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ABSTRACT Increased safety is one of the main motivations for traffic research and planning. The arduous
task has two components: (i) improving the existing traffic policies based on a good understanding of risk
factors related to trends in traffic accidents, and (ii) underpinning the emerging technologies that will advance
the safety of vehicles. For the latter route, the introduction of connected and automated vehicles (CAVs)
is a promising option as CAVs can potentially reduce the number of accidents. However, to reap their
benefits, they need to be introduced in a safe manner and tested for their ability to safely deal with risky
scenarios. Unfortunately, the identification of such test scenarios remains a key challenge for the industry.
This study contributes to increased safety by (i) analyzing UK’s STATS19 accident data to identify patterns
in past traffic accidents, and (ii) utilizing this information to systematically generate scenarios for CAV
testing. For task (i), the patterns in the accidents were identified in terms of static and time-dependent
internal and external factors. For this purpose, the study employed a clustering algorithm, COOLCAT, which
is particularly suitable for dealing with high-dimensional categorical data. Six different clusters emerged
naturally as a result of the algorithm. To interpret the clusters, we applied a frequency analysis to each cluster.
The frequency tests showed that in each cluster, certain distinct real-world situations were represented more
significantly compared to the non-clustered reference case, which are the markers of each cluster. The second
task (ii) complemented the first task by synthesizing the relationships between attributes. This was done
by association rule mining using the market basket analysis approach. The method enabled us to develop,
drawing from the characteristics of the clusters, non-trivial test scenarios that can be used in the testing of
CAVs, especially in virtual testing.

INDEX TERMS Accident analysis, scenario development, cluster analysis, market basket analysis.

I. INTRODUCTION
Over the past five years, more than a half million traffic
accidents have been reported in the UK, distributed more or
less evenly in each year [1] (‘‘Road Safety Data - STATS19,’’
2020). Despite the traffic safety measures taken by the UK
government, there has been a steady figure of over seven-
teen hundred on-road fatalities annually. In addition to the
tragedy of losing loved ones, such accidents incur heavy
costs to the economy overall, such as support services and
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healthcare systems. Clearly, as the first order of business,
it is of prime importance to identify and analyze the factors
leading to severe accidents in order to reduce the chances of
occurrence. A promising and ambitious solution to reduc-
tion of traffic accidents is the introduction of Connected
and Autonomous Vehicles (CAVs) which can significantly
reduce the rate and severity of traffic accidents [2]–[4]. How-
ever, to reap the safety benefits of CAVs, it is essential to
ensure that their introduction is done in a safe manner, and
second, they are trusted, accepted, and used by the public.
Establishing the capabilities and limitations of the CAVs
and communicating them to the public is key to creating
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a state of ‘‘informed safety’’ which, in turn, leads to the
development of trust in CAVs [5]. However, owing to the
increased complexity of CAVs [6], ensuring and evaluat-
ing their true capabilities and limitations remains a chal-
lenge [7]. It is suggested that to prove that CAVs are safer
than human drivers, they need to be driven for over 11 billion
miles [8]. This might seem to be an unrealistic proposition,
but an alternate school of thought of Hazard Based Test-
ing, that focuses on the quality of miles, suggests testing
for ‘‘how a system fails’’ as compared to ‘‘how a system
works’’ [9]. Understanding how a system may fail can be
either done in a proactivemanner (e.g., via safety assessments
involving hazard identification) [10], or in a reactive manner
(e.g., by analyzing road accident databases), [11]. While the
former would be intrinsic to the system, the latter would
yield extrinsic factors that may lead to hazards. Identifying
extrinsic factors, even for normal, human-driven systems,
requires a deep understanding of the relationships between
them. Once such an understanding is achieved for human-
driven systems, it can serve as a basis for developing tests
and test scenarios to help train CAVs.

The goal of this study is to devise a systematic way that
underpins the aforementioned reactive path by creating real-
istic real-world scenarios that are archetypal of high-risk
traffic situations. This is a two-stage problem requiring one to
develop an approach that is capable of (i) detecting patterns
in a wealth of accident data and (ii) synthesizing scenarios
based on the significant relationships within these patterns.
In this study, improving on [12], we used a cluster analysis
approach for stage (i) and association rule mining for stage
(ii). We demonstrate our approach using the UK traffic acci-
dent database.

The approach presented in this study offers several
prospects. First, cluster analysis can provide an efficient
way to cast scattered accidents into natural groups which
exhibit collective characteristics. These groups can some-
times be of very small sizes (or have very small sub-groups),
which depict rare but distinct traffic situations that might be
omitted using other traditional methods such as regression.
Second, many existing traffic data analysis methods, a pri-
ori, categorize variables as dependent and independent. Our
methodology does not require such assumptions and allows
the extraction of naturally occurring relationships within the
data (i.e., stage (ii)). Third, thanks to the particular clustering
algorithm used in this study, streams of new incoming sce-
narios can be classified appropriately and efficiently, helping
with maintenance of large databases.

Applying the suggested methodology, it was found that
the accident dataset can be differentiated into six distinct
clusters, each of which shows different characteristics. These
are (i) fatal, late night, off-junction accidents on motorways
with high-speed limit, (ii) two-wheeler (bicycles and motor-
bikes) accidents on minor roads at a junction while turning
left or right, (iii) fatal, two-wheeler accidents on slip-roads
connecting to major roads in foggy weather; (iv) off-junction
accidents involving buses on unclassified roads; (v) accidents

on private drives involving reversing and parked vehicles;
and (vi) night accidents at multi-armed junctions of major
roads with low speed limits involving buses and bicycles.
Following the identification of these clusters, market basket
analysis was applied to each cluster to ascertain the quantita-
tive relationships between the in-cluster attributes, which can
be regarded as proto scenarios. These rules are then combined
to obtain scenarios that represent the corresponding clusters.

The remainder of this paper is organized as follows.
Section 2 provides a brief review of the literature on acci-
dent data analysis concentrating on data mining methods.
Section 3 provides an overview of the data format and how the
data was processed into the form that was used in the study.
Section 4 introduces our analysis method and the algorithms
used. In Section 5, we present our findings. In Section 6, these
findings are interpreted in the context of scenario generation
and are utilized to systematically develop natural pre-crash
exemplary scenarios. Finally, Section 7 concludes the paper.

II. BACKGROUND
A vast literature exists on traffic accidents and their rela-
tionships to surrounding conditions [13]. A commonly used
approach for analysis is to formulate the relationships
in a correlational setting using classical or contemporary
techniques, including various types of regression mod-
els [11], [14]–[20], [57], [58]; Bayesian analysis [22]–[25];
neural-network models [21], [26]–[29].

An alternative approach is not to assume a pre-set relation-
ship and let the data reveal itself. This provides more flex-
ibility and fidelity for data mining methods. Following this
spirit, in recent years, data mining strategies have attracted
increased attention in safety research and automated driving
systems (ADSs) such as association rule mining [30]–[32];
and decision trees [33]–[37].

One type of data mining strategy, which has been explored
to a lesser extent (in the context of traffic accident data) is
cluster analysis [38]. The crux of this technique is to group
traffic accidents according to microscopically or macroscop-
ically defined criteria, which allows for comparative exami-
nation of these groups [39]. Among the past studies, in [40]
k-means clustering method was used to analyze accident
hotspots whereas in [41] and [42] the same method was used
to support the severity prediction of accidents. More recently,
related k-means clustering methods were used by [12] for
crash analysis at road junctions, by [43] for pedestrian pre-
crash scenarios and by [44], [45] for the assessment of auto-
mated emergency braking systems in accidents.

To leverage the use of clustering methods, one needs
to be mindful of the algorithms’ data processing proce-
dures. To this end. the first order of consideration is the
suitability of the method for the data type under study.
Most clustering methods that have been employed in traffic
research employed the k-means algorithm [46] and its vari-
ants, k-medoids [47] or k-modes [48]. While k-means is a
popular solid clustering method it is not very suitable for
categorical data as the mean of a categorical variable is not
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meaningful. On the other hand, k-medoids and k-modes can
handle categorical data. However, they are known to suffer
from poor performance when working with high dimensional
data [12] and may not be the most ideal method if one intends
to analyze datasets with a large number of attributes, which
is one of the central aims of this study. This problem can be
partially circumvented by reducing the dimensions (i.e., dis-
counting certain variables with educated decisions/guesses),
as was done in some recent works [12]. However, one should
be wary of resorting to approaches such as handcrafted
feature selection for cluster analysis as they may be prone
to error or bias [53]. Considering that most traffic acci-
dent data, especially the UK STATS19 database, consist of
attributes that are predominantly categorical, it is advisable
to use an algorithm designed for categorical data clustering
such as COOLCAT [49], ROCK [50], DBSCAN [51], and
SQUEEZER [52], LIMBO [63].

A second point of consideration for deciding on an algo-
rithm is the criterion for distinguishing clusters. Most clus-
tering methods that have been employed in traffic research
rely on distance-based algorithms using microscopic (local)
criterion/basis for assignment to clusters such as DBSCAN
and its many more recent variants [62]. However, employing
an algorithm that works with criteria based on global prop-
erties (such as entropy) of the data groups can provide new
insights to identify the trends in the data and is preferred in
this study. Another issue to take into account is the speed.
For instance, even though ROCK is a categorical clustering
algorithm that utilises some level of nonlocal properties in
its clustering procedure (forming clusters based on links
instead of local distances). However, due to it is agglomer-
ative nature it is slow and not scalable. SQUEEZER on the
other hand is fast, however, the clustering is very sensitive
to ordering of the data, as the clusters are built incrementally
from single element. Hence, considering these aspects, in this
paper we use an entropy-based algorithm, COOLCAT, which
is, by design suitable for categorical data clustering [49].
Moreover, COOLCAT can work with high-dimensional data
without compromising on the quality. It distinguishes clusters
based on the measure of entropy which is a global feature
of the data. Also, COOLCAT is efficient and can handle
streams of incoming data with ease. Furthermore, clustering
with COOLCAT is relatively less data dependent since initial
cluster seeds are independent of the order in the data. One
downside of the COOLCAT is the initialization stage which
has quadratic complexity whichmay increase the overall time
cost. This is a price paid for requiring a more stable and
consistent clustering which is a comparable cost to other
similar clustering algorithms such as LIMBO.

While providing useful insight for understanding accident
patterns, a cluster algorithm alone may not immediately con-
vey a meaning to the clusters formed. In other words, one
needs to understand what the produced clusters represent.
For small clusters with a small number of attributes, this can
be achieved by eyeballing the clusters. However, for clusters
with a large number of data points and attributes, one needs

a systematic way to interpret what each cluster signifies.
Furthermore, even after a cluster obtains meaning in terms
of its indicator attributes, this does not provide much clue on
the relationship between these variables, which is crucial in
understanding the development of individual scenarios. For
this purpose, we propose a two-step procedure that identifies
the key attributes that distinctively describe each cluster and
then extracts the previously unknown relationships between
the attributes within those clusters. The first step is to run
comparative frequency tests between the clusters and the ref-
erence distribution of the attributes. The second step involves
employing the association rule mining method (i.e., market
basket analysis) on the distinguished attributes.

III. METHODOLOGY
A. FORM OF THE DATA AND PRE-PROCESSING
This study is based on an analysis of publicly available
data collected from police reports in the UK [1]. Accidents
from the 2016-2018 period were taken as the base data,
which amounts to 389238 accidents in number. In its raw
form, the data is stored in different files describing the
accidents depending on the perspective of either common
attributes (e.g., weather condition, light condition) or spe-
cific attributes (e.g., sex of the driver, vehicle type). Not all
attributes recorded in the datasets were regarded as relevant
for the analysis. For instance, the effects of cultural origin
were discounted. Likewise, variables that were thought to be
unimportant were disregarded, such as local authority district
and police officer attendance. As the main goal of this study
is scenario development, only those attributes (or variables)
that have a direct influence on accidents were kept. After this,
the data were reorganized from the perspective of the driver,
whichmeant duplicating the common variables. Furthermore,
only those accidents involving one vehicle or two vehicles
with physical impact were considered. The reason for this is
to keep the scope of the paper focused on test scenario gen-
eration for AVs. Since overwhelming majority of the traffic
accidents involve one or two vehicles it was decided to restrict
the analysis to such accident types.

Another important point is that most of the attributes
recorded in the STATS19 database were categorical with
many superfluous values. Therefore, certain variables are
restructured, for instance, by merging cases. An example of
this is provided in the appendix. The full dictionary can be
found in the STATS19 database [1]. Furthermore, for each
accident with a missing value, a random value from the pos-
sible set of values from the respective category was assigned.

B. ODD AND BEHAVIOUR COMPETENCIES
As mentioned earlier, a major challenge in the CAV indus-
try is the development of test scenarios. Considering the
high demand in this domain, an established format for sce-
nario description is instrumental for easy and standardized
exchange of scenarios. This gave birth to the operation
design (ODD) concept detailed in (BSI, 2020) and defined as
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‘‘Operating conditions under which a given driving automa-
tion system or feature thereof is specifically designed to
function, including, but not limited to, environmental, geo-
graphical, and time-of-day restrictions, and/or the requisite
presence or absence of certain traffic or roadway character-
istics’. ODD consists of three main classes of descriptors:
scenery (such as drivable are, junctions, physical structure,
etc.), environmental conditions (such as weather and light
conditions), and dynamic elements (such as traffic conditions
and speed of the vehicle). As shown below, many of the
attributes from the STATS19 dataset can be easily mapped
onto the attributes in ODD. A complementary concept that
is used in this paper (and included in STATS19 variables) is
the ‘‘behavior competencies’’ (e.g., vehiclemaneuver), which
basically describes driving behavior [55]. Together, ODD and
behavior competencies constitute the backbone for scenario
development.

C. CRASH DATA VARIABLES
This study takes the perspective that the traffic accidents can
be described solely in terms of the local effects, that is, factors
and output that are immediately present at the time and loca-
tion of the accident. Overall, 22 variables from the STATS19
database were selected to be used in the analysis: Accident
Severity, Skidding and Overturning, Time, 1st Road Class,
CarriagewayHazards, 2nd RoadClass, Speed Limit, Junction
Detail, Junction Location, Light Conditions, Weather Condi-
tions, Road Surface Conditions, Urban or Rural Area, Was
Vehicle Left Hand Drive, Vehicle Type, Vehicle Maneuver, 1st

Point of Impact, Did Vehicle Leave the Carriageway, Week or
Weekend?, Pedestrian Crossing Facilities, Sex of the Driver,
Age Band of the Driver.

These variables were chosen because they either: provide
information about the outcome of the accident e.g. Accident
Severity and Skidding and Overturning, or provide informa-
tion on the conditions around the accident e.g. Light Con-
ditions and Road Surface Conditions or give details of the
accident scenario e.g. Vehicle Maneuver and Sex of Driver.
Variables that were superfluous like local authority district
were removed.

Most variables included in the analysis are self-
explanatory. We only describe the 1st Road class variable
which shows the road type. This can come as Motorway, A,
B, C or unclassified road. These are the standard UK road
classes.Motorways and A roads are major roads while B and
C roads are minor roads. Unclassified roads are roads that
do not fit into the other classifications and are usually local
roads intended for local traffic.

IV. DATA ANALYSIS
After cleaning and organizing the data, here we discuss
the method of analysis. As noted previously, the rationale
for using unsupervised learning approaches is that these
techniques allow one to extract important information from
the data without making any prior assumptions on the

relationships between data attributes, which is a significant
advantage.

We used a combination of complementary learning tech-
niques. The first step involved clustering the data. Once this
step is complete, the second step of the analysis is to under-
stand what these clusters mean. The following subsections
discuss these steps in detail.

A. CLUSTERING OF ACCIDENT DATA
This was the first step in the analysis. As mentioned earlier,
clustering analysis has a long history, but its use in accident
data is a relatively recent development. Therefore, although
there are dozens of clustering algorithms available for general
clustering purposes, the accident data under consideration
are exclusively categorical and general-purpose clustering
algorithms, such as k-means (which are designed for deal-
ing with continuous variables), are less likely to yield high-
quality clustering. Second, for the purposes of this study,
we are more interested in differentiating clusters based on the
global features of the attributes in each cluster, rather than
individual similarity relationships between the data points in
those clusters. The choice makes a marked difference in the
type of algorithm to be used.

1) COOLCAT CATEGORICAL CLUSTERING ALGORITHM
The COOLCAT algorithm was first proposed in [49].
It was designed specifically for categorical datasets. Unlike
most other clustering algorithms (such as k-medoid and
k-modes) that have been used in accident analysis research,
COOLCAT is not based on a distance metric. Rather, central
to COOLCAT is the concept of entropy, which is borrowed
from physics and information theory and measures the dis-
order in a given system. Then, the goal of the algorithm is
to group the data points of the system in clusters in a con-
figuration that minimizes the average entropy. In this setting,
entropy in a cluster can be quantified in terms of the normal-
ized frequencies of the attributes within the cluster, treating
each variable independently from each other. This crucial
difference, that is, distinguishing clusters with respect to
globally defined differences instead of local metric distances,
is one of the advantages of COOLCAT when dealing with
categorical data and can help better describe the clusters in the
interpretation stage. Another advantage of COOLCAT over
more classical algorithms (such as k-means and k-medoids)
is that COOLCAT performs incremental clustering and hence
can handle streams of new incoming data without the need for
clustering from scratch.

Given the number of clusters, the algorithm begins by
forming cluster seeds that are chosen as themost different ele-
ments from each other in the dataset. Then, the remaining data
points are assigned to the seed clusters one by one according
to the average reduction in the entropy of the system. Once
one iteration is completed, a portion of the data points may
be redistributed among the clusters (provided that the new
assignments decrease the overall entropy) to minimize path
dependence effects.
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B. INTERPRETATION OF CLUSTERS
The second step of the analysis focuses on ascertaining the
meanings of the clusters formed by the clustering algo-
rithm. This involves determining the significant variables that
describe the clusters more distinctively and extract the a pri-
ori unknown relationships or rules between these significant
variables.

1) FREQUENCY ANALYSIS FOR IDENTIFICATION OF
SIGNIFICANT VARIABLES
Because the COOLCAT method is not metric-based, another
approach for identifying the meaning of the clusters is
needed. A frequency analysis was used to determine which
variables appear significantly more than expected in each
cluster compared with how frequently they are in the rest of
the data. This is possible because the data is categorical and
frequencies exist, whereas in continuous data, theywould not.

Significant variables in each cluster were identified using
the chi-square test. As the data is in binary form, for every
data point, each variable has either a value of 1 if it was
present in that accident or 0 if it was not. The chi-squared
value for each variable is given by:

chi(var) =
(O1(var)− E1var))2

2E1(var)
+

(O0(var)− E0var))2

2E0(var)
(1)

where var represents an arbitrary variable and
• O1 –observed number of 1’s in the cluster,
• E1 – expected number of 1’s in the cluster,
• O0–observed number of 0’s in the cluster,
• E0 – expected number of 0’s in the cluster.

The expected number of 1’s is given by the size of the cluster
multiplied by the frequency of the variable in a comparison
set divided by the size of the comparison set. This comparison
set contains the full data (representing the distribution of the
entire population). E1 is then given

E1(var) = cluster_size×
frq(var)
N

(2)

where N and frq are the total number of data points in
the full data and the frequency of the variable in question,
respectively. The significance of a variable is determined
by whether the frequency of that variable significantly dif-
fers from the expected frequency (at a significance level of
p<0.05) under the null hypothesis that it does not. After the
significant variables are found, the index relative frequency
= observed/expected is calculated to identify which vari-
ables are more overrepresented in the cluster. In the sequel,
we require, for the relative frequency of a variable to be larger
than a set threshold to be deemed as the signifier or indicator
of a cluster (see Section 5).

2) MARKET BASKET ANALYSIS
Market Basket Analysis (MBA) (Agrawal, 1993) is a method
that is mainly used on business transactional data to iden-
tify which ‘products’ are found together in ‘customers

purchases’. In general, the idea is to find association rules
between variables that appear together unusually frequently.

The first step in MBA is to find frequent itemsets using
the Apriori algorithm. A k itemset is a subset of all possible
variables of length k . For example, in a shopping context,
an itemset could be {Bread, Milk, Eggs, Cheese}, while in
a traffic accident context, the itemset would be {Motorbike,
Entering Junction, Turning Left}. An itemset is said to be
frequent if its support exceeds a given threshold. The support
of an itemset X is given by the frequency of X , that is, the
number of data points to which all members of the itemset
belong to, divided byN the total number of data points, that is,

Support =
frq(A ∪ C)

N
(3)

The Support is essentially a measure of how rare an itemset is.
In the second step, once frequent itemsets are found, is to

identify association rules within them. This is done by parti-
tioning the itemset into two subsets, the antecedent and the
consequent, which then gives the association rule antecedent
→ consequent. For example, an itemset X={x1, x2, x3} can
be split into antecedent A={x1, x2} and consequent C={x3},
which would give the rule A→ C .

Two metrics were used to identify the strength of the asso-
ciation: confidence and lift. Confidence is given by the fre-
quency of the union of the antecedent and the consequent (the
joint itemset), which corresponds to the intersection of the
data points, divided by the frequency of the antecedent. i.e.,

Confidence =
frq(A ∪ C)
frq(A)

(4)

Intuitively, for rule A → C , this is the probability that
C occurs, given that A also occurs. The lift is given by the
support of the entire itemset divided by the support of the
antecedent multiplied by the support of the consequent.

Lift =
Support(A ∪ C)

Support(A)× Support(C)
(5)

For association A → C , this is a comparison between
how often A and C actually appear together, with how often
A and C would be expected to appear together if they were
independent, based on their support within the dataset. If the
lift is less than 1 it indicates that A is not strongly associated
with B any more than it coincidentally appears together.
On the other hand, if the lift is higher than one, then this
indicates that, even if the rule has low confidence, the items
appearing together are not coincidental. A summary of the
concepts is given in figure 1.

V. RESULTS
In this section, we present the main findings of this study in
two stages. First, the previously explained COOLCAT clus-
tering method was applied to a sample of 20000 data points
that were randomly selected from the collection of accident
records. As COOLCAT is robust against high dimensionality,
no attempt was made to reduce the number of attributes fur-
ther. In the second stage, a combination of frequency analyses
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FIGURE 1. Relevant relations for Market Basket Analysis rules.

followed by MBA was carried out to extract the significant
associations for each cluster which formed the scenarios
obtained from those clusters. We report that the COOLCAT
clustering algorithm was coded and executed in MATLAB
2019a while the MBA method was implemented in python
3.7 using the mlxtend package [59].

A. RESULTS FOR COOLCAT CLUSTERING
Here, we present the results of the clustering method. After
the cleaning process, the data, which is entirely categori-
cal, was converted into binary form (or business transaction
form), where each category of a variable was treated as a
new variable. The COOLCAT algorithm was applied to a
random sample of 20,000 accidents that were selected from
the reference list of 549,575 accidents that took place between
2016-2018.

For the differentiability and quality of the clusters,
an assessment of the goodness of clustering needed to be
performed in the post-clustering stage, as the total number
of clusters is pre-specified in the COOLCAT algorithm. The
ideal cluster number for a clustering is one of the topics that
there is no scientific consensus as to which clustering is the
best (simply because clustering assessments usually depend
on the measure that one uses). Commonly used measures
include average silhouette (AS) scores, Dunn index (DI),
and the DB index, which are all based on distance functions
imposed on the data. However, COOLCAT does not use a
distance function for clustering, and distance-based assess-
ments may not be ideal. Alternatively, one can use normalized
mutual information (NMI), which is an information theo-
retic measure of the level of clustering. For the best clus-
tering, we compared the scoring indices mentioned above,
and the majority rule was applied to choose the ideal cluster
number.

Table 1 shows that the NMI values tend to increase as the
cluster number increases (with occasional drops). On the con-
trary, average Silhouette and Dunn scores tended to decrease
with increasing cluster number (all computations were done
with Hamming distance). It was observed that the DB score
mostly stabilized after k>3 and was somewhat insensitive to
the cluster numbers. In these respects k = 2,3 do significantly
better in obtaining high AS and DI scores. However, NMI
scores are very low for k = 2,3 (and AS has a theoretical

TABLE 1. Cluster quality scores.

bias towards configuration with low cluster numbers). For
k > 5, the NMI scores were considerably higher compared to
the case with k<6; however, the AS and DI scores were sub-
stantially low. Therefore, considering all aspects, the optimal
cluster number was determined to be k∗ = 6.

B. INTERPRETATION OF CLUSTERS
As discussed in the introduction, the advantage of the cluster-
ing algorithm is that it groups the data into distinct homoge-
nous clusters without making any assumptions about the
relationships among the variables. However, this does not
inform us about what each cluster represents. Here, we sys-
tematically investigated and interpreted the clusters at varying
levels of detail.

1) FREQUENCY ANALYSIS OF CLUSTER ATTRIBUTES
The first level of analysis unveils which variables are over-
or under-expressed in a particular cluster which are then
interpreted as indicators of what that cluster is and what it
is not. Here, the reference measure will be the entire data (all
accidents between 2016-2018) which has its own distribution.
Therefore, significant deviations from the reference distribu-
tions are interpreted as signifiers of the cluster under consid-
eration. This deviation was assessed using the Chi-square test
for each variable, as introduced in the previous section. The
advantage of this approach is that it is free from human bias
and provides a simple natural interpretation for each cluster
if the clustering algorithm is capable of distinguishing data
patterns from each other.

The frequencies of variables in the six clusters formed
are compared to the reference frequencies (the whole data),
and those variables that showed significant differences
(p<0.05) were noted. To further strengthen the interpreta-
tion, only those variables (among the significant ones) that
are over-expressed with at least 1.25 times more than the
reference variables are designated as the cluster signifiers or
indicators. Tables 2-4 show, for each cluster, the indicator
variables and their relative frequencies (ratio of frequency of a
variable within a cluster to the overall ratio of in the reference
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TABLE 2. Signifiers for clusters 1-2.

set). A thorough discussion of each cluster is provided in
section 6.

2) MARKET BASKET ANALYSIS OF CLUSTERS WITH
SIGNIFIERS
The first-level investigation by frequency analysis is com-
plemented by the second-level investigation, market basket
analysis (MBA)- which runs on significant variables in each
cluster. This is motivated by the idea that although the signif-
icant variables are clustered together, they are not necessarily
directly linked to each other. MBA helps the variables that
are strongly associated with each other to be more precisely
identified and provides more arguments to make inferences
on the signifiers. Note that it is possible to run the MBA
on each cluster with the full set of variables, which has
been adopted by some of the previous studies (Pande and

Abdel-Aty, 2009). However, we believe that restricted MBA
is more meaningful. This is because, on the theoretical side,
one is really after those associations that are cluster specific,
which describe, with more fidelity, the traffic scenarios that
are more likely to occur in that particular cluster. In fact,
this has been the whole point of the clustering method to
start with, that is, a deeper and more focused analysis of
patterns. On the practical side, narrowing down the number of
variables significantly reduces the computational time, which
will prove profitable if one tries to perform MBA on larger
samples.

When applying the MBA, we adjusted the thresholds for
the parameters depending on the cluster. The values for the
minimal support, confidence, and lift for each cluster are
presented in Table 3-8 along with the set of multi-item asso-
ciations obtained from the Apriori algorithm. After testing,
the threshold values of support = 0.00001, confidence =
0.3, and lift = 1.5 were chosen. Such a low support thresh-
old was used to allow almost all of the rarest variables to
potentially appear in the output rules, as identifying edge
cases is important in scenario testing. The confidence and
lift thresholds were chosen as they provided a good number
of strong rules. They also guarantee that for every rule, the
consequent appears in at least one-third of the accidents in the
cluster containing the antecedent (from the 0.3 confidence)
and that the rule is observed over %50 percent more often
than expected compared to random occurrence (from the lift
value of 1.5).

To help give a high level understanding of the gener-
ated associations, a plot for each cluster was generated
using the python package pyvis which shows the strongest
links between variables. These are shown in the appendices
(figures 8-13).

VI. DISCUSSION
A. UNDERSTANDING CLUSTERS WITH COOLCAT
For Cluster 1, one reads from Table 2 that it is a severe (i.e.,
serious and fatal) accident cluster. It is also a non-junction
cluster depicting accidents that took place onmotorways with
high-speed limits (50-70 mph) in late night in dark places
with no light. These accidents in this cluster appear to involve
pedestrians or objects on the road, whichmight be one of the
reasons why fatal and serious accidents are over-expressed
in this cluster. Adverse weather and road conditions such
as high winds, snowy weather, and frosty surfaces seem to
have played a role in drivers’ loss of vehicle control and
hit the nearside and offside of the road, causing such severe
accidents. As this is a non-junction cluster with a high road
speed limit, the related maneuvers are, expectedly, overtaking
and changing lanes.

Cluster 2 (Table 3) significant variables suggest that this is
a minor road cluster (C roads and unclassified) at junctions
with low-speed limit (20-30 mph) involving more dominantly
two-wheelers (bikes and motorbikes). Being an at-a-junction
cluster with two wheelers, the key maneuver types leading to
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TABLE 3. Signifiers for clusters 3-4.

accidents appear to be left turns and right turns (as one would
expect).

Cluster 3 is also a severe accident cluster indicated by the
fatal accidents attribute. The main differences from Clus-
ter 1 are that Cluster 3 is a junction cluster and the acci-
dents in this cluster mostly occur on A-roads instead of
motorways which are important distinctions. Among the
junctions, slip roads deserve special attention as they are

TABLE 4. Signifiers for clusters 5-6.

highly over-expressed (rel. freq.=5.44). Adverse weather and
road conditions also play a significant role in this cluster.
Driving on high-speed limit roads under adverse weather with
risky maneuver types at a junction (such as changing lane
to left, changing lane to right, going ahead with bend) seem
to have led to vehicles losing control and leaving the car-
riageway (i.e., hitting the roadsides and getting rebounded)
whichmay be the reason behind severe outcomes. This cluster
also has an interesting element, that is, accidents of left-
hand drive (LHD) vehicles (European vehicles) which are
generally ignored in most accident analyses due to being rare
cases (but nevertheless important as we shall see later in this
section).

Cluster 4 describes the off-junction accidents like
Cluster 1. However, there are important differences. First,
accidents in this cluster occur on roads with slow speed
limit. Second, most of these accidents occur on unclassified
minor roads where one can see parked or reversing vehi-
cles. Interestingly the accidents frequently involve buses and
trams.

Cluster 5 is another junction cluster but without adverse
weather conditions. It predominantly involves roundabouts,
many-armed junctions and private drives. The accidents in
this cluster take place, mostly, at junction entrances. Inter-
estingly, maneuvers which would normally be regarded as
safe are substantially more expressed in this cluster such as
parked, reversing andwaiting.Therefore, a deeper analysis of
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this cluster can yield unexpected associations between these
accident attributes.

Finally, Cluster 6 is a night cluster describing accidents that
take place on A-roads. The difference from Cluster 3 is that
the accidents happen at very low speed limit roads (20 mph).
And differently from Clusters 2,3 and 5, in this cluster, mid-
junction accidents are more prevalent in this cluster. Another
specialty concerning this cluster is that this is the only cluster
with crossroads type junction as significant. Curiously, bicy-
cles and buses are more commonly represented in this cluster.

B. ASSOCIATION OF ATTRIBUTES IN CLUSTERS AND TEST
SCENARIO GENERATION
As emphasized in the introduction, one of the main motiva-
tions of this study is the identification of the test scenarios
(temporal/spatial conditions) for CAVs that are correlated
with important outcomes. The clusters formed in Section 5,
along with the significant variables identified, enabled us to
find such conditions. In this section, we explicitly demon-
strate how this is done using MBA. It should be noted at the
outset that the MBA procedure is operated only on the sig-
nificant variables of each cluster to extract the most relevant
scenarios. This means that, based on the analysis of Section 5,
no scenario will have theWeekend or Weekday and Urban or
Rural Area variables as these variables were not found to be
significant. Such information can either be deduced from the
context or be generated randomly if they were to be included
in a simulation.

In order to mine the most interesting associations the
MBA parameters are taken according to the characteristics
of each cluster (e.g. by varying the support threshold of
variables in the respective clusters). Here we first display
and discuss, in Tables 5-10, the top-ranking associations in
terms of their confidence or lift values. For the purposes of
scenario generation, the standardMBA procedure is modified
considerably. First, repeating rules (from each cluster) are
removed. Second, associations that are notmutually exclusive
are combined in a consistent way to yield longer associ-
ations. The longer the association rule, the more detailed
the concrete scenario. The rationale is that each independent
rule depicts the strong tendency of a set of variables to
appear together. A natural combination of such rules forms
the conditions/characteristics (environment-related or driver-
related) of a scenario. We note here that we do not require an
order or direction for the associations of attributes that allow
flexibility to focus on different accident settings. It should be
emphasized that no hard rules (except for the requirement of
a maneuver) are imposed to derive the scenarios; in principle,
any compatible combination of rules and the attributes with
high confidence and high lift could be a scenario candidate.
Also, no claim is made on the presented exemplary scenar-
ios being unique (they probably are not). Each exemplary
scenario represents a non-trivial, interesting situation that
is present in the respective cluster and leads to important
consequences.

TABLE 5. Association rules for cluster 1.

For each exemplary scenario a diagram was created using
SUMO (Simulation of Urban Mobility). . . to aid with visual-
ization [60].

For Cluster 1, we recall that this is a serious or fatal
accident cluster on a motorway and away from a junction
Understandably lane-changing maneuvers (rule #1) (to right
or left) and overtaking combined with negative environmen-
tal conditions are associated with serious outcomes such
as leaving the carriageway and overturning (rule #2) or
skidding/jack-knifing (rule #3). From the association rules,
it can also be inferred that goods vehicles are more at risk
of getting involved in motorway accidents than other vehi-
cles. Other rules can be interpreted in a similar manner
(Table 5).

Exemplary Scenario 1.A vehicle overtakes another vehi-
cle that ismoving off on amotorwaywith awet surface. A pos-
sible outcome for this scenario is that it leads to an accident
that causes skidding and rebounding from the nearside (rule
#3) as shown in figure 2.

For Cluster 2, Table 6 lists some of the main associ-
ations. Cluster 2, being a two-wheeler cluster, comprises
traffic situations for bicycles or motorbikes. Rule #1 indi-
cates that accidents at private drive or entrance, when clear-
ing junction to an unclassified road are strongly linked to
turning right maneuvers. Rule #2 illustrates a scenario for
bicycles on unclassified roads, but while turning left to an
unclassified road clearing a junction. Both rules have high
lifts.

Exemplary scenario 2. A bicycle on an unclassified road
at a T or staggered junctionmakes a left turn and when about
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FIGURE 2. Diagram for exemplary scenarios 1.

TABLE 6. Association rules for cluster 2.

FIGURE 3. Diagram for exemplary scenarios 2.

to clearing the junction gets into an accident (rule #2) as
shown in figure 3.

For Cluster 3, a number of interesting scenarios can be
generated (Table 7). Again we describe the first few inter-
esting rules (giving scenarios) and others can be interpreted
in the same way. Rule #1 describes a situation in which
vehicles are going ahead and bending at a T or staggered
junction on an A road in a windy day gets into a crash and
hit from the nearside. Such accidents are strongly linked to
road surface being wet/damp. Rule #2 suggest that drivers
should be careful at T or staggered junction as going ahead
and bending to clear junctions on frosty/icy roads are strongly
associated with accidents at such junctions.

FIGURE 4. Diagram for exemplary scenario 3.

FIGURE 5. Diagram for exemplary scenario 4.

Exemplary scenario 3. A vehicle during high winds at a
roundabout of an A road goes ahead and bend in the middle
of the junction and gets into an accident. The road surface was
wet (rule #3) as shown in figure 4.

Cluster 4 describes accidents with back impact points
which are generally found on minor roads (unclassified) of
urban areas where vehicles often need to reverse their vehi-
cles to park or to get into the road. The level of detail provided
by this rule is low. As discussed earlier, in such cases, for
scenario development, other relevant variables defining a
scenario can be generated randomly.

Exemplary scenario 4. A vehicle reverses on an unclas-
sified road and gets hit from the back (rule #1) as shown in
figure 5.

Cluster 5 is a true junction cluster that mostly involves
female drivers. Here we discuss the most strongly asso-
ciated conditions. Rule #1 describes situations in which
the vehicles are hit from the back while moving off and
entering the roundabout. Rule #2 also describes an enter-
ing junction situation by reversing at a private drive or
entrance.

Exemplary scenario 5. A vehicle reverses to a private
drive or entrance and gets hit from the back while entering
the junction (rule #2) as shown in figure 6.
Finally, a set of association rules, mined from Cluster 6

focusing on accidents involving buses/trams and bicycles,
on crossroads are described in Table 9. Rule #1 indicates that
of the accidents that involve buses/trams atmid-junctions that
are trying turn right, a significant portion of them happen at
crossroads. Also, when buses/trams that try changing lane
to left end up, almost certainly, with crashes impacting on
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TABLE 7. Association rules for cluster 3. TABLE 7. (Continued.) Association rules for cluster 3.

TABLE 8. Association rules for cluster 4.

nearside (rule #2). Also, for buses/trams driving at night,
roundabouts pose risks especially when clearing junction
rule #3). Rule #4 depicts general situations linking crossroad
accidents to turning leftmaneuvers which resulted in nearside
crashes at low speeds at mid-junctions. On the other hand,
4-arm/other junction accidents which involve turning right

6670 VOLUME 10, 2022



E. Esenturk et al.: Identification of Traffic Accident Patterns via Cluster Analysis

TABLE 9. Association rules for cluster 5.

FIGURE 6. Diagram for exemplary scenario 7.

FIGURE 7. Diagram for exemplary scenario 6.

happen almost always when clearing junctions (rule #5). Fur-
thermore, rule #7 suggests that cyclists who are turning right
and clearing junctions are linked to accidents at roundabouts.
Finally, rule #8 suggests that accidents in which bicycles
change lane left almost certainly take place on crossroads.

Exemplary scenario 6. A bus driving in darkness with
lights lit makes a right turn on a junction with more than 4-
arms and when clearing the junction gets into an accident
(and hit from nearside) (rule #5) as shown in figure 6.

VII. CONCLUSION
This study aimed to achieve two high-level objectives. The
first objective was to underpin the research on safety analysis

TABLE 10. Association rules for cluster 6.

of traffic accidents by identifying patterns based on past
accident records. This was performed using a cluster analysis
method. This approach reveals the natural patterns in the data
without making any prior modelling assumptions, which is
advantageous considering the complexity of factors that can
affect the outcomes. The second objective was to develop
a method based on the information obtained from accident
clusters, which will help design test case scenarios for AVs,
thus filling an important gap in the industry. To achieve both
objectives, several novel approaches were taken deepening
some of the existing methods to obtain more useful results
while considering possible future challenges in industrial
applications (such as handling of continuously growing large
datasets).

For the first objective, the COOLCAT clustering algorithm
was used on the processed STATS19 dataset to determine the
natural grouping of accidents. COOLCAT employs natural
global clustering criteria (entropy) which suits particularly
well to cluster noisy categorical data and is able to handle
large dimensions with ease. To the best of our knowledge, this
is the first application of the COOLCAT algorithm in traf-
fic accident research. Using various cluster quality metrics,
six clusters are obtained from the algorithm. The frequency
tests conducted on each cluster indicated that Cluster 1 was
described by nighttime serious/fatal accidents on motorways
away from the junctions, which involved changing lanes
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FIGURE 8. Association rules plot for Cluster 1.

(right/left) and ended up with a skidding/overturning vehicle;
Cluster 2 was described by minor road accidents by two-
wheelers at junctions on low-speed limit roads involving
right/left turns; and Cluster 3 by fatal/serious accidents on
A roads but at junctions (especially slip roads) by left-
hand driving vehicles. Similarly, Cluster 4 can be repre-
sented by accidents on unclassified roads with low-speed
limits (likely to be narrow street roads) away from junctions
involving U-turn or reversing maneuvers, which often ended
in hits from the back; and Cluster 5 depicts relatively more
minor accidents at junctions with ‘gentle’ maneuvers such as
parked, waiting, and moving off. Finally, Cluster 6 describes
accidents at junctions of road A with a low-speed limit where
the main maneuver types were turning right/left or moving
off. The results suggest that particular care should be given
in making policies/regulations for elements described in the
clusters.

For the second objective, based on the information
obtained from the clusters, the MBA methodology was
applied for association rule mining. As the standard MBA
produces repetitive rules (when ordering is not counted),
which may only partially describe accidents, we extended
the method considerably by systematically combining non-
conflicting rules that provided much higher details for the
test scenarios. As expected, scenarios obtained from this
procedure reflect the characteristics of the cluster that they
come from. Once the scenarios are obtained, they can be
used in real or virtual environments for CAV training by
varying the unspecified attributes as free variables. This
will significantly speed up the training processes of CAVs,
as they will be driven on quality miles rather than on random
routes.

There are theoretical and practical implications of this
work. First clustering, as a method for accident analysis,

FIGURE 9. Association rules plot for Cluster 2.

FIGURE 10. Association rules plot for Cluster 3.

is underexploited. It can be used along with other existing
methods (e.g., regression) and enhance them by homogeniz-
ing the data. Furthermore, data specific cluster models, such
as COOLCAT can serve to better obtain higher quality results
instead of more generic algorithms. On the practical front,
the output of this work has immediate industrial applications.
The proposed approach provides an a-to-z methodology to
generate, in a nearly automated manner, high quality test
scenarios that can be used in simulations by manufacturers.
In fact, test scenarios obtained via the proposed method
are now (after data formatting adjustments) deposited into
the recently launched, world’s largest scenario repository,
SafetyPoolTM [61].

There are also apparent limitations of this work, mostly
due to the scope of the data that was used. The analysis can
provide details to the extent that the data can provide, but
not more. Although we tried to keep the number of attributes
high, the real world contains conditions that may be important
but not covered in the present data (such as the position of
the sun and curvature of the road). In future studies, multiple
data sources can be combined to provide a more detailed
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FIGURE 11. Association rules plot for Cluster 4.

FIGURE 12. Association rules plot for Cluster 5.

FIGURE 13. Association rules plot for Cluster 6.

description of each accident, which will affect the formation
of accident clusters and the association rules extracted from
those clusters (i.e., more detailed test scenarios).

APPENDICES
A. PLOTS FOR ASSOCIATION RULES IN CLUSTERS
Below are the plots of association rules represented by arrows
between variables along with their corresponding confidence
values

TABLE 11. Original vehicle type categories of STATS19.

TABLE 12. Restructured vehicle type categories.

B. RESTRUCTURING OF STATS19 TRAFFIC VARIABLES
Here we provide an example of re-categorization of the data
for the case of the traffic variable: Vehicle types. For the sake
of simplicity of the analysis, the original categories (Table 3)
of the raw data are restructured to give the new ones
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