted as the mapping function

VOLUME 10, 2022

from normalized features to subjective quality scores by using
LIBSVM package [30].

In this paper, the patch size D is set to 7 x 7 and the
cluster number K is set to100 with experience, so that quality-
aware representation provides a vector of dimensionality D x
K x 2 = 9800 (that is F) in total for each input SCI. And
the practical effect of each feature vector will be detailedly
illuminated in the next section. Meanwhile, the database is
divided into training and testing subsets randomly for 1000
times, with 80% as the training dataset and the rest as testing
dataset, and the median performance across 1000 times is
reported.

Ill. EXPERIMENTAL RESULTS

A. TESTING DATABASES AND

EVALUATION METHODOLOGY

To test the effectiveness of the proposed method, some
comparison experiments are conducted on three public SCI
databases, i.e., screen content image quality assessment
database (SIQAD) [5], screen content database (SCD) [31]
and screen content image database (SCID) [32]. For SIQAD,
it includes 20 reference SCIs and 980 distorted versions cor-
rupted by seven degradation types, i.e., Gaussian Noise (GN),
Gaussian Blur (GB), Motion Blur (MB), Contrast Change
(CC),JPEG, JPEG 2000 (J2K) and Layer Segmentation based
Coding (LSC), each of which includes seven levels. For
SCD, it includes24 reference SCIs and 492 distorted ver-
sions corrupted by two distortion types, that is, Screen Con-
tent Compression (SCC) and High Efficiency Video Coding
(HEVC). For SCID, it consists of 40 reference SCIs and 1800
distorted versions corrupted by nine degradation types, i.e.,
GN, GB, MB, CC, Color Quantization with Dithering (CQD),
JPEG and J2K, HEVC and SCC, each of which includes five
levels.

Meanwhile, for the sake of fairness, three commonly-used
criteria, i.e., Pearson’s linear correlation coefficient (PLCC),
Spearman’s rank order correlation coefficient (SRCC) and
root mean squared error (RMSE), are adopted to evaluate
the performance although there are some limitations for these
three criteria [33], [34]. PLCC, SRCC, and RMSE estimate
the prediction of accuracy, monotonicity, and consistency,
respectively. In general, a better perceptual quality prediction
metric is expected to have higher PLCC and SRCC values,
and lower RMSE value. Furthermore, to remove the nonlin-
earity of objective quality predictions, a nonlinear logistic
regression process with five parameters is applied in the
implement as follows [35].

1
f@=h -

where (1, . .., Bs) are the parameters to be fitted, x and f (x)
denote the original and the fitted quality scores, respectively.

ToeBey) TAx+Bs )

B. OVERALL PERFORMANCE COMPARISON
In this subsection, we compare the proposed method with
the following state-of-the-art BIQA methods for SClIs:
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TABLE 1. Performance indices of the proposed and compared methods on three databases.

SIQAD SCD SCID
PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE
BQMS 0.7549 0.7223 9.3042 0.4264 0.3761 1.6701 0.6487 0.6138 10.7787
SIQE 0.7906 0.7625 8.7650 0.7168 0.7012 1.5470 0.6371 0.6034 10.9202
UCA 0.6892 0.6925 / / / / / / /
OSM 0.8306 0.8007 7.9331 0.7068 0.6804 1.5301 / / /
NRLT 0.8442 0.8202 7.5957 0.9227 0.9156 0.8091 0.8377 0.8178 7.7265
HRFF 0.8520 0.8320 7.4150 / / / / / /
TFSR 0.8618 0.8354 7.4910 / / / 0.8017 0.7840 8.8041
CLGF 0.8331 0.8107 79172 / / / 0.6978 0.6870 10.1439
PICNN 0.8960 0.8970 6.7900 / / / 0.8270 0.822 8.0130
SIQA-DF 0.9000 0.8880 6.2422 / / / 0.8514 0.8507 7.0687
ABPNN 0.8529 0.8336 7.2817 / / / 0.7147 0.6920 10.3988
Proposed 0.9014 0.8915 6.1684 0.9239 0.9198 0.8434 0.8681 0.8550 7.0170

feature extraction methods (BQMS [7], SIQE [8], UCA [9],
OSM [10], NRLT [11], HRFF [12], TFSR [14], and
CLGF [15]) and deep learning methods (PICNN [17],
SIQA-DF [18], and ABPNN [19]). Meanwhile, these meth-
ods are conducted on three SCI databases: SIQAD, SCD, and
SCID. The experimental results are shown in Table 1, where
the top two results in each case are highlighted with boldface
and ‘/” indicates that the value is not available.

From Table 1, we have the following observations. Com-
pared with the feature extraction methods, our method can
get better performance with 5% improvement for PLCC
in SIQAD database. Furthermore, the performance of our
method can be further improved, especially in SCID database.
The main reason is that, the manual features cannot accurately
characterize and measure the intrinsic quality variations of
SCIs, due to the excessive subjectivity and independence
caused by the limitations of research progress of visual per-
ception and personal preferences. Meanwhile, the deep learn-
ing methods show more excellent performance than these
feature extraction methods, as they can automatically capture
the high-level and pertinent features for SCIs depending on
the neural network and database scale. By the comparison
in Table 1, our method shows the similar performance with
the deep learning methods, as the statistical model can more
objectively reveal the internal quality characteristics of the
image, and the patch trained GMM, dimension elevation and
direction extraction of the FVC are more suitable for the
content generation and distribution peculiarity of SCIs with
the previous analysis. Besides, the target GMM is trained
off-line and are not altered for the follow-ups, the proposed
method has relatively low complexity and is more conducive
to practical applications.

C. PERFORMANCE COMPARISON ON INDIVIDUAL
DISTORTION TYPE

To comprehensively evaluate the three types of indices to pre-
dict the quality degradations of SCIs corrupted by different
distortion types, we conduct the performance experiment on
three SCI databases as mentioned above in this section. To be
specific, Table 2 -4 show the PLCC, SRCC, RMSE results
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TABLE 2. PLCC results of different distortion types for the proposed and
compared methods on SIQAD.

GN GB MB CC JPEG  J2K LSC
BQMS 0.837 0.756 0.724 0.721 0.765 0.791 0.843
SIQE 0878 0914 0.784 0.686 0.724 0.734 0.733
UCA / / / / / / /
OSM / / / / / / /
NRLT 0913 0895 0899 0.813 0.793 0.685 0.723
HRFF 0902 0890 0.874 0.826 0.763 0.754 0.770
TFSR 0929 0937 0924 0.656 0.833 0.835 0.807
CLGF 0.858 0908 0.861 0.744 0.660 0.746  0.558
PICNN 0910 0919 0889 0.826 0.829 0.852 0.836
SIQA-DF 0912 0924 0.890 0.844 0.829 0.828 0.858
ABPNN 0914 0923 0.895 0.777 0.801 0.798 0.791
Proposed  0.938 0.908 0.889 0.909 0.903 0.905 0.927

TABLE 3. SRCC results of different distortion types for the proposed and
compared methods on SIQAD.

GN GB MB CC JPEG J2K  LSC
BQMS 0.835 0.763 0.718 0.726 0.766  0.792  0.827
SIQE 0.852 0917 0.835 0.687 0.744 0.724 0.734
UCA / / / / / / /
OSM / / / / / / /
NRLT 0.897 0.881 0.892 0.707 0.770 0.676 0.698
HRFF 0872 0863 0.850 0.687 0.718 0.744 0.740
TFSR 0914 0931 0915 0.650 0.838 0.835 0.795
CLGF 0848 0915 0.869 0.572 0.678 0.768 0.584
PICNN 0902 0916 0.880 0.699 0.823 0.834 0.872
SIQA-DF 0901 0910 0.880 0.728 0.812 0.816 0.858
ABPNN 0910 0922 0.887 0.747 0.777 0.778  0.759
Proposed  0.917 0.893 0.880 0.903 0.889 0.879 0.900

of different distorted types for the proposed and compared
methods on SIQAD respectively, and the top two results
in each case are highlighted with boldface. Obviously, the
proposed method has obvious advantages for all distortion
types considering both the sub-features, especially for the
CC, JPEG, J2K and LSC. Similar to NSS of natural images,
the results demonstrate that the statistical model can more
effectively and objectively reveal the internal law of image
degradation for SCIs, after local optimization and vector
coding. Meanwhile, the proposed method shows the better
prediction of consistency, by comparing the average validity
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TABLE 4. RMSE results of different distortion types for the proposed and
compared methods on SIQAD.

GN GB MB CcC JPEG  J2K LSC
BQMS 8.162 8839 9240 9211 8587 8416 7.834
SIQE 8.142 6424 8078 9.157 6478 7.673 6316
UCA / / / / / / /
OSM / / / / / / /
NRLT 6311 6917 6452 7843 5872 6.544 5.786
HRFF 6.267 6.783 6466 6.874 5862 6.501 5473
TFSR 5311 5.214 5527 10501 5.254 5.638 5.622
CLGF / / / / / / /
PICNN 6201 5870 5.772  7.012 5470 5992 4.673
SIQA-DF  6.115 5768 5791  6.747 5384 5812 4.462
ABPNN 5975 5732 6.714 8.068 6.801 6.554 5.456
Proposed 5.092 5.502 5972 5408 5598 5.686 5.321

TABLE 5. Performance indices of the proposed with two types of
distortion types on SCD.

HEVC SCC ALL
PLCC 0917 0.888 0.924
SRCC 0911 0.881 0.920
RMSE 0.822 1.020 0.843

TABLE 6. Performance indices of the proposed with two types of
distortion types on SCID.

GN GB MB CC CQD

PLCC 0.959 0.967 0.939 0.936 0.941
SRCC 0.953 0.953 0.933 0.930 0.936
RMSE 3.516 3.011 4.137 4253 3.893
JPEG J2K HEVC SCC ALL

PLCC 0.930 0.927 0.852 0.856 0.868
SRCC 0.924 0.923 0.855 0.851 0.855
RMSE 3.860 3.752 5.154 5.085 7.017

and fluctuation magnitude for all distorted types. For exam-
ple, the feature extraction methods, especially for SIQE and
TFSR, show excellent performance to handle GN, GB, and
MB, but their performance obviously poor for other distortion
types.

Furthermore, the same experiments are conducted on the
other public SCI databases, i.e., SCD and SCID, and the rel-
ative results are shown in Tables 5 and 6. These experimental
results show the similar performance of the proposed method
and other methods with SIQAD. In conclusion, it is clear
that the proposed method can more precisely and steadily
evaluate and reflect various degenerations, which further
verifies the effectiveness and robustness of the proposed
method.

D. CROSS-DATABASE VALIDATION

Cross-database validation is conducted to verify the gen-
eralizability of the proposed method here. Considering
that SIQAD and SCID are the representative and largest
databases, respectively, and both of them contains 6 distortion
types (i.e., GN, GB, MB, CC, JPEG, and J2K), so both
of them are adopted as the training and testing databases,
respectively. In this paper, one database is trained with these 6
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distortion types, and the other is used to test the performance
with the trained model. Here entire samples of both databases
are adopted for model training and testing, which can reduce
dependence on the scale of the database and further verify the
generalizability of the proposed method [36].

Table 7 shows the cross-database results for each type
of distortion, in which (a) means that the model is trained
with SIQAD and tested with SCID, and (b) is the opposite.
First, both cross-database performances are similar to each
other, indicates that the proposed model has the advantages
of high generalization ability, regardless of database size
and complexity. Second, the cross-database performance is
marginally worse than the in-database performance, which
is also a common problem of existing methods. The pri-
mary reason is that different fusion rules in each database
may generate complex degradation mechanisms. Third, the
cross-database performance has decreased for the proposed
method but it still achieves a satisfactory performance and
stability for most distortion types, except for the JPEG and
J2K type as they belong to complex composite compression
distortion.

Besides, the cross-database performance is worse than
the deep learning methods as shown in Table 1, but it
is still comparable with them considering its interpretabil-
ity. Thus, cross-database results demonstrate that the pro-
posed method can achieves good prediction accuracy and
generalization.

E. PARAMETER SETTING

In this subsection, comparison experiments are conducted
to validate the influence of the parameter setting on three
databases. Here, the sensitivity of cluster number K is dis-
cussed by enumerating some certain values in proper interval
around the determined value. The corresponding results are
shown in Table 8 and the results with determined value in
each case are highlighted with boldface.

As mentioned in Section II, parameter K defines the cluster
number and directly determines the dimensionality of feature
vector. Obviously, larger K value leads to bigger dimensional-
ity of feature vector and greater computational cost. As shown
in Table 8, the performance increases first and then decreases
slightly with the increase of the value of K. Considering the
balance between algorithm performance and computation, K

TABLE 7. Cross validation results of the proposed method with six types
of distortion on SIQAD and SCID.

Distortion (a) Training with SIQAD (b) Training with SCID

PLCC SRCC RMSE  PLCC SRCC  RMSE

GN 0.9354 09229 4.4458 0.8921 08778  6.7410
GB 09442 09250 39131 0.8461 0.8457 7.1941
MB 09159 0.8965 4.8584 0.8378  0.8359  7.3102
CcC 0.8324  0.7855 6.7832  0.8483  0.8478  7.0374
JPEG 0.7954  0.7790 7.0225  0.8533  0.8482  6.9572
12K 0.6837 0.6880 7.7272  0.6411  0.0383  10.4801
Overall 0.8525 0.8552  6.2174 0.8478 0.8463  7.2710
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TABLE 8. Comparison results with different values of cluster number (K)
on different databases.

Cluster Number(K) 50 100 150
Dimensionality 4900 9800 14700
PLCC 0.8903 0.9014 0.8901
SIQAD SRCC 0.8763 0.8915 0.8779
RMSE 6.3017 6.1684 6.3123
PLCC 0.9098 0.9239 0.9084
SCD SRCC 0.9043 0.9198 0.9042
RMSE 0.8736 0.8434 0.8739
PLCC 0.8515 0.8681 0.8526
SCID SRCC 0.8382 0.8550 0.8392
RMSE 7.2793 7.0170 7.2459

is set to 100 empirically in the implementation as default in
this paper.

Iv.

CONCLUSION

With the Fisher vector coding (FVC), a novel blind image
quality assessment (BIQA) method for screen content images
(SCls) is proposed in this paper. After constructing the tar-

get

Gaussian mixture model (GMM) from the corpus of

SClIs, discriminative features are generated to characterize
the quality of test image with FVC. And then, support vector
regression (SVR) is adopted to learn the mapping between
discriminative features and subjective opinion scores. Exten-
sive experiments are conducted on three public SCI databases
to validate the performance of our method, and the results
well confirm its superiority over the existing relevant BIQA
method of SClIs.
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