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ABSTRACT User-generated data are extensively utilized in learning to rank as they are easy to collect
and up-to-date. However, the data inevitably contain noisy labels attributed to users’ annotation mistakes,
lack of domain knowledge, system failure, etc., making building a robust model challenging. On account of
the remarkable nature of deep neural networks in fitting datasets, the noisy labels significantly degrade the
performance of learning-to-rank algorithms. To cope with this problem, previous studies have put forward
several methods for label de-noising. However, they are either susceptible to the noise distribution on
datasets, raising the demand for clean data or incurringmore computational costs.Moreover, most of them are
tough to extend to different scenarios. This paper proposes a simple yet effective framework named PeerRank
that can be applied in broad applications such as click-through rate prediction and commercial web search
in learning-to-rank tasks. PeerRank is a robust, effective, and adaptable framework that can couple with
numerous models with theoretical guarantees. Extensive experiments on three public real-world datasets
with thirteen point-wise base models and four semi-synthetic generation datasets with four pair-wise base
models show the consistent improvement of PeerRank. The results comparing PeerRank with seven classic
and state-of-the-art de-noising methods validate the advantages of PeerRank framework for learning to rank
over noisy labels.

INDEX TERMS Learning to rank, noisy labels, robustness.

I. INTRODUCTION
Learning to rank (LTR) approaches heavily rely on the
large-scale labeled data to build ranking models. Edito-
rial labeled training data that requires experts to annotate
is time-consuming and costly to obtain. Thus, more and
more research works use user-generated data, which are eas-
ily accessible and up-to-date, to train ranking models [1].
However, user-generated data inevitably contain noise for
many reasons [2]. For example, the vague definition of rel-
evance levels or the lack of domain knowledge makes it
difficult for the users to give a reliable label to each data point.
Xu et al. [3] proved that label noise in training data, no matter
being randomly generated or existing in real-world data, can
significantly degrade the performance of LTR algorithms.
Fig. 1 shows an example to elaborate how noisy labels affect
the ranking results. Suppose there are four items in candidate
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pool where x1, x2, x3 are relevant items while x4 is not.
However, x2 is observed as irrelevant from user interactions,
i.e., noisy data point. Thus, the ranking model learned from
the noisy data probably ranks the items as π̃ :〈x1, x4, x3, x2〉,
which brings about a decrease of metric values compared
with the ranking result π :〈x1, x2, x4, x3〉 from the clean data.
If we consider a longer ranking list, a noisy interaction on a
single item will lead to a large number of mislabeled pairs,
which deteriorates overall ranking performance [4]. Making
it worse, the state-of-the-art (SOTA) performance of LTR is
achieved by deepmodels [5]–[7], where deep neural networks
are more likely to fit noisy labels than traditional lower-rank
ranking algorithms [8]. A robust model, defined as one that
can tolerate perturbations in the data, is urgently needed to
address the issues.

In the literature, several solutions have been proposed for
designing a robust model and label de-noising. Recently,
some works train models that are invulnerable to out-
liers by developing robust loss functions [9]–[13], applying
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FIGURE 1. An example illustrating how noisy labels affect ranking results.
A model learned from noisy data will perform inferior.

regularization techniques [14]–[17] or selecting reliable sam-
ples [3], [18]–[22]. However, methods of these types either
are significantly affected by the changes in noise distribu-
tion [23], improve marginally [24] or carry the risk of elimi-
nating clean data [2], [23].

This paper proposes a novel framework, named PeerRank,
that can be easily applied to a broad class of applications
with noisy labels in LTR. The PeerRank framework is built
on the Peer Loss [25], which deals with noisy labels in binary
classification tasks. LTR can bemapped to classification tasks
if we consider whether an item is relevant to a user or not,
corresponding to point-wise LTR approaches, or whether an
item is more relevant than another one, corresponding to pair-
wise LTR approaches. PeerRank constructs a peer sample for
each training instance. It trains a ranking model based on
Peer Loss with both observed data samples and peer samples.
The principle is that a model trained based on Peer Loss with
observed samples and peer samples is equivalent to a model
trained based on empirical risk minimization (ERM) with
clean data. As the properties of Peer Loss [25], which can be
used as the point-wise LTR loss function, have been discussed
in the original paper, we extend its properties to pair-wise
approaches. Notice that the pair-wise unified framework is
slightly different from that in point-wise cases. Considering
the characteristics of the real-world data, we give the range
of the hyper-parameter, which is missing from the original
paper. More details can be found in Section IV. To the extent
of our knowledge, this is the first time Peer Loss has been
applied in LTR applications with solid theoretical guarantees.

PeerRank inherits a bunch of merits. Firstly, it can posi-
tively adapt to different data distributions and varying degrees
of data noise without prior knowledge of the noise rate.
Secondly, it can easily fit different LTR algorithms, refer-
ring to either point-wise or pair-wise and some list-wise
approaches. The framework is relatively simple and general,
requiring no dedicated architecture design for each algorithm
or dataset. Thirdly, it does not restrict any specific ERMmeth-
ods, so a wide range of loss functions is applicable. Finally,
we theoretically prove that PeerRank has the properties of
robustness and effectiveness, which are essentially desired by
all de-noising approaches.

We conduct extensive and comprehensive quantified
experiments to testify that PeerRank is easy to couple with
thirteen SOTA point-wise and four pair-wise approaches

and achieves better performance than those LTR approaches
without PeerRank. We empirically prove the advantages of
PeerRank over seven classic and SOTA de-noising methods.
We also find the boundaries for the only hyper-parameter of
PeerRank. Besides, we explore the effect of noise rate on the
performance of PeerRank. And we do further experiments
comparing PeerRank with some SOTA de-biasing methods.

II. RELATED WORK
A. LEARNING-TO-RANK APPROACHES
LTR algorithms include point-wise, pair-wise and list-wise
approaches. In point-wise approaches, many SOTA models
focus on feature interactions design, such as DeepFM [26],
PNN [27], DCN [28], xDeepFM [29], DCN-M [6] and
AutoInt [5]. Other models try to capture users’ sequen-
tial interest patterns, including GRU4Rec [30], Caser [31],
SASRec [32], MIMN [33], HPMN [34], DIN [35] and
DIEN [36]. In pair-wise approaches, SVMRank [37] is the
pioneer to transform ranking tasks to classification tasks.
RankNet [38] and LambdaRank [39] act as the foundation
of other algorithms, e.g., DirectRanker [7] generalizes the
RankNet architecture. List-wise approaches [40]–[42] opti-
mize evaluation measures of the entire list. Though these
algorithms achieve remarkable results, model robustness is
not taken into account.

B. DE-NOISING APPROACHES
Several previous robust training methods have been proposed
for label de-noising [24]. Whereas most of them are applied
in computer vision, and few are involved in information
retrieval (IR).

Most of the works try to design a robust loss function.
GCE [10], TCE [12] and SCE [11] are proposed based on
mean absolute error and categorical cross-entropy to exploit
the advantages of their robustness, fast convergence, and
generalization [9]. Some adjustments to the loss functions
improve robustness. For example, BootStrap (BS) [13] uses
label refurbishment to update the training labels. Regulariza-
tion [14]–[17] is utilized to prevent a model from over-fitting
noisy labels. e.g., Label Smoothing (LS) [17] estimates the
marginalized effect of label noise during training to prevent
the neural network from fully calculating the loss of noisy
training samples.

Sample selection is another widely used method trying to
distinguish and remove noisy data samples to pursue robust
learning. For example, Co-teaching (CT) [20] selects sam-
ples with low losses and feeds them to another network for
further training. The noise rate (denoted as τ in CT [20]) is
required for hyper-parameter setting. Reweight [2] contains
two dedicated steps to calculate the probability of a label
being noisy in the first step and reweight the loss in the second
step. Similar ideas can be found in [3], [18], [19], [21]–[23].

However, several drawbacks exist in the methods men-
tioned above. The loss function design methods are sensi-
tive to the changes in noise distribution [23], which greatly
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reduces their applicability. Since the definition of a clean
sample is vague [2], [23], sample selection methods may
eliminate numerous clean and sound samples while excluding
noisy and unreliable samples. Other works applying meta-
learning [23], [43], [44] or semi-supervised learning [45]
either require a certain amount of clean data that may
be unavailable in real-world scenarios or bring about an
inevitable increase in computational cost [24].

In view of all these limitations, we develop amore effective
and more applicable method, named PeerRank, to deal with
noisy training data for LTR based on Peer Loss [25], a new
family of loss functions that copes with noisy labels in binary
classification tasks without prior knowledge of the noise rate.
Wide ranges of algorithms can be further improved with
our proposed PeerRank framework. In this paper, we exam-
ine how PeerRank takes effect on three branches of LTR
approaches.1 We prove theoretically and empirically that
PeerRank is more robust and effective for ranking with noisy
labels than the existing approaches.

III. PRELIMINARY
A. PROBLEM SETUP
We denote the clean dataset as D = (X ,Y ) where X rep-
resents the features of instances, and Y represents the clean
labels of the instances. Each sample in D is independently
and identically drawn from an implicit data distribution D,
i.e., D ∼ D. The objective of LTR is to give a permutation of
n itemswhere the items that the user is interested in are ranked
ahead. Denote the permutation that optimally coincides with
the user’s interests as π∗. Let π (·) be the permutation pro-
duced by a ranking model with n input items. The ranking
objective is to minimize the ranking risk [47] measuring the
gap between π (·) and π∗:

ED[`(π (X1,X2, . . . ,Xn), π∗)], (1)

where ` is a loss function measuring the distance between
π (·) and π∗. The objective can be instantiated in three dif-
ferent LTR approaches. We mainly focus on the point-wise
and pair-wise approaches widely used in commercial search
engines to illustrate our proposed PeerRank framework. Peer-
Rank is also applicable to specific list-wise algorithms that
optimize the entire list but are trained in a pair-wise mode,
such as LambdaRank [39].

In real world, however, only the observed data are
available which contain both clean and noisy labels, i.e.,
D̃ = (X , Ỹ ) ∼ D̃ where Ỹ can be clean or noisy. Follow-
ing [25], we define error transition probabilities as

e+ = Pr(Ỹ = −1|Y = +1),

e− = Pr(Ỹ = +1|Y = −1), (2)

1Algorithms like LambdaRank [39] and LambdaMART [46] can be
viewed as list-wise approaches as they consider the whole rank, but they
learn in a pair-wise mode. We advocate that list-wise algorithms with such
property can be optimized with our PeerRank framework.

where e+(e−) represents the probability of samples that
should be positive (negative) are observed as negative
(positive).

In the field of IR, for each user, the observed data is D̃ =
{(xi, ci)ni=1} where a sample xi ∈ X contains the features
of the user, an item, and context, and ci = {0, 1} indicates
whether the item is clicked (1) or not (0).

1) POINT-WISE APPROACH
The point-wise approach learns a scoring function that takes
the feature vector of an instance as input

f (xi) ≡ f2(xi), (3)

where 2 is the model parameters. f predicts the relevance
of the current item to the user. All items are then ranked
according to the inferred scores from the learned scoring
function.Without loss of generality, we adopt the widely used
logistic regression to calculate the probability h(xi) that the
target item i is relevant,

h(xi) =
1

1+ e−σ f (xi)
, (4)

where σ is the shape parameter. A higher h(xi) yields a higher
ranking of the item. The objective of the model is to minimize
the ranking risk

E(X ,Y )∼D[`(h(X ),Y )] (5)

point-wisely, where ` denotes the loss function. As click ci
serves as the label in point-wise approach, i.e., ỹi = ci, noise
in clicks directly influences the performance of the algorithm.

2) PAIR-WISE APPROACH
The goal of the pair-wise LTR approach is to minimize the
number of misclassified item pairs [46], [48]. Any two can-
didate items, i1 and i2, are paired to form a training instance
(xi1 , xi2 , ỹi) where the pair label ỹi = ci1 > ci2 indicates
the pair-wise preference and we use Yi to denote the pair
labels. The classifier h(xi1 , xi2 ) outputs the probability of item
i1 being more relevant than item i2 to the user as

h(xi1 , xi2 ) =
1

1+ e−σ (f (xi1 )−f (xi2 ))
, (6)

where f is a linear [37] or non-linear [7], [39], [46] scoring
function as in (3), excepting some algorithms like Greedy-
Order [49]. The ranking model tries to minimize the ranking
risk

E(Xi1 ,Xi2 ,Yi)∼D[`(h(Xi1 ,Xi2 ),Yi)] (7)

pair-wisely. The influence of noisy clicks is more severe in
the pair-wise setting than in the point-wise setting since one
noisy click incurs O(n) noisy pair labels.

B. PEER LOSS FUNCTION
Peer Loss is proposed in [25], which can be served as a robust
loss function to deal with noisy training data without the prior
knowledge of the noise rate.
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Definition 1: Given classifier h and instance (xi, ỹi),
we randomly sample two additional instances (xj, ỹj), (xk , ỹk )
from D̃ to form a peer sample (xj, ỹk ). The peer loss function
is defined as

`peer(h(xi), ỹi) = `(h(xi), ỹi)− `(h(xj), ỹk ). (8)

Peer Loss draws inspiration from peer prediction, which
is a method to truthfully elicit information from different
sources with no ground truth verification. The noisy labels
and classifier outputs are treated as two sources of infor-
mation, and clean labels are treated as the information to
elicit. The Peer Loss is served as a scoring function from
peer prediction literature [50], [51] to evaluate the quality of
information source, i.e., the model outputs. Intuitively speak-
ing, the second term represents how well the model predicts
artificially created noise labels and consequently ‘‘punishes’’
models that predict noise well.

IV. PeerRank METHOD AND ANALYSIS
This section presents our framework, named PeerRank,
which is robust to unexpected noise in the training data.
We firstly explain the general idea of PeerRank. Whereafter,
the robustness, effectiveness, and adaptability of PeerRank
are proven theoretically.

The structure of our framework is displayed in Fig. 2.
A traditional LTR algorithm feeds the feature vector xi into a
model, which might include hidden layers and a prediction
layer. Then, the model outputs the ranking score for each
item. In traditional LTR, the model is learned by optimizing
the loss function `(h(xi), ỹi). In PeerRank, we construct a peer
instance (xpeer, ỹpeer) for each input in the batch training data.
Both the features of batch training data xi and the features of
generated peer instances xpeer will be fed into the network, the
predicted values of which are h(xi) and h(xpeer), respectively.
The model is learned by optimizing the peer loss function as
shown in Fig. 2 where the peer instances are used to compute
the second term in the loss function.

The generation of peer instances is illustrated in Fig. 3.
For each sample (xi, ỹi) used in a point-wise approach,
we randomly and uniformly sample another two instances
(xj, ỹj), (xk , ỹk ) from the batch data where the feature vec-
tor of the first instance xj and the label of the second
instance ỹk are assembled as the peer instance (xj, ỹk ). In the
pair-wise approach, for each input (xi1 , xi2 , ỹi), the peer
instance (xj1 , xj2 , ỹk ) is assembled from the two instances,
i.e., (xj1 , xj2 , ỹj) and (xk1 , xk2 , ỹk ), randomly and pair-wisely
sampled from the batch data.

A. PeerRank LOSS FUNCTIONS
1) POINT-WISE PeerRank
Referring to the definition of peer loss function in Section III-
B, we perform ERM on (5) as

min J2,peer(D̃) =
1
n

n∑
i=1

Lpeer(xi, ỹi), (9)

Lpeer(xi, ỹi) = `(h(xi), ỹi)− `(h(xj), ỹk ). (10)

FIGURE 2. The structure of PeerRank. The features of both training
samples and peer samples are fed into the networks with hidden layers
and a prediction layer. In our work, the network trained with the training
samples and the network trained with the peer samples share the layer
parameters.

FIGURE 3. The process of sampling peer instance for each current
instance in point-wise and pair-wise approaches. For each training
instance, a peer instance is generated. The feature and the label of peer
instance are randomly and uniformly sampled from the data, respectively.

(xj, ỹj), (xk , ỹk ) are randomly sampled from observed data D̃
while only the feature vector xj and the label ỹk are used.
` can be 0-1 loss or any surrogate loss functions, e.g., ` usu-
ally refers to cross-entropy loss in click-through rate (CTR)
prediction tasks.

2) PAIR-WISE PeerRank
We unify pair-wise approaches such as RankNet [38] and
LambdaRank [39] into a framework

L(xi1 , xi2 , ỹi) = 4Goal(i1, i2)`(h(xi1 , xi2 ), ỹi). (11)

The explanation of 4Goal varies with different algorithms.
For RankNet [38], 4Goal(i1, i2) equals to 1. For Lamb-
daRank [39],4Goal(i1, i2) refers to the change of the ranking
metric after swapping the positions of these two items, such as
NDCG. Suppose there are m item pairs from a list of n items.
Taking (8) and (11) into consideration, we perform ERM
on (7) as

min J2,peer(D̃) =
1
m

m∑
i=1

Lpeer(xi1 , xi2 , ỹi)

Lpeer(xi1 , xi2 , ỹi) = 4Goal(i1, i2)`(h(xi1 , xi2 ), ỹi) (12)

−4Goal(j1, j2)`(h(xj1 , xj2 ), ỹk ), (13)

where (xj1 , xj2 ) is randomly sampled from paired feature
space and ỹk is randomly sampled from the set of pair
labels.
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B. THEORETICAL ANALYSIS
The point-wise PeerRank, inherited from [25], has the prop-
erties of robustness, effectiveness, and adaptability. Here,
we prove that pair-wise PeerRank also satisfy those properties
of robustness (Theorem 1), effectiveness (Theorem 2 and 3)
and adaptability. We emphasize that the extension of Peer
Loss to pair-wise LTR approaches acts as our main contri-
bution. We also give the range of the only hyper-parameter of
PeerRank taking account of the real-world data distribution,
which is lacking in the original paper. With all these prop-
erties, PeerRank is able to withstand errors in the input and
derives an optimal or near-optimal model regardless of the
label noise distributing in the data.

1) ROBUSTNESS
Robustness of PeerRank refers to its ability to learn a model
whose performance is stable despite the existence of noise
in the data. We demonstrate that pair-wise PeerRank has
maintained the nature of resisting noise.
Theorem 1: Optimizing the PeerRank in (13) over

observed data is equivalent to optimizing that over the
clean data. That is, (13) is invariant to label noise in D̃ in
expectation,

ED̃[Lpeer(Xi1 ,Xi2 , Ỹi)]
= (1− e− − e+)ED[Lpeer(Xi1 ,Xi2 ,Yi)].

The proof is given in Appendix A. We have the inequality
0 ≤ e++ e− < 1 holds for the reason that massive errors are
unlikely to happen in real life based on the rationality of the
vast majority of users. Theorem 1 shows that PeerRank on
a noisy training data is proportional to that on a clean data.
Therefore, the model trained with loss function (13) is robust
since it is invariant to noise in the training data.

2) EFFECTIVENESS
Effectiveness of pair-wise PeerRank refers to the optimiza-
tion guarantee that pair-wise PeerRank can produce an opti-
mal or near-optimal model as if performing ERMon the clean
data.

Denote the true risk measure of model f on clean
data as RD(f ) = ED[4Goal(i1, i2)1(h(Xi1 ,Xi2 ),Yi)] where
(Xi1 ,Xi2 ,Yi) is one instance and1(·) is 0-1 loss. The empirical
risk is defined as

R̂D =
1
m

m∑
i=1

4Goal(i1, i2)`(h(xi1 , xi2 ), yi). (14)

When trained on clean data that is large enough, the empir-
ical risk converges to the true risk. We now illustrate the
connection between PeerRank’s loss function and the true
risk RD(f ). For the convenience of induction, we take `(·) as
0-1 loss, which has the property:
Lemma 1: If `(·) = 1(·), `(h(X ), 0)+ `(h(X ), 1) = 1.
Theorem 2 is put forward for balanced datasets where the

number of positive and negative instances is almost the same.
Theorem 3 is put forward for unbalanced datasets. The proofs
are given in Appendix B and C respectively.

Theorem 2: When p = Pr(Y = 1) = 0.5, `(·) = 1(·),
we have

argmin
f

ED̃[Lpeer(Xi1 ,Xi2 , Ỹi)] = argmin
f

RD(f ).

In a more general case where the dataset is unbalanced,
i.e., p 6= 0.5, the gap between the risk of a model trained by
PeerRank and the true risk is still bounded.
Theorem 3: Denote Rpeer,D̃(f ) as the risk measure of

model f learned from pair-wise PeerRank on noisy data.
Let f̃ ∗peer = argminf Rpeer,D̃(f ). Denote RD(f ∗) the optimal
true risk where f ∗ = argminf RD(f ). Let C2 = 4|p −
0.5|maxXi,Xj 4Goal(i, j) and `(·) = 1(·). The discrepancy
between risk RD(f̃ ∗peer) and RD(f ∗) is bounded by C2. That is,

|RD(f̃ ∗peer)− RD(f ∗)| ≤ 4|p− 0.5|max
Xi,Xj
4Goal(i, j).

Theorem 2 is a special case of Theorem 3 when C2 equals
to zero. In this special case, PeerRank is strongly guaranteed
by Theorem 2 to produce an optimal model. For the case
that the dataset is unbalanced, Theorem 3 guarantees that the
optimized empirical model using PeerRank is near-optimal to
minimize the risk on clean data.

3) ADAPTABILITY
Adaptability of pair-wise PeerRank refers to its ability to
adapt to different datasets and different degrees of noise.
For dataset that are severely unbalanced, i.e., p being distant
from 0.5, Theorem 3 provides a loose bound. In this case, α-
weighted PeerRank can be adopted to optimizing the ranking
risk.

a: α-WEIGHTED PeerRank
When p = Pr(Y = 1) 6= 0.5, we adopt α-weighted PeerRank
loss function in (13) where a parameter α is added to the
second term:

Lα-peer(xi1 , xi2 , ỹi) = 4Goal(i1, i2)`(h(xi1 , xi2 ), ỹi)
−α4Goal(j1, j2)`(h(xj1 , xj2 ), ỹk ). (15)

The hyper-parameterα can be regarded as a control parameter
modulated with the label distribution on the dataset. Typi-
cally, when 4Goal(i1, i2) = 1, the optimal value of α can
be calculated as claimed in [25] as

α∗ = 1− (1− e− − e+) ·
δp

δp̃
,

δp = Pr(Y = 1)− Pr(Y = 0),

δp̃ = Pr(Ỹ = 1)− Pr(Ỹ = 0). (16)

Denote RD(f̂ ∗α∗−peer) the true risk taking f̂ ∗α∗−peer as scoring
function optimized empirically by (15) with α∗. f̂ ∗α∗−peer is
proven to converge to the optimal scoring function by the
lemma below.
Lemma 2: `(·) = 1(·), according to Hoeffding’s inequal-

ity, with a probability of at least 1− δ, we have

RD(f̂ ∗α∗−peer)− RD(f ∗) ≤
1+ α∗

1− e− − e+

√
2 log 2/δ

m
.
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Lemma 2 ensures the model trained by α-weighted Peer-
Rank converges to the implicit optimal model. The value of
α∗ depends on the error transition probabilities e+, e− as
in (16), which might not be available in real-world data.

Following, we would like to discuss the valid range of α,
and we find that in most scenarios of IR, α∗ ∈ (0, 1). Firstly,
as we work in IR cases, the number of negative samples
(non-clicked) is often much larger than positive ones
(clicked). Thus, we consider δp and δp̃ in (16) to have the same
sign. Also, 1−e+−e− is positive if we consider the majority
of users are rational and give clean labels. Then, we have
α∗ < 1. In the following, we show that α∗ > 0 holds:

α∗ > 0 ⇔ 1 > (1−
#e+

#Y+
−

#e−

#Y−
)

·
#Y− − #Y+

(#Y− + #e+ − #e−)− (#Y+ + #e− − #e+)
⇔ #e+#Y−(#Y+ + #Y−) > #e−#Y+(#Y+ + #Y−)

⇔
#e+

#Y+
>

#e−

#Y−
⇔ e+ > e−

where #e+ (#e−) stands for the number of samples that
change from positive (negative) to negative (positive), and
#Y+ (#Y−) stands for the number of positive (negative) sam-
ples in the clean data.

The condition indicated by the inequalities in the last line
is easy to satisfy in large-scale datasets. As #Y− is extremely
large, #e− should be large enough in the real world to reverse
the inequality, which is a rare scene in IR since most of
the user behaviors make sense. Thus, mistakes on a large
scale could hardly happen. On the other hand, #e+ might
be relatively large in IR since users often overlook relevant
items not on the top pages. This can also be validated by our
experiment detailed in Section V. In semi-synthetic Yahoo
dataset using PBM as click model with 0.05 rate of noise,
e− = 0.0373, e+ = 0.5037, we have e+ � e−.

V. EXPERIMENTS
In this section, we conduct experiments based on two appli-
cations, CTR prediction and web search ranking, which
are common scenarios of point-wise and pair-wise LTR
approaches, respectively, to evaluate the performance of Peer-
Rank.2 Wemainly focus on answering the following research
questions (RQs).
• RQ1: Does PeerRank easily couple with SOTA point-
wise and pair-wise LTR approaches and make signifi-
cant improvement?

• RQ2: Does PeerRank achieve better performance than
other SOTA de-noising methods?

• RQ3: How does the noise rate affect the performance of
PeerRank?

• RQ4: How does PeerRank perform compared to the
de-biasing methods?

• RQ5: Does PeerRank works on data involving noise
caused by biases (e.g., the position bias)?

2Code for reproduction can be found in https://bit.ly/3cQivE4

A. EXPERIMENTAL SETTINGS
1) DATASETS
We start with the introduction of datasets and pre-processing
details.

a: CTR PREDICTION
We use three large-scale public available real-world datasets
for CTR prediction to evaluate the performance of PeerRank
on point-wise approaches. These datasets naturally contain
noisy clicks.
• Tmall3 contains 847,568 behavior sequences from
423,784 users’ shopping logs on the Tmall e-commerce
platform in 6 months.

• Taobao4 contains 1,962,046 behavior sequences from
981,023 users on the Taobao e-commerce platform from
Nov. 25th to Dec. 3rd, 2017.

• Alipay5 contains 996,616 online shopping behavior
sequences from 498,308 users accumulated from Jul. 1st
to Nov. 30th, 2015.

We follow UBR [52] to process the datasets.

b: WEB SEARCH RANKING
Our experimental data for web search ranking is derived from
two widely used expert-annotated LTR datasets. Both of the
datasets supply the 5-level relevance label (0-4).
• Yahoo! LTR set 16 contains 29,921 queries and 701k
documents, where 700 features are extracted from each
query-document pair.

• Istella-S7 is composed of 33,018 queries and 3,408k
documents, where each query-document pair has
220 features.

To simulate the real-world scenario where only the implicit
click feedback is available, we first generate click behaviors
following user click model PBM [53] and CCM [54]. The
probability of document i being correlated with the user is
calculated by

P(ri = 1) =
2si − 1
2smax − 1

, (17)

where si is the expert-annotated relevance score with the
maximum value of smax. We then adding noise manually to
the generated clicks by randomly flipping the click labels at
the noise rate ε. In our experiments, we choose ε = 0.05.8

We also do extra experiments under the setting of [55]
where noise is added by transforming (17) to P(ri = 1) =
ε + (1 − ε) 2si−1

2smax−1 , and ε = 0.1 according to [55]. It intro-
duces feature-dependent noise into labels, which does not
conform with the assumption in Peer Loss [25]. Whereas we

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
4https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
5https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
6https://webscope.sandbox.yahoo.com
7http://quickrank.isti.cnr.it/istella-dataset/
8We tried different rates of noise. From statistics, noise larger than this

ratio will make the distribution of generated click labels inconsistent with
that of most data in IR scenarios.
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conduct experiments in this setting and empirically prove
that PeerRank still takes effect. More details can be found
in Section V-F.

2) EVALUATION METRIC
We evaluate the performance of point-wise PeerRank with
the area under the ROC curve (AUC) as it is a universal
criterion for judging the merits of CTR prediction. For pair-
wise PeerRank, we record Mean Average Precision (MAP,
document i is regarded as relevant if si ≥ 1 [55]) and Normal-
ized Discounted Cumulative Gain (NDCG@10, abbreviated
as NDCG) calculated by original 5-level relevance labels.

3) BASE MODELS
Multiple algorithms introduced in Section II served as the
base models of PeerRank. We name the models PeerX for
algorithms X coupled with PeerRank. For the CTR prediction
task, we couple PeerRank with 13 point-wise LTR algorithms
as in Table 1. We adopt the same hyper-parameter setting for
the models and their peer versions as in [52]. The exclusive
parameters for every model are tuned according to the best
performance on the validation set. Specifically, we set an
additional 2-layer cross net for DCN [28] and DCN-M [6].
The stacked way is chosen for DCN-M as it performs better
than the parallel way. We set 3-layer compressed interaction
network with 7 vectors per layer for xDeepFM [29]. We set
3 interacting layers with 2 heads per layer for AutoInt [5], and
the dimension of Q, K, V are 6.

For the web search ranking task, we combine PeerRank
with 4 pair-wise algorithms as in Table 2. The initial learning
rate is searched from {0.0005, 0.001, 0.005, 0.01}. The batch
size is set as 256. All multi-layer perceptron models are
configured with a 4-layer network of [512, 256, 128, 1].

4) STATE-OF-THE-ART DE-NOISING METHODS
To demonstrate the superiority of PeerRank in de-noising,
we compare our framework with several classic and widely
recognized de-noising methods introduced in Section II as
in Table 3. Two types of BS [13], ‘‘soft’’ and ‘‘hard’’, are
implemented.

B. OVERALL PERFORMANCE (RQ1)
Table 1 shows the performance of 13 point-wise base mod-
els on 3 real-world datasets, i.e., ‘‘base’’ columns, and the
performance of the PeerRank on these base models, i.e.,
‘‘+peer’’ columns. Since the experimental settings are the
same, some results in Table 1with notes ∗ are directly referred
from [52]. Table 2 shows the performance of 4 pair-wise base
models on 4 semi-synthetic datasets and the performance of
the PeerRank on these base models.

Three properties of PeerRank can be revealed from Table 1
and Table 2. (i) PeerRank can easily couple base models and
significantly achieve better performance, particularly on the
Alipay dataset (improve 0.20% to 14.4%). In experiments of
web search ranking where noise is only added to the training
data, the clean relevance labels are used when evaluating.

TABLE 1. Results (AUC) of CTR prediction on real-world data. The ‘‘base’’
column represents the results of base models. ‘‘+peer’’ refers to the
results of PeerRank coupled with base models.

As can be observed from Table 2, the superior performance
of PeerRank demonstrates it is invariant to label noise in
the training data and achieves better results concerning both
MAP and NDCG over the base models. (ii) In the CTR pre-
diction task experiments, the noise distribution remains the
same in the training and test set since they are segmented from
the same observed real-world dataset. PeerRank is insensitive
to noise in the test data and beats the base models, verifying
its robustness. (iii) PeerRank improves all the base models
on multiple datasets. The improvement of PeerRank coupled
with both linear [37] and non-linear [7], [38], [39] models in
web search ranking also proves its adaptability.

FIGURE 4. NDCG@10 on Yahoo (PBM) validation set. The NDCG of
RankNet drops after several rounds, whilst the performance of PeerRank
remains high and stable.

We also cast sight into why PeerRank takes effect.
We experiment PeerRankNet comparing with RankNet on
Yahoo (PBM) and plot NDCG during training in Fig. 4.
We find that the performance of RankNet first climbs high
but suffers from downdrift later on. On the contrary, the
performance of PeerRankNet remains at a high level as train-
ing going on. This is probably because when no de-noising
method is applied, RankNet is sensitive to noise in the data
and fits the outliers. While PeerRank can prevent over-fitting
to such noise and behaves well.

C. COMPARISON WITH DE-NOISING MODELS (RQ2)
In this experiment, we fix DIEN, which is regarded as the
SOTA model from Alibaba Group, as the base model for
the point-wise approach, and RankNet, which has stable
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TABLE 2. Results of web search ranking on semi-synthetic datasets.

TABLE 3. Results of the state-of-the-art de-noising methods applied to
base model, i.e., DIEN (point-wise) and RankNet (pair-wise).

performance, for the pair-wise approach. We compare
PeerRank with other de-noising methods introduced in
Section V-A4 on these two models. We test on Alipay dataset
for CTR prediction and Yahoo semi-synthetic dataset with
PBM for web search ranking, as displayed in Table 3.
We specify the exclusive hyper-parameters for each model in
the ‘‘Par.’’ columns, with which those methods achieve their
best performance.

From Table 3, we can observe that (i) In either point-wise
or pair-wise, the PeerRank performs the best among all SOTA
de-noising approaches, which testifies it is effective when
training with noisy labels. (ii) We find that not all de-noising
method takes effect. e.g., Reweight [2] performs poorly. This
is because it calculates the probability of labels being noisy
based on the expert-annotated relevance labels, which might
not be available in many IR scenarios where only a binary
click label is achievable. (iii)We find it difficult or impossible
for some de-noising methods to apply to vast scenarios. e.g.,
CT [20] algorithm demands prior knowledge of the noise rate,
which is not available in many real-world datasets, such as
the point-wise cases in our experiment. Reweight [2] assumes
the features of an item are independent of each other, which
makes it not applicable to methods such as DIEN [36] where
the sequential features are correlated. GCE [10] and TCE [12]
are restricted to cross-entropy only, hindering them from
extending to ranking models like SVMRank. PeerRank is not
subject to these limitations. It requires no prior knowledge of
the noise rate and can work with click labels. Furthermore,
as displayed in Table 1 and Table 2, PeerRank is easy to
couple with many loss functions despite the complexity of
the base models.

D. PERFORMANCE UNDER DIFFERENT NOISE
RATES (RQ3)
We conduct extra experiments on Yahoo (PBM) adding other
rates of noise, i.e. ε = 0.01, 0.03, to explore how PeerRank
works on different noise rates. The results are shown in
Table 4. Overall speaking, the performance of both RankNet
and PeerRankNet drops as the noise rate increases. Still,
PeerRankNet achieves significant better performance than
RankNet and drops slower, reflected in the rise of improve-
ment recorded in ‘‘Impv.’’ column, referring to the relative
NDCG improvement of PeerRankNet over RankNet. This
indicates the PeerRankNet adapts well to different noise rates
and helps to alleviate the noisy labels issues.

TABLE 4. Results of web search ranking on Yahoo (PBM) under different
noise rates.

E. COMPARISON WITH DE-BIASING MODELS (RQ4)
Since we are working with click data, we conduct extra exper-
iments on Yahoo (PBM) to make a comparison with some
de-biasing methods, IPW [56], DLA [57] and PairDe-
bias [58], dealing with the click noise caused by biases, e.g.,
position bias, as shown in Table 5. To make the comparison
fairly and reasonably, we adjust IPW and DLA to pair-wise
manner.

We find that the result of model with IPW is inferior to that
of RankNet. This is because IPW highly relies on the gener-
ated click data to learn user exam propensity weights so as to
learn a robust and effective ranking model. As our click noise
simulates the real noise not only caused by position bias, the
IPW approachmight over-fit these noises and perform poorly.
The other two SOTA methods improve RankNet as their
intelligent way of de-biasing through either dual learning or
pair-wisely updating, but both of them consider only the bias
correlated to position while neglecting other noise factors like
user randomness or system failure, so they do not perform as
well as PeerRank.

F. PERFORMANCE ON DATA WITH BIASES (RQ5)
We also conduct extra experiments on semi-synthetic datasets
following the setting in [55] to prove that PeerRank can
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TABLE 5. Comparison of the results of web search ranking on
Yahoo (PBM) with the state-of-the-art de-biasing methods.

also work in the case where data is involved with biases.
The biases are caused by the combination of item displaying
positions and user browsing habits. The difference between
this setting and that of experiments in Section V-B is the way
of calculating relevance probabilities. As a result, the noise
in labels is merely caused by biases like position bias. The
results are presented in Table 6.

The observations from Table 6 are similar to those dis-
covered from Table 2. This is partly attributed to the data
distribution of these datasets being similar according to the
statistics in Table 7. The data distributions are slightly dif-
ferent because these two processing methods set up dif-
ferent distributions of noise. Whereas the statistics reflect
no apparent difference between the data distribution on the
Yahoo datasets, which verifies the reasonability of our setting
ε = 0.05 when flipping the clicks.

As bias can be regarded as one kind of the noise, theoreti-
cally, dealing with bias should fall within the scope of dealing
with noise. As PeerRank is a general framework to deal with
noisy data, and because of its ability to dispose of various data
distributions, it is reasonable to see that PeerRank behaves
well under noise caused by typical ranking biases.

VI. CONCLUSION
This paper proposes an easy-to-extend framework, PeerRank,
for LTR from noisy data. Specifically, PeerRank randomly
samples feature vectors and labels to construct peer sam-
ples for each training instance. We propose loss functions
in the PeerRank framework for both point-wise approaches
and pair-wise approaches. We theoretically prove that Peer-
Rank inherits the properties of robustness, effectiveness, and
adaptability. Extensive experiments are conducted on two
real-world applications in LTR. Results on three real-world
datasets for the CTR prediction task and four semi-synthetic
datasets for web search ranking show the superiority of our
work. We leave the investigation of other user click models to
generate click labels in the pair-wise experiments for future
studies. More experiments combining de-noising and de-
biasing methods remain to be conducted.

APPENDIX A
THE PROOF OF ROBUSTNESS

Proof: Firstly, from the definition we have

E[Lpeer(Xi1 ,Xi2 , Ỹi)] = E[4Goal(i1, i2)`(h(xi1 , xi2 ), Ỹi)]
−E[4Goal(j1, j2)`(h(xj1 , xj2 ), Ỹk )].

Let p = Pr(Y = 1). Consider the first term on the right-hand-
side:

E[4Goal(i1, i2)`(h(xi1 , xi2 ), Ỹi)]
= EXi,Xj,Y=0[4Goal(i, j)(Pr(Ỹ = 0|Y = 0)`(h(xi, xj), 0)

+Pr(Ỹ = 1|Y = 0)`(h(xi, xj), 1))]

+EXi,Xj,Y=1[4Goal(i, j)(Pr(Ỹ = 0|Y = 1)`(h(xi, xj), 0)

+Pr(Ỹ = 1|Y = 1)`(h(xi, xj), 1))]

= EXi,Xj,Y=0[4Goal(i, j)((1− e
−)`(h(xi, xj), 0)

+ e−`(h(xi, xj), 1))]

+EXi,Xj,Y=1[4Goal(i, j)((1− e
+)`(h(xi, xj), 1)

+ e+`(h(xi, xj), 0))]

= EXi,Xj,Y=0[4Goal(i, j)((1− e
−
− e+)`(h(xi, xj), 0)

+ e+`(h(xi, xj), 0)+ e−`(h(xi, xj), 1))]

+EXi,Xj,Y=1[4Goal(i, j)((1− e
−
− e+)`(h(xi, xj), 1)

+ e+`(h(xi, xj), 0)+ e−`(h(xi, xj), 1))]

= (1− e− − e+)EXi,Xj,Y [4Goal(i, j)`(h(xi, xj), y)]
+EXi,Xj [4Goal(i, j)(e

+
4Goal(i, j)`(h(xi, xj), 0)

+ e−`(h(xi, xj), 1))];

and consider the second term:

E[4Goal(j1, j2)`(h(xj1 , xj2 ), Ỹk )]
= EXi,Xj [4Goal(i, j)(`(h(xi, xj), 0)Pr(Ỹ = 0)

+ `(h(xi, xj), 1)Pr(Ỹ = 1))]

= EXi,Xj [4Goal(i, j)(`(h(xi, xj), 0)(e
+p+ (1− e−)(1− p))

+ `(h(xi, xj), 1)((1− e+)p+ e−(1− p)))]

= EXi,Xj [4Goal(i, j)((1− e
−
− e+)(1− p)`(h(xi, xj), 0)

+ (1− e− − e+)p · `(h(xi, xj), 1))]

+EXi,Xj [4Goal(i, j)(e
+`(h(xi, xj), 0)+e−`(h(xi, xj), 1))]

= (1− e− − e+)EXi,Xj [4Goal(i, j)`(h(xi, xj),Y )]
+EXi,Xj [4Goal(i, j)(e

+
4Goal(i, j)`(h(xi, xj), 0)

+ e−`(h(xi, xj), 1))].

Subtracting the first and second term on right-hand-side
we get:

E[Lpeer(Xi1 ,Xi2 , Ỹi)]

= E[4Goal(i1, i2)`(h(xi1 , xi2 ), Ỹi)]
−E[4Goal(j1, j2)`(h(xj1 , xj2 ), Ỹk )]

= (1− e− − e+)EXi,Xj,Y [4Goal(i, j)`(h(xi, xj), y)]
− (1− e− − e+)EXi,Xj [4Goal(i, j)`(h(xi, xj), y)]

= (1− e− − e+)ED[Lpeer(Xi1 ,Xi2 ,Yi)].

�
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TABLE 6. Results of web search ranking on semi-synthetic datasets under noise caused by biases [55].

TABLE 7. Data distribution of semi-synthetic datasets after simulating
clicks in different ways. The ‘‘1st way’’ refers to adding noise by randomly
flipping. The ‘‘2nd way’’ refers to adding biases [55].

APPENDIX B
THE PROOF OF EFFECTIVENESS (BALANCED DATA)

Proof: Let C1 = 0.5 · (1 − e− − e+) ·
E(Xi1 ,Xi2 ,Yi)∼D[4Goal(i1, i2)]. Apply Theorem 1,

ED̃[Lpeer(Xi1 ,Xi2 , Ỹi)]

= (1− e− − e+)ED[Lpeer(Xi1 ,Xi2 ,Yi)]

= (1− e− − e+)[E[4Goal(i1, i2)`(h(xi1 , xi2 ),Yi)]
−EXj1 ,Xj2 [4Goal(j1, j2)`(h(xj1 , xj2 ),Yk )]]

= (1− e− − e+)[E[4Goal(i1, i2)`(h(xi1 , xi2 ),Yi)]
−EXj1 ,Xj2 [4Goal(j1, j2)
· (0.5 · `(h(xj1 , xj2 ), 0)+ 0.5 · `(h(xj1 , xj2 ), 1))]]

= (1− e− − e+)[E[4Goal(i1, i2)`(h(xi1 , xi2 ),Yi)]
− 0.5 · EXj1 ,Xj2 [4Goal(j1, j2)]]

= (1− e− − e+)E[4Goal(i1, i2)`(h(xi1 , xi2 ),Yi)]− C1.

Given the implicit clean dataset D collected from D,
C1 = 0.5 · (1− e−− e+) · 1m

∑m
i=14Goal(i1, i2) is a constant

with respect to f , so

ED̃[Lpeer(Xi1 ,Xi2 , Ỹi)] ∝ (1− e− − e+)RD(f )+ const.

�

APPENDIX C
THE PROOF OF EFFECTIVENESS (UNBALANCED DATA)
To prove Theorem 3, we first introduce Lemma 3 and
Corollary 1.
Lemma 3: From [25], for all h,

|pEX [`(h(X ), 1)]+ (1− p)EX [`(h(X ), 0)]
− 0.5EX [`(h(X ), 1)]− 0.5EX [`(h(X ), 0)]| ≤ |p− 0.5|.

For ease of expression, we abbreviate h(xi1 , xi2 ) in (6) as
h when there is no confusion. Derive the pair-wise format of
Lemma 3:

Corollary 1:

|pEXi,Xj [4Goal(i, j)`(h, 1)]
+ (1− p)EXi,Xj [4Goal(i, j)`(h, 0)]
− 0.5EXi,Xj [4Goal(i, j)`(h, 1)]
− 0.5EXi,Xj [4Goal(i, j)`(h, 0)]|
≤ |p− 0.5| · 2max

Xi,Xj
4Goal(i, j).

Then the proof of Theorem 3 is given below:
Proof: We short-hand hf̃ ∗peer (xi, xj) as hf̃ ∗peer substituting

f̃ ∗peer as scoring function in (6). Correspondingly, hf ∗ stands
for hf ∗ (xi, xj). From the definition of f̃ ∗peer we have

E[Lpeer(hf̃ ∗peer , Ỹ )] ≤ E[Lpeer(hf ∗ , Ỹ )].

Apply Theorem 1 we know that

E[Lpeer(hf̃ ∗peer ,Y )] ≤ E[Lpeer(hf ∗ ,Y )].

Then

RD(f̃ ∗peer)− 0.5 · EXi,Xj [4Goal(i, j)]
= RD(f̃ ∗peer)− 0.5 · EXi,Xj [4Goal(i, j)`(hf̃ ∗peer , 1)]
− 0.5 · EXi,Xj [4Goal(i, j)`(hf̃ ∗peer , 0)]

≤ RD(f̃ ∗peer)− pEXi,Xj [4Goal(i, j)`(hf̃ ∗peer , 1)]
− (1− p)EXi,Xj [4Goal(i, j)`(hf̃ ∗peer , 0)]
+ 2|p− 0.5|max

Xi,Xj
4Goal(i, j)

≤ RD(f ∗)− pEXi,Xj [4Goal(i, j)`(hf ∗ , 1)]
− (1− p)EXi,Xj [4Goal(i, j)`(hf ∗ , 0)]
+ 2|p− 0.5|max

Xi,Xj
4Goal(i, j)

≤ RD(f ∗)− 0.5 · EXi,Xj [4Goal(i, j)`(hf ∗ , 1)]
− 0.5 · EXi,Xj [4Goal(i, j)`(hf ∗ , 0)]+ C2

= RD(f ∗)− 0.5 · EXi,Xj [4Goal(i, j)]+ C2.

The second inequality is obtained fromCorollary 1. Eliminate
the same terms in both sides of the inequality, we obtain

RD(f̃ ∗peer)− RD(f ∗) ≤ 4|p− 0.5|max
Xi,Xj
4Goal(i, j).

�
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