IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 24, 2021, accepted January 4, 2022, date of publication January 11, 2022, date of current version January 14, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141702

Transformation Architecture for Multi-Layered
WebApp Source Code Generation

RICARDO TESORIERO', ALEJANDRO RUEDA', JOSE A. GALLUD"!, MARIA D. LOZANO ',

AND ANIL FERNANDO?, (Senior Member, IEEE)

! Albacete Research Institute of Informatics, University of Castilla-La Mancha, 02071 Albacete, Spain
2Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XQ, U.K.

Corresponding author: Ricardo Tesoriero (ricardo.tesoriero@uclm.es)

This work was supported in part by the Ministry of Science, Innovation and Universities, Spain, through the national project under
Reference RT12018-099942-B-100; in part by the Junta de Comunidades de Castilla-La Mancha (JCCM) Regional Government through the
Project TecnoCRA under Reference SBPLY/17/180501/000495; and in part by the European Regional Development Funds (FEDER).

ABSTRACT The evolution of Web technologies leads to software premature obsolescence requiring
technology-independent representations to increase the reuse rates during the development process. They
also require integration into service-oriented architectures to exchange information with different Web
systems supporting runtime interoperability. Web Applications (WebApps) run on devices with different
capabilities and limitations increasing the complexity of the development process. To address these chal-
lenges, different proposals have emerged to facilitate the development of WebApps, which is still an open
research field with many challenges to address. This paper presents a model transformation architecture
based on software standards to automatically generate full stack multi-layered WebApps covering Persis-
tence, Service, and Presentation layers. This transformation architecture also generates the set of test cases
to test WebApp business logic. The proposed transformation architecture only requires a UML platform-
independent class model as an input to generate fully functional Web applications in a three-tier architecture
including the three layers, while most proposals focus on the generation of the Presentation layer. In addition,
this architecture employs software industry standards to enable an easy integration into third-party tools and
development environments. The transformation Architecture proposed has been empirically validated on the
case study of a fully functional travel management WebApp that is generated using a UML class diagram

employing a third-party tool integrated into the same integrated development environment.

INDEX TERMS Software product lines, computer-aided software engineering, client-server systems.

I. INTRODUCTION

The development of modern Web systems is becoming
increasingly complex. Some critical factors to consider are:
(a) the support of runtime interoperability with third-party
systems as part of Service Oriented Architectures (SOA)
employing Web service APIs; (b) the premature WebApp
obsolescence leading to the re-writing of the same appli-
cation functionality using different software technologies;
and (c) the heterogeneity of Web technologies to develop
these applications. For instance, in the development of multi-
layered WebApps, the persistence layer can be implemented
using a relational or a non-SQL database management sys-
tem, the Web service API to access the system functionality

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

VOLUME 10, 2022

can be implemented following a Representational State
Transfer (ReST) API architecture [1] using JSON, or SOAP
specifications [2] using XML, and the WebApp User Inter-
face (IU) should take advantage or mitigate the limitation of
device features such as device display resolution.

To overcome these challenges, and contribute to the need
of providing a framework to generate complete WebApps
covering the three development layers, this proposal presents
a transformation architecture based on the OMG [3] Model-
driven Architecture (MDA) [4] standard to enable stake-
holders, analysts, designers, and developers to automatically
generate multi-layered WebApps source code using model
transformations.

This approach deals with: (a) the runtime interoperability
deriving multi-layered WebApp source code defining the
Web service layer to access WebApp functionality; (b) the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 5223

https://orcid.org/0000-0002-4643-7094
https://orcid.org/0000-0002-6616-8055
https://orcid.org/0000-0003-4069-2112
https://orcid.org/0000-0003-3264-185X

IEEE Access

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

technology obsolescence decoupling the WebApp Platform
Independent Model (PIM) defined by a UML class model
[5], [6] from the source code defining the Platform Spe-
cific Model (PSMs) generated by the model transformation
architecture; and (c) the heterogeneity of Web technologies
employing different model transformations according to the
layer target technology. As a consequence of adopting this
approach, from the WebApp technological perspective, the
same WebApp UML class diagram can be reused as an input
of different transformation architectures to generate differ-
ent Persistence, Test, Web service and Presentation layers
deployment configurations.

For instance, the Persistence layer could employ a rela-
tional database management system such as MySQL [7],
PostgreSQL [8], SqlServer [9], etc. using the SQL query lan-
guage to access database information; or could employ a non-
relational management systems such as the MongoDB [10]
using the JSON format pattern to access database informa-
tion. The Test layer could be implemented using different Test
frameworks such as PHPUnit [11] or Mocha [12].

The Web service layer providing access to the Persistence
layer from the Presentation layer and third-party applica-
tions in SOA environments could employ a ReST architec-
ture [1] or a SOAP specification [2] implementation. And
the Presentation layer representing the WebApp UI could
employ a server-side rendering approach using JavaServer
Pages (JSP) [13], PHP [14] or JavaServer Faces (JSF) [15];
or a client-side rendering approach using AngularJS [16]
or Vue.js [17]. Even using the same rendering strategy,
different implementation alternatives could be used; for
instance, to render client-side Web pages the Material [18]
or Polymer [19] UI frameworks can be used.

The consequence from the software development perspec-
tive is the easy integration with third party tools following
the OMG MDA standards such as the Eclipse Integrated
Development Environment (IDE) [20] which provides devel-
opers with a set of software technologies supporting model
definition, and both, model-to-model (M2M) and model-to-
text (M2T) transformation definition and execution.

To fulfil these requirements, this article presents a set of
Eclipse IDE plugins enabling analysts, designers, and devel-
opers to generate multi-layered Web systems source code
(i.e. Presentation, Web service, Test, and Persistence layers)
from UML class models employing a Model-driven Devel-
opment (MDD) approach using a transformation architecture
following OMG MDA standards.

The rest of the paper is structured in the following sec-
tions. Section II presents existing approaches in this research
field and highlights the research gaps that our proposal aims
to address. Section III describes the process to generate
WebApps using the proposed transformation architecture.
The set of M2M and M2T transformation rules are explained
in Section IV. The validation of the proposal as a result of
applying these transformations in the case study of a Travel
Management WebApp is presented in Section V. Section VI
presents a discussion where this proposal is compared to

5224

the most relevant related works in the research area. Finally,
Section VII presents the conclusions and future works.

Il. RELATED WORKS

This section presents existing approaches in this research
field, with the purpose of identifying the main shortcomings
and the research gap and provide a better understanding on
how the proposed solution addresses the shortcomings. Later,
in section VI we present a table with a comparison of the
main features of each proposal to highlight the main differ-
ences with respect to the approach presented in this paper.

In WSGUI [21] and Dynvoker [22] employ Web service
annotations in WSDL [23] or WADL [24] to derive initial
versions of Uls that are manually refined to obtain fully
functional WebApps. The annotation concept was improved
in [25], where authors propose an integrated modelling
approach for the task-driven development of interactive
service-oriented applications which introduces annotations
as part of the Web service description covering the semi-
automatic generation of task models and Uls following the
OMG MDA standard. However, this approach does not cover
the generation of WebApp persistence or business logic lay-
ers, or any tool support.

The importance of using models to improve WebApp
development process in analyzed in [26] where authors
present the preliminary study results of a prototype archi-
tecture created with the purpose of using a domain-driven
approach to shorten the development of software projects.
The modeling of conceptual, navigational, and user interface
features of WebApps can be derived from UML profiles as
exposed in [27]. The use of UML Profiles to derive WebApps
following a model-driven development approach is employed
in [28], where authors propose a UML profile for modeling
WebApps at the Platform Specific Model (PSM) level to
derive Servlets, JSP pages, and Java source code templates.
The proposal presented in [29] defines a component-centric
UML profile for modeling WebApps that use ASP, JSP, PHP,
Servlets, and JavaBeans technologies. Other proposals, such
as [30], employ UML Profiles for Web 2.0 mashups using
map and Web feed services; and [31] employ them for the
generation of Google App Engine applications. However,
none of these proposals generate the persistence layer nor
provide supporting tools following OMG MDA standards.

The proposal presented in [32] presents a UML profile for
Angular]S to build models of Angular]S WebApps, and a
set of transformations that transform the model into a code
template following OMG MDA standards. However, this
approach does not cover the generation of WebApp persis-
tence layer; instead it generates mock-ups. The generation of
WebAPIs to provide runtime interoperability is also another
missing feature of this approach.

Other approaches employ different types of models, such
as the authors of [33] that fuse Workflow, Web 2.0, SOA
and WS-BPEL to create a distributed computing environment
(ACtive E-commerce Framework called ACEF) to create an
inter-operable infrastructure that leverage the migration code

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

to support multi-platform web service mobile applications.
However, it lacks model interoperability, or tool support
because it does not follow any standard to provide software
development integration.

An interesting proposal where authors employ a cloud
platform spreadsheet to create WebApps is [34]. However,
it generates monolithic applications limiting the WebApp
technology customization versatility (i.e. persistence, web
service, and presentation technologies).

The authors of [35] define an MDA to generate Uls for the
Android platform based on a UML class diagram. In [36],
authors present a proposal for high-quality code generation
for low-cost mobile phones. A proposal that envisages the
creation of Rich Internet Applications (RIAs) that are visually
appealing and ‘“‘responsive” is presented in [37]. From the
point of view of the MDD process, authors of [38] present a
MDA -based development process to generate the source code
of applications for the Android platform.

An interesting DSL proposal for the development of Web
applications that defines a Computation Independent Model
(CIM), a Platform Independent Model (PIM), and a Platform
Specific Model (PSM) is presented in the [39]. However, this
proposal is a work in progress and it currently presents no
evidence of generating the source code for multi-layer Web
applications.

A proposal based on the definition of a set of transfor-
mations and DSLs that generate the source code of Web
applications for language learning using a MDA approach is
presented in [40] and [41].

Some proposals employ automatic source code generation
to develop advanced Ul configurations, such as distributable
user interfaces [42], is presented in [43]. An example of
using MDD to generate this type of Uls in the education
domain is presented in [44]. However, these proposals are
limited to the generation of the presentation layer source
code only. They do not generate any source code for the data
access or Web services layers. Unlike this proposal, the lack
of a comprehensive solution does not enable the automatic
generation of the association between layers.

A proposal that uses MDA to generate source code using
a Model-View View-Model (MVVM) architecture for Win-
dows Phone application development is presented in [45].

Another proposal that addresses a similar problem to the
one proposed in this article is presented in [46]. This proposal
presents a transformation model to generate a PSM from a
PIM based on a UML class diagram. It generates a single
XML file containing the application specification for the PHP
Codelgniter framework [47].

A proposal that combines class and sequence UML dia-
grams for an application to build MVC Web applications is
presented in [48].

While these proposals generate source code for the data
access and presentation layers, they do not generate Web
service layer source code. The main disadvantage of existing
proposals compared to the one presented in this article is the
lack of interoperability at both design-time and run-time.

VOLUME 10, 2022

The lack of design-time interoperability is mainly due to
the failure to follow OMG standards to enable third-party tool
integration and application communication. For example, the
proposal presented in this article uses Eclipse Papyrus IDE to
generate UML class models that are used by model transfor-
mations to generate the application source code.

On the other hand, the lack of interoperability at run-time
is due to the absence of a Web service layer to access the
information stored in the application database through a stan-
dard external interface (e.g. ReST using JSON) limiting the
ability to interact with other applications in a service oriented
architecture (SOA) scenario. A direct consequence of this
lack of interoperability is the inability to deploy 'responsive’
Web applications with rendering in the Web client.

One of the advantages of the solution proposed in compari-
son with using DSLs or dedicated UML profiles is that we use
the well-known OMG standard UML class diagrams as a DSL
for the proposed transformation architecture input parameter,
lowering the learning curve of developers preventing them
from learning a new DSL to model the system to be generated.
However, our approach lacks the semantic expressiveness that
might be provided by DSLs or dedicated UML profiles which
would provide a higher level of customisation of the gener-
ated code (e.g. customized labels, input constraints, etc.).

To sum up, the main limitations found in existing proposals
are that some of them does not cover the three layers, others
does not comply with international standards, and others lack
of multi-layer integration. Other of the main limitations of
existing proposals compared to the one presented in this
article is the lack of interoperability at both design-time and
run-time. The proposal we present addresses these limitations
in an integrated way, generating the three layers (presentation,
web service and persistence, and an additional test case layer)
as we show in the next sections.

Ill. OVERVIEW OF THE TRANSFORMATION
ARCHITECTURE

The development process of the transformation architecture
defines a set of M2M and M2T transformations to generate
the source code for each layer of the WebApp to be developed
(i.e. Presentation, Web services, and Persistence layers as
well as a set of Test cases to check Persistence layer).

While the M2T transformations have been implemented
in ACCELEO [49], the M2M transformations have been
developed in ATL [50], [51].

Figure 1 depicts a simplified overview of the model trans-
formation architecture proposed to develop multi-layered
WebApps using a single UML class model as the transfor-
mation input to generate Persistence, Web service, Presenta-
tion, and Test case source code. This development process is
based on five model transformations which are depicted in
the diagram using blue rectangles. Note that the generation
of the WebApp source code requires the generation of an
intermediate model in TagML to generate the system UL

While four of these transformations are M2T transforma-
tions that generate the WebApp source code for different

5225

I E E E ACC@SS R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

Class model
(UML)
<input> <input> <input> <input>
M2M M2T M2T M2T
(ATL) (ACCELEO) (ACCELEO) (ACCELEO)
l <result> l<resu|t> l <result> l<resu|t>
TagMLModel Source Code Source Code Source Code
(TagML) (PHP) (PHP Unit) (Propel)
<input>l
M2T Web Service layer Test Case layer Persistence layer
(ACCELEO)
l <result> Legend
Source Code ITransformation Type
(Polymer) Model transformation
(Language)
Presentation layer PSM
Source code
(Framework)
Model

(Metamodel) Model

FIGURE 1. A simplified overview of the model transformation architecture to develop

multi-layered WebApps.

layers, the M2M transformation is defined to generate the
presentation model in TagML [52]. Besides, three of the four
M2T transformations and the M2M transformation employ
the UML class PIM of the WebApp to be developed as input
parameter. This UML class model is generated using the
Eclipse Papyrus [53] plugin for the Eclipse IDE which proves
how this proposal can be easily integrated with third-party
tools.

Therefore, this model can also be created or manipu-
lated using a third-party tool with the following OMG MDA
standards: UML [54], XML Model Interchange (XMI) for-
mat [55], and Meta-Object Facility (MOF) [56]. Although
strictly speaking the remaining M2T transformation does
not use the UML class model as an input model directly,
it indirectly uses it because it is a model generated by the
M2M transformation that takes UML class model as an input
parameter.

From a technological perspective, while the generated
WebApp employs MySQL as the relational database manager
for the system and PHP [14] as scripting language on the
server side of the application, HTML and JavaScript are used
on the client side. In addition, the generated WebApps use
XML to render the configuration files.

A. PERSISTENCE LAYER
The persistence layer code is generated by two M2T trans-
formations that take a UML class model as an input. While
the first transformation generates the code responsible for
manipulating the information contained in the database, the
second transformation generates the test cases code to check
the code generated by the first transformation.

The generated code that manipulates the database infor-
mation employs the Propel object to relational database

5226

persistence framework [57] to generate the MySQL database
schema and the PHP classes required to manipulate this
information in an XML file (i.e., schema . xml).

The test cases code employs the PHPUnit framework [11],
which is responsible for testing the create, read, delete, and
update (CRUD) records functions for the database, as well as
the management of the associations between objects imple-
mented by the PHP classes generated by the first transfor-
mation that employs the Propel framework to manage table
relationships. All test cases are generated in a single PHP
script file containing a test case generated for each PHP class.

B. WEB SERVICE LAYER

The remaining M2T transformation that directly takes the
UML class model as an input parameter generates the Web
service layer code to access the system database through the
persistence layer. The generated Web services follow a Rep-
resentational State Transfer (ReST) [1] service architecture
implemented in PHP that uses the CRUD functions of the
persistence layer.

The result of this transformation is a PHP file for each class
that relates the HTTP [58] request types defined in the ReST
API to the set of operations for each class in the persistence
layer. The set of generated classes, in addition to implement
CRUD functions, implement the skeleton of the operations
defined in the UML class model, as well as all the functions
responsible for implementing associations between classes;
for example, adding or removing an item from a multi-valued
property, and assigning an instance of a class to a property and
reflecting it in the database through the persistence layer.

In order to relate class operations to the persistence layer
function, the script .php file defines a set of high-level
functions called from the generated ReST API methods.

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

Home

/

Instance list/delete Ul
(Class A)

!

Instance view/update Ul

\

Instance list/delete Ul
(Class B)

|

Instance view/update Ul

(Class A)

!

Instance create Ul

(Class B)

!

Instance create Ul

(Class A)

(Class B)

Many to many assignment
(Class A - Class B)

FIGURE 2. Meta navigation of the Web system Ul including the CRUD management of class instances, one-to-one,

one-to-many and many-to-many relationships.

Therefore, this file functions play the role of Mediator [59]
between HTTP requests and persistence layer functions.

C. PRESENTATION LAYER

The M2M transformation that generates the presentation
layer code (i.e., WebApp UI) renders the data accessed form
the Web services layer generated by the M2T transforma-
tion mentioned in the previous section. The result of this
transformation generates a TagML model that is passed as
input parameter to the M2T transformation generating the
presentation layer source code that defines the Implementa-
tion Specific Model (ISM) of the system (i.e., a PSM that is
specific for a particular representation).

The generated code uses the version 2.0 of the Polymer
framework [19] to render the application UL This framework
implements a Web component-oriented language in XML to
render the client UL

The application UI defines a Web component as the
Web system main menu (or home page) where users access
instances of any class in the UML model. In addition, for each
class in the UML model, a Web component is generated to
display the list of instances stored in the database. Each item
in the list displays the primary key for each instance in order
to provide a standard identification (i.e., the name property
value of the class instance it represents).

Users access a Web component to view, or modify, class
instance attributes containing primitive type values stored
into the database.

The UI to manipulate one-to-many associations presents
the list of class instances owned by association owner. Thus,
users access these instances by clicking on the item in the list
that represents it.

The manipulation of many-to-many associations requires
the generation of a different Web components where cross-
instance associations are set through two lists showing the

VOLUME 10, 2022

list of available instances that can be associated, and the list
of those instances that are already associated. The implemen-
tation of this Web component relies on the functionality of
the data-binding feature provided by the Polymer framework
to manage table relationships in relational databases.

The last UI generated Web component displays a Web
form to add new instances to the database. This component
is accessed when users click on “Add” button in the Web
component that displays the list of instances.

An overview of the navigation pattern through all Web
components of the system is depicted on the meta-navigation
diagram in Figure 2.

Finally, the information required by Web components
is accessed through Web service layers. The connection
between the Web services and requests from the Ul is carried
out automatically, there is no need to modify the generated
source code (except for customization purposes).

D. DEPLOYMENT

Due to the complexity of the development process, transfor-
mations automatically generate a set of scripts to relate and
configure all layers of generated Web applications. These
configuration scripts are generated for the Bower package
manager [60] which is used to deploy the generated Web
system.

IV. TRANSFORMATION DEFINITIONS
This section introduces the method based on the architecture
presented in Section III to generate WebApp source code.

A. PERSISTENCE LAYER TRANSFORMATION RULES

The Persistence M2T transformation defines a set of trans-
formation rules to transform UML class model elements
(i.e., classes, properties, and associations) into relational
database schema eclements (i.e. tables, attributes, and

5227

IEEE Access

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

relationships). The following subsections describe how dif-
ferent types of elements are transformed.

1) UML CLASS TO DATABASE TABLES

The following code in ACCELEO M2T transformation
language shows a fragment of the transformation rule
that transforms UML classes into database tables in the
XML file used by Propel to generate the database schema
(i.e., schema.xml).

[template public generateElement (e:Class)]

<table name="[e.name/]"
phpName="[e.name.toUpperFirst () /1" [if
(e.isAbstract)] abstract="true" [/if]

allowPkInsert="true">

LISTING 1. Transformation rule generating tables.

This rule assigns the class name to the name and
phpName attributes to set the MySQL table name and the
PHP class name that cope with table operations. It also sets
the abst ract attribute to t rue if the UML class is defined
as abstract.

2) CLASS PROPERTY TO TABLE ATTRIBUTE

The following code in ACCELEO shows a fragment of the
transformation rule that turns properties in UML classes
into table attributes in the XML script used by Propel to
generate the database schema file. It derives the column
tag size attribute from UML class property name. It also
derives the column type from class property type using
the e.generateTipo () rule which turns UML primi-
tive types into MySQL types (e.g., String to VARCHAR).
Finally, it also assigns the UML class property upper cardi-
nality value to the column tag size attribute.

[template public generateElement (e:Property)]
[if (e.upper>0)]

[if (not
e.getModel () .eContents (Class)->exists(l:Class |
e.type=1))]

<column name="[e.name/]" [e.generateTipo()/] [if

(e.1isID)] primaryKey="true"[/if] [if

(e.lower>0) Jrequired="true" [/if]/> ... [/if]

LISTING 2. Transformation rule generating table columns.

3) ONE-TO-ONE ASSOCIATIONS
The following ACCELEO code shows a fragment of the
transformation rule that transforms mandatory one-to-one
associations in UML class models into table foreign keys.
Note that the table that represents the class owning the rela-
tionship defines a column which name is the name assigned
to the UML association in the UML class model. The name of
class not owning the association with the prefix “pk” is used
as column name if no name is assigned to the association.

4) ONE-TO-MANY ASSOCIATIONS
The following ACCELEO code shows a fragment of
the transformation rule that transforms one-to-many

5228

[if (not p.class.name.oclIsInvalid() and
(p.upperBound()=1) and (p.class.name=e.name))]
<column name="fk[p.name/]" [if
(p.lowerBound () >0) Jrequired="true" [/if] [if
(p.type.eAllContents (Property) ->
select (1:Property | 1.isID) -> size()=0)]
type="INTEGER" [else] [/if] />
<foreign-key foreignTable="[p.type.name/]">
<reference local="fk[p.name/]" foreign=.../>
</foreign-key>[/if]

LISTING 3. Transformation rule generating table foreign keys
(one-to-one).

relationships in UML class models into table foreign keys.
The approach to solve this pattern is analogous to the
one employed in one-to-one relationships where the table
attribute defining the relationship is derived from source and
target class names if no association name is defined.

[if (not p.class.name.oclIsInvalid() and
(p.upperBound () <0 and
p.opposite.upperBound()=1) and
(p.type.name=e.name) and (p.class.name=e.name))]
<column name="fk[ass.memberEnd->at (2).name/]" [if
(p.opposite.lowerBound()>0) Jrequired="true" [/if]
[if (p.class.eAllContents (Property)
—->select (1l:Property |
1.1sID)~->size()=0)]type="INTEGER" [else]
[p.class.eAllContents (Property)->select (1l:Property
| 1.isID)->asSequence ()
->first () .generateTipo()/][/if] />
<foreign-key foreignTable="[p.class.name/]">
<reference
local="fk[ass.memberEnd->at (2) .name/]"
foreign=[1if
(p.class.eAllContents (Property) ->select (l:Property
| 1.isID)->size()=0)]"id[p.class.name/]" [else]
"[p.class.eAllContents (Property)->select (l:Property
|
1.isID)->asSequence () ->first () .name/]"[/if]/>
</foreign-key>[/if]

LISTING 4. Transformation rule generating table foreign keys
(one-to-many).

5) MANY TO MANY ASSOCIATIONS

The following ACCELEO code shows a fragment of the
transformation rule that transforms many-to-many relation-
ships in UML class models into tables. In this case, the
generated table links both tables; therefore, there is no need
to add extra information on the generated tables representing
classes.

B. TEST CASES LAYER RULES
The test case layer rules generate the source code for case
tests that check the code generated by Persistence layer rules.

The goal of test cases is the verification of the insert,
read, update and delete database operations as well as
the verification of association management among classes
(i.e. one-to-one, one-to-many, and many-to-many).

These transformation rules in ACCELEO generate a test
case file in PHP for each of class defined in the UML model.
Because the process of generating test cases for primitive
attributes is trivial, as an illustrative example, the following

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

[if (not p.class.name.oclIsInvalid() and
(p.upperBound () <0 and
p.opposite.upperBound()<0) and
(p.class.name=e.name))]

[let nombreTabla2 String = if
(p.type.name.toString () <>p.class.name.toString()
then ’"id’ .concat (p.type.name) else
"relacion’ .concat (p.name) endif]

<table name=[if
(ass.name.oclIsUndefined())]"[p.class.name/]_

[p.name/]" [else]" [ass.name/]"[/1f]
isCrossRef="true">

<column name="id[p.class.name/]"
primaryKey="true"

[if (p.class.eAllContents (Property)

—>select (1l:Property |
1.isID)->size()=0)]type="INTEGER" [else]

[p.class.eAllContents (Property)

—->select (l:Property |
1.1isID)->asSequence () —>first () .generateTipo () /]

[/if]/>

<column name="[nombreTabla2/]" primaryKey="true"

[if (p.type.eAllContents (Property)->select (

l:Property |
1.isID)->size()=0)]type="INTEGER" [else]

[p.type.eAllContents (Property)->select (l:Property
I

1.1sID)->asSequence () ->first () .generateTipo () /]

[/if]1/>

<foreign-key foreignTable="[p.class.name/]"
name="[p.class.name/]_[p.name/]">
<reference local="id[p.class.name/]" foreign=[if

(p.class.getAllAttributes ()

—>select (1:Property |

1.1isID)->size()=0)]"id[p.class.name/]" [else]
"[p.class.getAllAttributes () ->select (1l:Property |
1.1sID)->asSequence () —>first () .name/]"[/if]/>

</foreign-key>
<foreign-key foreignTable="[p.type.name/]"
name="[nombreTabla2/]_[p.class.name/]">
<reference local="[nombreTabla2/]" foreign=[if
(p.type.eAllContents (Property)
->select (l:Property |

1.isID)->size()=0)]"id[p.type.name/]" [else]
"[p.type.eAllContents (Property)->select (1:Property
| 1.isID)->asSequence()->first().name/]"[/if]/>
</foreign-key>
</table>
[/let] [/if]

LISTING 5. Transformation rule generating tables and foreign keys
(many).

code shows a fragment of the transformation rule that gen-
erates the unit test to verify the mappings of class properties
resulting from UML class associations.

Sb->add [claseAsiciacion.name.toUpperFirst ()/]Many

[nombreTabla/] ([if (tipoPrimaria=null)] null
[else] [tipoPrimaria/][/if])

[for (c:Property |
claseAsociacion.eAllContents (Property) —>
select (...))]

LISTING 6. Test case M2T transformation rule code generating test cases.

This transformation rule generates a function which name
results from adding a prefix (i.e. add, remove,etc.) with the
operation being tested, and postfix with the cardinality of
the association to test. The way to generate these tests for
the different types of relationships follows the same pattern.

VOLUME 10, 2022

C. WEB SERVICE LAYER RULES

This section focuses on the M2T transformation rules in
ACCELEO that generate the PHP Web service layer. This
layer automatically connects the persistence layer code to
the presentation layer code without the intervention of the
application developers unless customization is required.

The following sections describe how the PHP classes
implementing the system business logic are linked to the
persistence layer implemented via Propel framework as well
as how these classes are connected to the Web service layer
implementing ReST API.

1) BINDING BUSINESS LOGIC TO CRUD

The following code in ACCELEO shows a fragment of the
transformation rule code that generates PHP classes that
implement CRUD functions to access database information
through the Persistence layer.

class [e.name.toUpperFirst()/] extends

Base[e.name.toUpperFirst () /]{

public function add[for (c:Generalization |
e.generalization)]Gen[/for] ($[clavePrimaria/]
[for (c:Generalization | e.generalization)]
[for (gen:Property |
c.general.eAllContents (Property))]
[gen.generateElementPHPArguments () /]
[/for][/for] [for (c:Property |
e.eAllContents (Property) —> select (l:Property
| not 1.isID))]
[c.generateElementPHPArguments () /]

[/for]){...

LISTING 7. Business logic to CRUD Web service M2T transformation rule.

The code generation is quite directly due to ReST architec-
ture definition. This transformation rule generates a PHP file
for each PHP class in the UML class model where the name
of the generated PHP class corresponds to the class name in
the UML model.

During the transformation process, each property defined
in a class is transformed into a function parameter, including
those defined in class hierarchies and one-to-one relation-
ships. In one-to-one relationships, the name of each class
property is prefixed with the name of the class it represents
(if no name was assigned to the association). The one-to-
many and many-to-many relationships are defined following
an analogous process.

2) BINDING BUSINESS LOGIC TO ReST API

The set of functions generated in the previous section are
exposed as part of a SOA through a ReST API that employs
different HTTP request methods (i.e., GET, POST, DELETE,
and PUT) to read, insert, delete, and update database informa-
tion using the persistence layer.

The matching among the different types of HTTP requests
and corresponding functions is not generated through model
transformations. Instead, we employ parsing techniques
using both, request bodies and query strings from $_POST

5229

IEEE Access

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

and $_GET global variables. This mapping defined in the
script .php file is unique and invariant for all requests.

D. PRESENTATION LAYER RULES

The M2M transformation defined in ATL that generates the
Presentation layer takes as input parameter the UML class
model of the WebApp with the aim of generating a model
in TagML [52] containing the representation of the XML
documents that represent Polymer Web components.

The TagML DSL enables developers to capture the struc-
ture of tag-based documents in order to generate their code
automatically, improving software generation re-usability
and maintainability. The abstract syntax of the TagML DSL
is summarized by the metamodel in Essential Model Object
Facility (EMOF) [56] depicted in Figure 3.

Element

name : EString

Archive 0] contents| FolderContent
[0..1] archive

[0.."] contents

Attribute
value : EString

[0..] attribute

[0..1] document

Folder ‘ Document ‘ TagContent
[0..1] parent ‘ ‘ ‘

% [0..*] content

[1.{1]1t49
[1..1] root

[0..1] parent.

‘ Text

Tag |

content : ES(ringJ ‘ ’

FIGURE 3. The metamodel in essential model object facility (EMOF) of
the abstract syntax of the TagML domain specific language.

This metamodel captures tag names in the name attribute
of Tag metaclass instances. The list of attributes of document
tags are captured in the attributes Tag property, and
nested tags or plain text are captured in the contains Tag
tag property. Main advantage of employing this approach is
decoupling tag based document semantic from syntax which
enables developers to focus on the document structure instead
of how to generate source code obtaining safer code [52].

1) UML CLASSES TO WEB FORMS

This section focuses on how UML classes are transformed
into Web forms. The following code is a fragment of the trans-
formation rule that generates Web forms derived from a UML
class model where the form tag is generated containing the
result of applying the FormElementItem lazy rule that
generates the set of fields based on class properties.

2) UML CLASSES TO WEB NAVIGATION

For each class in the UML class model an option menu is
generated. This menu enables users to view the list of class
instances stored into the database, navigate through the class

5230

lazy rule FormElement {
from c: UML!Class, folder: TagML!Tag
to ...
form: TagML!Tag (
name<-’ form’,
parent <- divcard,

content <- thisModule.getProperties(c)->
collect (a| thisModule.FormElementItem(a,
a.name+c.name, a.name, form)),
attribute <- thisModule.Form(c.name.toLower (),
form)
Yreoo}
LISTING 8. Lazy rule generating TagML fields in TagML from UML
properties.

instance associations, and insert or delete database records.
This functionality is achieved applying the navigation trans-
formation rule presented in the following excerpt of code
where the FormElement ItemView rule is called for each
class to generate the set of buttons to navigate among class
associations.

lazy rule VistaElement{
from c: UML!Class, folder: TagML!Tag

to ...
form: TagML!Tag (
name <- ’form’,

parent <- divcard,

content <- thisModule.getProperties(c) ->
collect (a |
thisModule.FormElementItemView (a, form)),

attribute <-
thisModule.Form(c.name.toLower ()+’action’, form)

)ro o)}

lazy rule FormElementItemView ({
from c: UML!Property, form: TagML!Tag to ...
do{
if (c.upper>0 and not
c.class.getModel () .eContents () —>select (t |
t.oclIsTypeOf (UML!Class))->exists (1]
c.type=1)){ } else {
input.name<-"null’;
if (c.upperBound()=1 and c.lowerBound()=1 and
not c.type.name.oclIsUndefined()) {
form.content<-
thisModule.ButtonForeignInformation (c.type,
form) ;
}
if (c.upperBound()<0 and
c.opposite.upperBound()=1 and not
c.type.name.oclIsUndefined()) {
form.content <-
thisModule.ButtonForeignInformation (
c.association.memberEnd -> at(2), form);

boold bl

LISTING 9. Lazy rules that generating Ul main navigation menu.

3) MANAGEMENT OF UML CLASS ASSOCIATIONS

The UML class association management is based on
providing users with the ability to associate and dis-
associate class instances. The following code excerpt
is part of the VistaElement transformation rule
which shows how associations are detected and how the
BlockElementSelect transformation rule generates the
panel within the UI responsible for associating and disasso-
ciating class instances.

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

lazy rule VistaElement {
from c: UML!Class, folder: TagML!Tag
to ...
do {
for (ass in c.getAssociations()) {
for (p in ass.memberEnd) {
if (not p.class.oclIsUndefined()) {
if ((p.upperBound() < 0 and
p.opposite.upperBound() < 0) and not
((p.type.name=c.name) and (p.class.name =
p.type.name))) {
if (p.class.name <> c.name) {...}
else{...}
}
if ((p.upperBound() < 0 and
p.opposite.upperBound() < 0) and
(p.type.name=c.name) and

(p.class.name=p.type.name)) {...}

if ((p.upperBound() < 0 and
p.opposite.upperBound() = 1) and
(p.type.name = c.name) and (p.class.name =
c.name)) {...}

if (p.upperBound() = 1 and
p.opposite.upperBound() < 0 and
(p.type.name = c.name) and (p.class.name
<> p.type.name)){...}

Frb)
LISTING 10. Lazy rules generating Ul association management Uls.

V. CASE STUDY: APPLICATION OF THE
TRANSFORMATION ARCHITECTURE

This section presents The Travel Management WebApp case
study generated with the proposed model transformation
architecture where users are capable of organizing/managing
tour trips. The goal of the system is the management of groups
of users who travel to a common destination using a travel
agency.

We firstly present the generation of the WebApp described
in Section III and IV employing the proposed transformation
architecture in the first subsection and then the execution of
a concrete task in the second subsection.

The development process depicted in Figure 1 is defined
in terms of the execution of five model transformations
(i.e. Persistence M2T, Test Case M2T, Web Service M2T,
Presentation M2M, and Presentation M2T) resulting in the
generation of the source code of WebApps distributed in three
different server nodes (i.e. Presentation, Web Service, and
Database servers).

A. THE DEVELOPMENT PROCESS

The following paragraphs describe the development process
followed to generate The Travel Management WebApp using
the proposed model transformation architecture. As depicted
in Figure 1, the domain model definition is the starting point
of the development process, and the order of the transfor-
mation execution is independent of the result, except for the
Presentation M2M and M2T transformations that should be
performed sequentially.

1) DOMAIN MODEL DEFINITION
The development process starts with the definition of the
WebApp UML class diagram depicted in Figure 4, which

VOLUME 10, 2022

might be defined with any CASE tool following OMG MDA
standards. In our proposal we use Papyrus Eclipse IDE dis-
tribution for the creation of the UML Class model, depicted
in Figure 4, which is the input parameter of the model trans-
formation architecture.

User Profile
+ userld : string + preferences : string
Group +user| *+ name : string + region : string
+ name : string » + email : string 1 + avatar : string
+ description " | + dateOfBirth E + information : string

+ profile

+ friends
1

+ message Message
+reply |+ content : string
+trip — + subject : string
2l Trip + send (in target:string)()
+ name : string A R
+ description : string
+ accommodation : string
+ address : string +1rip | + destination : string
+ contactEmail : string g3 <] + startDate : string
+ code : string + endDate : string 1
+ participantsMaxNum : stri.
+ price : string
+ contactPerson : string

Agency
+ name : string
+ city : string

1

+ message + message

FIGURE 4. The UML class diagram corresponding to the travel
management case study.

2) PERSISTENCE M2T TRANSFORMATION

The result of the Persistence M2T transformation execution
taking the UML class model as input parameter generates
two files defining the database schema file and the object
to relational database mapping file which are employed by
Propel framework scripts to define the database structure and
the set of PHP class files that implement the application
business logic and data access. Consequently, this transfor-
mation generates the Persistence layer source code which is
distributed between the Database server (database schema
definition) and the Web Service Server (PHP classes to access
database information).

The persistence layer employs the Propel framework to
manage relational database persistence in MySQL. Propel
defines relational database schema in the schema . xm1 file
which is generated by the Persistence M2T transformation.

The following excerpt of the schema.xml file code
shows the result of applying the transformation rule that
derives database table schemes from UML classes (see
Section IV-A1 for details). As result, this transformation rule
assigns User to the name and phpName attributes of the
table tag. In addition, as User class is not abstract, it does
not set the abstract attribute to t rue.

<table name="User" phpName="User"
allowPkInsert="true">

LISTING 11. Result UML class to table rule to the user class.

The result of generating table attribute definitions in
Propel schema.xml file applying the rule described in
Section IV-A2 to the email attribute is presented in the
following XML excerpt of code where the name, type,
and size attributes of the column tag are set to email,
VARCHAR, and 100 according to the email UML class
property definition of the User class.

5231

IEEE Access

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

<column name="email" type="VARCHAR" size="100"
LISTING 12. Result of class property rule to user email property.

The next excerpt of the schema . xm1 file shows the result
of the transformation rule described in Section IV-A3 to
the association between User y Profile which generates
fkProfile table foreign key in User table linking User to
Profile using idProfile primary key. Note that the
table attribute is defined as mandatory because the association
defines a cardinality greater than 1.

<column name="fkProfile" required="true"
type="INTEGER" />
<foreign-key foreignTable="Profile">
<reference local=""fkProfile"
foreign="idProfile"/>
</foreign-key>

LISTING 13. Result of one-to-one rule to user-profile association.

The following fragment of code shows the result of apply-
ing the one-to-many Persistence M2T transformation rule
described in Section IV-A4 to the UML association between
Trip and Message classes where the fkTrip foreign
key is generated in Message table to link Message class
instances to a Trip class instance using idTrip primary
key. The approach to solve this pattern is analogous to the
pattern used in one-to-one relationships.

<column name="fkTrip" type="INTEGER" />
<foreign-key foreignTable="Trip">
<reference local="fkTrip" foreign="idTrip"/>
</foreign-key>e local=""fkProfile"
foreign="idProfile"/>
</foreign-key>

LISTING 14. Result of one-to-many rule to trip-message association.

The result of applying the many-to-many associa-
tion Persistence M2T transformation rule described in
Section IV-AS to the association between Trip and Group
UML classes is presented in the following excerpt of XML
code where the Group_ Trip table is created to relate Trip
and Group tables using idTrip and idGroup attributes
to link idTrip and idGroup primary keys of Trip and
Group tables respectively.

<table name="Group_Trip" isCrossRef="true">
<column name="idGroup" primaryKey="true"
type="INTEGER" />
<column name="idTrip" primaryKey="true"
type="INTEGER" />
<foreign-key foreignTable="Group"
name="Group_Trip">
<reference local="idGroup" foreign="idGroup"/>
</foreign-key>
<foreign-key foreignTable="Trip"
name="idTrip_Group">
<reference local="idTrip" foreign="idTrip"/>
</foreign-key>
</table>

LISTING 15. Result of many-to-many rule to trip-group.

5232

3) TEST CASES M2T TRANSFORMATION

The execution of the Test Case M2T transformation generates
the set of test cases that check the database access functional-
ity through the PHP classes generated during the Persistence
M2T transformation execution. As this code is intended to be
used during the application development, it is not located at
any production server node. However, it requires the classes
generated by the Persistence M2T transformation to access
database information.

As mentioned in Section IV-B, the result of generating
test cases for primitive type attributes is trivial; therefore,
we focus the explanation on the generation of test cases for
UML associations. The following fragment of PHP code for
the PHPUnit framework is the result of applying the Test
cases M2T transformation rule to the association between the
Trip and Agency classes.

$b->addTripMany (null, "cadenaprueba", "This_is_a.,
test, ,string", "This, is, a, test, string" ...)

LISTING 16. Result of test cases rule trip-agency association.

This transformation rule generates the addTripMany
function to check the addTrip function of Agency.

4) WEB SERVICE M2T TRANSFORMATION

The result of executing the Web Service M2T transformation
taking also the UML class model as input parameter generates
the script . php file which is in charge of processing ReST
API requests (e.g. POST/api/trip) using PHP classes
generated with the Persistence M2T transformation to imple-
ment WebApp business logic. This transformation generated
the source code for the Web Service Layer which is located
in the Web Service server node.

One of the goals of the Web Service layer of the WebApp
is the binding of the business logic to the CRUD operations
on the database as exposed in Section IV-C1.

The following excerpt of code shows a fragment of the
User PHP class generated from the UML class model.
It shows how the name of the User UML class model
is mapped to the name of the PHP class which extends
the UserBase PHP class that defines the set of functions
related to the persistence layer. In addition, properties, such
as $1dUser and those related to $one-to-one associa-
tions, are mapped to function parameters; for instance, the
Profile UML class defines SgustosProfile attribute.

class User extends BaseUser{
public function add($idUser, $Profile,
, SgustosProfile, SresidenciaProfile ...)

LISTING 17. Result of web service rule one-to-one user-profile
association.

The other goal of the Web service layer is binding
WebApp business logic to the ReST APIL. As mentioned
in Section IV-C2 no transformation is required because the
binding is defined via pattern matching.

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

5) PRESENTATION M2M AND M2T TRANSFORMATIONS
Finally, the execution of the Presentation layer source code
requires the execution of the Presentation M2M and Presen-
tation M2T transformations. While the Presentation M2M
transformation execution generates the model of the XHTML
documents containing CSS and JavaScript references; the
Presentation M2T transformation execution generates the
source code of the Presentation layer which is located in
the Presentation server node.

The application of the Presentation M2M and M2T trans-
formation rules to the class UML model generates the
WebApp presentation layer for the Polymer framework
exposed in Section IV-D.

The result of applying the class to Web form transformation
rules described in Section IV-D1 taking the User UML class
as input parameter is depicted in Figure 5.

UserlD

Birth date

mm/dd/yyyy

FIGURE 5. The polymer web component generated using the
FormElement transformation rule applied to the User UML class.

The WebApp navigation is generated using the transfor-
mation rules defined in Section IV-D2. The result of apply-
ing these rules to the User UML class model is shown in
Figure 6.

NEW USER

alex94

FIGURE 6. The polymer web component generated using the
VistaElement transformation rule applied to the user UML class.

The transformation definition that generates the UI capable
of associating and disassociating class instances is explained
in Section IV-D3. The result of applying these transformation
rules is depicted in Figure 7 and Figure 8, which show the Uls
generated for the many-to-many relationship between Trip
and Agency UML classes. While Figure 7 depicts the panel
to manage instance associations from the Trip UI, Figure 8
depicts the panel to manage instance associations from the
Agency UL

B. THE “ADD TRIP” TASK PERFORMANCE

This section explains how the “Add Trip” task is performed
through the multi-layer WebApp generated by the model
transformation architecture. Figure 9 shows an overview of
the execution sequence for “Add trip” task where users are

VOLUME 10, 2022

Agency

Add Agency

DELETE ASSIGNMENT

FIGURE 7. The Ul panel from the trip view.

Trip

FIGURE 8. The Ul panel from the agency view.

Add Trip

capable of publishing a trip showing the relationship between
Presentation, Web Service, and Database servers.

Under this scenario, users access The Travel Management
WebApp home page in the Presentation Server. To perform
the “Add Trip” task, they access the list of trips by clicking
on the Trip menu option on the left. As result of this action,
users access the list of Trips which is retrieved from the Web
Service server performing a GET request on the Web Ser-
vice server which processes the request using the Persistence
layer PHP code to access database information using SQL
SELECT.

To add a new trip, users click on the NEW TRIP button to
access the Web form to introduce the trip information. Once
the Web form information is set, users click on the SEND
button to POST the Web form information in JSON format as
part of the request body to the Web Service server. The Web
Service server processes the request using PHP Persistence
layer PHP code to perform an SQL INSERT command on
the database. As a result of this action, users are redirected to
the list of trips page retrieving the list of trips including the
new trip.

C. QUALITATIVE EVALUATION
This section exposes a qualitative evaluation of the results of
applying the proposed transformation architecture develop-
ment process to the case study.

Table 1 presents the results of running the process proposed
in Section III applying the transformation rules to the case
study which UML class diagram is depicted in Figure 4.

From the efficiency point of view, once the model trans-
formations are implemented, the applications development
time is limited to UML class diagram design because it is
incomparable to the time required by the code generation
process.

Assuming model transformations are fully implemented
and tested, the effectiveness of the generated Web applica-
tion is higher compared to a traditional development process
because it is less prone to errors. The main reason behind

5233

IEEE Access

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

GET faplitrip

http://127.0.0.1:8081/#itrip

POST /apiltrip
http

http

eb Service Server

http://127.0.94:8081 /#Inewtrip

Database Server

Legend
Navigation

Http request

http://127.0.0.1:8081/#itrip

Presentation Server

FIGURE 9. The overview of the “add trip” task performed on the
multi-layer web application generated with the proposed model
transformation architecture.

TABLE 1. The travel management WebApp case study software artifacts
generation.

Software artifact Quantity
Database tables (persistence layer) 10
Web service layer PHP files 6
Web service layer functions 60
Persistence unit test PHP files 6
Persistence unit test layer unit tests 31
Presentation layer data-bindings 14
Presentation layer lists 11
Presentation layer Web components 25

this statement is the lack of developer interventions in the
process because applications developed using this proposal,
are automatically generated. Moreover, transformation cor-
rections are automatically propagated to both, past and future
developments due to automatic application regeneration.

Finally, this proposal improves the UI properties such as
consistency and homogeneity since automatic code genera-
tion enable Ul generation in a systematic way, avoiding the
inconsistencies inherited from the traditional manual devel-
opment process.

VI. DISCUSSION
The novelty of our approach is the definition of a model
transformation architecture capable of generating full stack

5234

WebApps source code at three different layers (persistence,
web service, and presentation) and additionally, test cases;
unlike most proposals which address one or two layers
(e.g. persistence, web service and presentation, only presen-
tation, etc.). In addition, our proposal provides a set of tools
(i.e. Eclipse plugins) capable of managing model transforma-
tions and multi-layer integration which is also inter-operable
with third party tools following OMG MDA standards.

The MDD has been extensively explored in the software
engineering research area. The authors of [61] present a sys-
tematic literature review (SLR) between 2009 and 2019 ana-
lyzing MDD proposals that generate source code.

As a result of this SLR, they state that UML is the most
commonly used modeling language to represent software
models. It validates the widely use of UML class models to
model the application to be developed unlike other proposals
that use other languages (e.g. WebML [62] is used in [63]
to create Web application models). The advantages of using
a popular and well-known modeling language are the ease of
learning this language and the reuse tools and design patterns,
which significantly reduce the applications design time [64].
The SLR also highlights that the most used abstraction layers
in MDA that generate source code are the PIM and PSM lay-
ers, which are the ones that are implemented in this proposal.

The analysis of existing proposals performed in section II
shows the main shortcomings identified. Table 2 shows a
comparison of the proposals analysed regarding the lan-
guages used, whether they comply with international stan-
dards or not, and the layers they generate.

At the end of the table, we show the features corresponding
to the proposed solution. As we can see, most proposals only
generate one or two layers whereas our approach covers the
three layers. In addition, it is based on OMG MDA standard,
as many others, and uses UML as main language. Some of
the proposals are limited to the generation of the presentation
layer source code only. They do not generate any source
code for the data access or Web services layers. Unlike this
proposal, they lack of a comprehensive integrated solution
does not enable the automatic generation of the association
between layers.

In summary, the main shortcomings found in existing pro-
posals are that none of them addresses the generation of
the three layers, others does not comply with international
standards, and others lack of multi-layer integration. Other of
the main limitations of existing proposals compared to the
one presented in this article is the lack of interoperability
at both, design-time and run-time. The proposal we present
goes beyond the current state of the art by addressing these
shortcomings in an integrated way, with the generation of the
three layers: presentation, web service and persistence, and
an additional test case layer,following a well-defined model
transformation architecture.

Among the limitations of the proposal, we can high-
light the lack of a customization mechanism for the user
interface labels generated, as it takes the labels from the
Class diagram.

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

TABLE 2. Comparison of existing proposals.

Proposals Languages Standard Presentation | Web Service | Test Case | Persistence
Compliance Layer Layer Layer Layer
[21] WSDL w3C * *
[22] WADL w3C * *
[25] WSDL MDA * *
[27] UML Profiles MDA *
[28] UML Profiles/Java MDA * *
[29] UML Profiles/Java MDA * *
[30] UML Profiles MDA * *
[31] UML Profiles MDA * *
[32] UML Profiles/Angular]JS MDA * ?
[33] WS-BPEL W3C ? *
[34] Spreadsheet Monolithic
[35] UML MDA Android
[37] RIA *
[38] MDA Android
[39] DSL MDA *
[43] DSL MDA *
[41] DSL MDA *
[44] DSL MDA * *
[45] ASP.NET * *
[46] UML/XML/PHP W3C/MDA * *
[48] UML MDA * *
Proposed UML MDA * " % *
Solution

Another limitation is that the generation of the Persistence
Layer currently only supports the Relational Database Man-
agement System (DBMS), concretely, MySQL. In addition,
the generation of the Web service layer has been developed
to support only ReST services using JSON.

The last limitation regards the generation of the Presenta-
tion layer, which only supports Polymer and JavaScript.

VII. CONCLUSION

This proposal defines a MDA based transformation archi-
tecture that supports the MDD framework for the automatic
generation of three-layer WebApps (i.e., Persistence, Web
services, and Presentation layers) following OMG standards.
To meet this goal, a set of three M2T transformations is
presented in ACCELEO as well as a M2M transformation in
ATL that guide the development process using a single UML
class model as input parameter.

The generated applications employ a client-server architec-
ture where the server-side of the system is in PHP and client-
side in HTML and JavaScript. The resulting applications
implement a persistence layer with the Propel framework as
an Object Relational Mapping (ORM) broker for the MySQL
DBMS. In addition, these applications are equipped with a
Web service layer that defines an API following a ReST
service architecture using JSON. This layer communicates
with the Persistence layer so that the generated application
has a high interoperability capability with third-party run-
time systems. In turn, the generated applications define a
presentation layer implemented with the Polymer framework
that connects to the Web service layer to access the system
database.

From a development point of view, the set of tools pre-
sented in this proposal follows the OMG MDA standards

VOLUME 10, 2022

ensuring a great interoperability at design-time as well as and
optimal integration with third-party tools. As a demonstration
of the integration capability of the developed tools, they are
integrated into the Eclipse integrated development environ-
ment using the Eclipse Papyrus plugin to define the UML
class model representing the application to be developed and
used as input parameter of model transformations.

Another issue that demonstrates the integration capability
of the proposal is the use of a M2M transformation that
generates a TagML model, rather than a single M2T transfor-
mation that generates text, simplifying the XML document
generation process while ensuring its robustness.

A case study presenting how the proposed model trans-
formation architecture is used to validate the proposal
and develop the multi-layer Travel Agency Management
WebApp. This case study shows how the transformation rules
generate the WebApp source code using a UML Class model
as a transformation input parameter. In addition, this case
study presents how the generated source code interact with
the Persistence, Web Service and Presentation layers of the
application to perform the “Add Trip” task.

Finally, several research lines are open as future works. The
first of them is the development of model transformations to
enable the use of different technologies associated to differ-
ent application layers. For example, in the persistence layer,
we consider the definition of a transformation to generate the
source code required to replace relational database manage-
ment system by a non-relational database manager (NoSQL)
such as MongodDB.

We are also exploring the ability to generate a
SOAP-based Web services layer that employs XML, instead
of JSON, to improve the system interoperability at run-time,
e.g. to communicate with legacy systems. Moreover, we are

5235

IEEE Access

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

considering the development of model transformations

that

(e.g.

use different technologies for the presentation layer
Angular]S). In addition, we are also exploring the

feasibility of generating source code for different mobile
platforms, such as Android or iOS.

REFERENCES

(1]

[2]

[6]
[71
[8]

[9

[t

[10]
[11]
[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

5236

R. T. Fielding, “ReST: Architectural styles and the design of network-
based software architectures,” Ph.D. dissertation, Dept. Inf. Comput. Sci.,
Univ. California, Irvine, CA, USA, 2000.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn,
H. Nielsen, S. Thatte, and D. Winer. (2000). Simple Object Access
Protocol (SOAP) 1.1. Accessed: Dec. 01, 2021. [Online]. Available:
http://www.w3.org/TR/soap

Object Management Group (OMG). Accessed: Dec. 01, 2021. [Online].
Available: http://www.omg.org

S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA Distilled. Reading,
MA, USA: Addison-Wesley, 2004.

J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language
Reference Manual, 2nd ed. London, U.K.: Pearson, 2004.

M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling
Language, 3rd ed. Reading, MA, USA: Addison-Wesley, 2003.

Oracle. MySQL. Accessed: Dec. 01, 2021. [Online]. Available: https://
www.mysql.com/

PostgreSQL. Accessed: Dec. 01, 2021. [Online]. Available: https:/
www.postgresql.org/

Microsoft. SQLServer. Accessed: Dec. 01, 2021. [Online]. Available:
https://www.microsoft.com/es-es/sql-server

MongoDB. Accessed: Dec. 01, 2021. [Online]. Available: https://www.
mongodb.com

S. Bergmann. PHPUnit. Accessed: Dec. 01, 2021. [Online]. Available:
https://phpunit.de/

OpenJS. Mocha. Accessed: Dec. 01, 2021. [Online]. Available: https://
mochajs.org/

K.-M. Chung, JavaServer Pages 2.3 Specification. Santa Clara, CA, USA:
Oracle. 2013.

PHP. Accessed: Dec. 01, 2021. [Online]. Available: https://www.php.net/
E. Burns and M. Riem, JavaServer Faces Specification. Santa Clara, CA,
USA: Oracle, 2017.

Google. Angular JS. Accessed Dec. 01, 2021. [Online]. Available:
https://angular.io/

E. You. Vue.js The Progressive Javascript Framework. Accessed:
Dec. 01, 2021. [Online]. Available: https://vuejs.org/

Google. Material. Accessed: Dec. 01, 2021. [Online]. Available: https://
material.io/

TP Group. Polymer. Accessed: Dec. 01, 2021. [Online]. Available: https://
www.polymer-project.org/

Eclipse. Eclipse IDE. Accessed: Dec. 01, 2021. [Online]. Available:
http://www.eclipse.org

M. Kassoff, D. Kato, and W. Mohsin, “Creating GUIs for web services,”
IEEE Internet Comput., vol. 7, no. 5, pp. 66-73, Sep. 2003.

J. Spillner, M. Feldmann, I. Braun, T. Springer, and A. Schill, “Ad-hoc
usage of web services with Dynvoker,” in ServiceWave: Towards a
Service-Based Internet (Lecture Notes in Computer Science), vol. 5377,
P. Mihonen, K. Pohl, and T. Priol, Eds. Berlin, Germany: Springer, 2008,
pp. 208-219.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. (2001).
Web Services Description language (WSDL) 1.1, W3C, Accessed:
Dec. 01, 2021. [Online]. Available: http://www.w3.org/TR/wsdl

M. Hadley, “Web application description language (WADL),” Sun
Microsystems, Santa Clara, CA, USA, Tech. Rep. TR-2006-153,
Apr. 2006.

M. Feldmann, G. Hubsch, T. Springer, and A. Schill, “Improving task-
driven software development approaches for creating service-based inter-
active applications by using annotated web services,” in Proc. 5th Int. Conf.
Next Gener. Web Services Practices, Sep. 2009, pp. 94-97.

F.P. Marzullo, J. M. D. Souza, and J. R. Blaschek, “A domain-driven devel-
opment approach for enterprise applications, using MDA, SOA and web
services,” in Proc. 10th IEEE Conf. E-Commerce Technol., 5Sth IEEE Conf.
Enterprise Comput., E-Commerce E-Services, Jul. 2008, pp. 432-437.

(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(39]

[40]

(41]

[42]

(43]

[44]

(45]

[46]

[47]

S. A. Mubin and A. H. Jantan, “A UML 2.0 profile web design frame-
work for modeling complex web application,” in Proc. 6th Int. Conf. Inf.
Technol. Multimedia, Nov. 2014, pp. 324-329.

Y.-C. Huang, C.-P. Chu, Z.-A. Lin, and M. Matuschek, “Transformation
from web PSM to code,” in Proc. Int. Conf. Distrib. Multimedia Syst.
(DMS), 2009, pp. 1-4.

M. Kataria, R. Yadav, and A. Khunteta, “A component-centric UML based
approach for modeling the architecture of web applications,” Int. J. Recent
Res. Rev., vol. 5, pp. 22-27, Mar. 2013.

I.-C. Hsu, “Visual modeling for web 2.0 applications using model driven
architecture approach,” Simul. Model. Pract. Theory, vol. 31, pp. 63-76,
Feb. 2013.

S. Kaewkao and T. Senivongse, “A model-driven development of web-
based applications on Google app engine platform,” in Proc. 10th Nat.
Conf. Comput. Inf. Technol. (NCCIT), 2014, pp. 140-145.

W. Chansuwath and T. Senivongse, ‘A model-driven development of web
applications using AngularJS framework,” in Proc. IEEE/ACIS 15th Int.
Conf. Comput. Inf. Sci. (ICIS), Jun. 2016, pp. 1-6.

V. D. Pillai, “Development of a novel software architecture for active
internet applications based on fusion of mobile agent, web services and
BPEL technologies,” in Proc. IEEE Int. Conf. Web Services, Jul. 2010,
pp. 652-653.

K. Shiohara and X. Chen, “A concept of extending spreadsheet cell
functions for web application development based on a cloud platform,” in
Proc. IEEE Workshop Adv. Res. Technol. Ind. Appl. (WARTIA), Sep. 2014,
pp. 1362-1365.

A. Sabraoui, M. E. Koutbi, and I. Khriss, “GUI code generation for
Android applications using a MDA approach,” in Proc. IEEE Int. Conf.
Complex Syst. (ICCS), Nov. 2012, pp. 1-6.

M. Lettner and M. Tschernuth, “Applied MDA for embedded devices:
Software design and code generation for a low-cost mobile phone,” in
Proc. IEEE 34th Annu. Comput. Softw. Appl. Conf. Workshops, Jul. 2010,
pp. 63-68.

S. Roubi, M. Erramdani, and S. Mbarki, “Modeling and generating
graphical user interface for MVC rich internet application using a model
driven approach,” in Proc. Int. Conf. Inf. Technol. Organizations Develop.
(IT40D), Mar. 2016, pp. 1-6.

J. D. Monte-Mor, E. O. Ferreira, H. F. Campos, A. M. da Cunha, and
L. A. V. Dias, “Applying MDA approach to create graphical user inter-
faces,” in Proc. 8th Int. Conf. Inf. Technol., New Gener.,, Apr. 2011,
pp. 766-771.

Z.Morales, C. Magaria, J. A. Aguilar, A. Zaldivar-Colado, C. Tripp-Barba,
S. Misra, O. Garcia, and E. Zurita, “A baseline domain specific lan-
guage proposal for model-driven web engineering code generation,” in
Proc. Comput. Sci. Appl. (ICCSA), O. Gervasi, B. Murgante, S. Misra,
A.M. A. Rocha, C. M. Torre, D. Taniar, B. O. Apduhan, E. Stankova,
S. Wang, Eds. New York, NY, USA: Springer, 2016, pp. 50-59.

G. Sebastian, R. Tesoriero, and J. A. Gallud, ‘““Modeling language-learning
applications,” IEEE Latin Amer. Trans., vol. 15, no. 9, pp. 1771-1776,
Aug. 2017.

G. Sebastian, R. Tesoriero, and J. A. Gallud, “Automatic code generation
for language-learning applications,” IEEE Latin Amer. Trans., vol. 18,
no. 8, pp. 1433-1440, Aug. 2020.

R. Tesoriero, “Distributing user interfaces,” in Proc. Workshop Dis-
trib. User Interfaces Multimodal Interact. Toulouse, France: ACM, 2014,
pp. 1-10.

R. Tesoriero and A. H. Altalhi, ““Model-based development of distributable
user interfaces,” Universal Access Inf. Soc., vol. 18, no. 4, pp. 719-746,
Nov. 2019.

G. Sebastidan Rivera, R. Tesoriero, and J. A. Gallud, “Model-based
approach to develop learning exercises in language-learning applications,”
IET Softw., vol. 12, no. 3, pp. 206-214, Jun. 2018.

H. Benouda, M. Azizi, M. Moussaoui, and R. Esbai, “Automatic code
generation within MDA approach for cross-platform mobiles apps,” in
Proc. Ist Int. Conf. Embedded Distrib. Syst. (EDiS), Dec. 2017, pp. 1-5.
O. Betari, M. Erramdani, S. Roubi, K. Arrhioui, and S. Mbarki, “Model
transformations in the MOF meta-modeling architecture: From UML to
Codelgniter PHP framework,” in Proc. Eur. MENA Cooperation Adv. Inf.
Commun. Technol., A. Rocha, M. Serrhini, and C. Felgueiras, Eds. New
York, NY, USA: Springer, 2017, pp. 227-234.
Codelgniter. Accessed: Dec. 01, 2021.
https://codeigniter.com/

[Online]. Available:

VOLUME 10, 2022

R. Tesoriero et al.: Transformation Architecture for Multi-Layered WebApp Source Code Generation

IEEE Access

[48] M. Rahmouni and S. Mbarki, “Model-driven generation: From models to
MVC2 web applications,” Int. J. Softw. Eng. Appl., vol. 8,no. 7, pp. 73-94,
Jul. 2014.

[49] Eclipse. ACCELEO Transformation Language. Accessed: Dec. 01, 2021.
[Online]. Available: https://www.eclipse.org/acceleo/

[50] F.Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transfor-
mation tool,” Sci. Comput. Program., vol. 72, nos. 1-2, pp. 31-39, 2008.

[51] Eclipse. ATLAS Transformation Language. Accessed: Dec. 01, 2021.
[Online]. Available: https://www.eclipse.org/atl/

[52] R. Tesoriero, G. Sebastian, and J. A. Gallud, ‘“TagML—An implementa-
tion specific model to generate tag-based documents,” Electronics, vol. 9,
no. 7, p. 1097, Jul. 2020, doi: 10.3390/electronics9071097.

[53] Eclipse. Papyrus. Accessed: Dec. 01, 2021. [Online]. Available: https://
eclipse.org/papyrus/

[54] OMG Unified Modeling Language (OMG UML), Superstructure,
Ver. 2.4.1, Object Management Group, Needham, MA, USA, Aug. 2011.

[551 XML Metadata Interchange (XMI) Specification Ver. 2.5.1, Object Man-
agement Group, Needham, MA, USA, Jun. 2015.

[56] Meta Object Facility (MOF) Core Specification. Ver. 2.5.1, Object Man-
agement Group, Needham, MA, USA, Oct. 2019.

[57] E. Zaninotto, W. Durand, H. Hamon, M. J. Schmidt, J. Augustin,
T. Uebernickel, C. Cinotti, R. Dupret, M. Staab, and M. Scholten. Propel.
Accessed: Dec. 01, 2021. [Online]. Available: http://propelorm.org/

[58] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “RFC2616: Hypertext transfer protocol-HTTP/1.1,”
Tech. Rep. 2616, 1999.

[59] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Reading, MA,
USA: Addison-Wesley, 1994.

[60] Bower. Accessed: Dec. 01, 2021. [Online]. Available: https://bower.io/

[61] G. Sebastidn, J. A. Gallud, and R. Tesoriero, “Code generation using
model driven architecture: A systematic mapping study,” J. Comput. Lang.,
vol. 56, Feb. 2020, Art. no. 100935.

[62] S. Ceri, P. Fraternali, and A. Bongio, “Web modeling language (WebML):
A modeling language for designing web sites,” Comput. Netw., vol. 33,
nos. 1-6, pp. 137-157, Jun. 2000.

[63] G. Zhuang and J. Du, “MDA-based modeling and implementation of
E-commerce web applications in WebML,” in Proc. 2nd Int. Workshop
Comput. Sci. Eng., vol. 2, 2009, pp. 507-510.

[64] H. M. Fardoun, R. Tesoriero, G. Sebastian, and N. Safa, “A simplified
MbUID process to generate web form-based Uls,” in Proc. 13th Int. Conf.
Softw. Technol. Setibal, Portugal: SciTePress, 2018, pp. 801-808.

RICARDO TESORIERO received the Ph.D.
degree from the University of Castilla-La Man-
cha (UCLM), Spain. He performed a postdoc-
toral stay at the Universite Catholique de Louvain
(UCL), Louvain-La-Neuve, Belgium, where he
conducted research activities within the model-
driven development of user interfaces research
field. He has published more than 70 research
articles in international conferences and journals.
He has participated in several scientific commit-
tees of international conferences and workshops, including Distributed User
Interfaces (DUI), Interaction, ISEC, and IADIS/WWW (La Web). His main
research interests include the model-driven development of user interfaces
and context-aware applications in ubiquitous computing environments.

VOLUME 10, 2022

ALEJANDRO RUEDA received the degree in com-
puter science and engineering from the University
of Castilla-La Mancha, Albacete, Spain, in 2017.
Currently, he is an Application Security Analyst at
Deloitte, Madrid, Spain. His main research inter-
ests include the development of web applications,
including both front-end and back-end as well
as the use of model-driven development of web
applications.

JOSE A. GALLUD received the M.Sc. degree in
computer science from the University of Mur-
cia and the Ph.D. degree in computer science
from the Polytechnic University of Valencia.
He is an Associate Professor at the University
of Castilla-La Mancha. He co-leads the Interac-
tive Systems Engineering (ISE) Research Group,
Albacete Research Institute of Informatics. His

. main research interests include human—computer
' A interaction, software engineering, development of
interactive systems, and distributed user interfaces. He has published more
than 100 scientific papers in these areas, disseminated in journals, and
international conferences books and chapters. He has participated in the orga-
nization of numerous national and international conferences in these research
areas as the technical program chair, the Technical Program Member, and an
Organizing Committee Member.

MARIA D. LOZANO received the M.Sc. and
Ph.D. degrees in computer science from the Poly-
technic University of Valencia, Spain. She has
been an Associate Professor at the University of
Castilla-La Mancha, since 2003. She co-leads the
Interactive System Engineering (ISE) Research
Group, Albacete Research Institute of Informat-
ics. She is an author of more than 100 papers in
indexed journals and international conference. Her
teaching and research interests include software
engineering and human—computer interaction. Her research interests include
natural user interfaces, tangible user interfaces, affective computing, and user
experience. She has served as the chair and a member for different program
committees of national and international conferences.

P

ANIL FERNANDO (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in electron-
ics and telecommunications engineering from the
University of Moratuwa, Sri Lanka, in 1995, the
M.Sc. degree (Hons.) in telecommunications from
the Asian Institute of Technology (AIT), Thailand,
. in 1997, and the Ph.D. degree in video coding
from the Department of Electrical and Electronic
Engineering, University of Bristol, U.K., in 2001.
He was a Reader with the University of Surrey,
U.K.; a Senior Lecturer with Brunel University London, U.K., and an Assis-
tant Professor with the AIT. He is currently a Professor of video coding
and communications at the University of Strathclyde, Glasgow, U.K., and a
Visiting Professor at the University of Surrey. He has authored over 350 inter-
national publications in video coding, machine learning, communications,
and signal processing. His research interests include video coding and com-
munications, machine learning and Al solutions for industrial applications,
quality of experience modeling, autonomous systems, and 5G/6G application
developments. He is a fellow of the Higher Education Academy, U.K., and
a member of EPSRC College, U.K.

5237

http://dx.doi.org/10.3390/electronics9071097

