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ABSTRACT In a distributed database environment, multi-join query optimization is one of the key factors
affecting database performance. Genetic algorithms have a good application in dealing with this type of
problem. However, the traditional genetic algorithm has the problems of low efficiency and easily falls
into the precocity when dealing with query optimization, which is mainly caused by the lack of population
diversity. Therefore, this paper sets up a mathematical model for distributed database query optimization and
proposes an adaptive genetic algorithm based on double entropy. We introduced a genetic algorithm with
two types of entropy: genotype and phenotype. Genotype entropy was used to optimize the distribution of
the initial population, ensuring that the initial population has good population diversity. Phenotype entropy
is used to optimize the genetic strategy, which can be divided into individual entropy and population entropy.
Individual entropy is used to optimize the selection strategy, and population entropy is used to optimize the
crossover and mutation operators to maintain the population diversity in the iteration process and accelerate
the speed of iteration. The experimental results show that the algorithm proposed in this paper is effective

for query optimization of a distributed database.

INDEX TERMS Database, distributed, multi-join query, genetic algorithm, entropy.

I. INTRODUCTION

In the era of big data, in the face of increasing mass data, the
disadvantages of traditional centralized database are increas-
ingly appearing. To adapt to complex and changeable network
requirements and massive data, the distributed database sys-
tem was born at a historic moment. A distributed database
system (DDBS) is a collection of data that is logically related
to each other but distributed on different sites of the computer
network [1]. These data can not only be run separately, but
also communicate with each other through the computer
network, and respond to a complex task together to form a
uniform whole. The performance of DDBS depends on its
ability to handle query requirements in an efficient manner,
and the query processing in DDBS needs to transfer data
between different sites on the network. In DDBS, the query
cost mainly includes CPU, I/O, and communication costs, and
communication cost is the most important factor affecting the
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performance of a query. The communication cost is the cost
of transferring data among the different sites that participate
in the query. Data transmission and local data processing
constitute the distributed query strategy, which is known as
the query execution plan (QEP). Multi-join query is one of
the most common operations in a distributed database. When
multiple relationships are connected, there are many different
orders for the same query, and each order corresponds to a
QEP. As the number of relational tables increases, the number
of different QEPs increases exponentially, which leads to high
computational complexity. Therefore, the traditional database
query method is inefficient in dealing with the query of
massive data, and it is difficult to adapt to distributed queries.
Therefore, seeking an intelligent method to quickly find the
best QEP with the lowest communication cost among all
QEPs in the search space, to reduce the query cost as much
as possible and improve the efficiency of query response has
become the focus of current research.

Scholars at home and abroad have proposed various
strategies for the optimization of distributed database
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queries. Examples include SDD-1 [2], [3], dynamic
programming [4], [5], simulated annealing [6], [7],
genetic algorithm [8]-[10] and so on. Paper [11] proposed
a query optimization method based on the Tabu-GEP algo-
rithm, which combines the Tabu search strategy with the
GEP algorithm. It improves the performance of the classic
GEP algorithm. The query time and generation time of
the optimal query strategy were both significantly reduced
compared to the original. However, the time complexity of
the algorithm was still high. Paper [12] proposed an adaptive
genetic algorithm, which reintroduced individuals scattered
outside the convergence part into genetic operations and
adaptively adjusted the evolutionary strategy according to
the different fitness of individuals to maintain the diversity
of individuals. However, it may also introduce undesirable
genes, which slows down the optimization process. Paper [13]
combined multiple ant colonies with genetic algorithm, over-
coming the blindness of the early search of ant colony algo-
rithm, and used the smooth mechanism and the mechanism
of learning from each other among ant colonies to avoid
falling into local optimum and precocity. It performs better
in preventing the algorithm from falling into a local optimum
and can obtain a better query strategy. However, the quality
of the initial pheromone too depends on the results of the
genetic algorithm. The work in [14] provided an HMSST+
algorithm to optimize the storage and query strategy of a
distributed memory database. It uses an SST connection
selection strategy to quickly calculate the optimal connection
scheme. This algorithm can improve the query efficiency and
has strong scalability. However, the improvement effect is not
significant for more complex query statements.

Because the classical genetic algorithm is prone to pre-
maturity, it is difficult to obtain an ideal optimal solution.
In this paper, we introduced the concept of information
entropy into the genetic algorithm and proposed an adaptive
double-entropy genetic algorithm (ADEGA), which is based
on two types of entropy. We used the genotype entropy of
the population to optimize the initial population distribution.
During the process of evolution, we selected an appropri-
ate evolutionary strategy according to population phenotype
entropy to adaptively adjust the genetic operator and main-
tain individual diversity in the evolution process. This can
improve the global search ability of the entire algorithm and
quickly obtain the optimal solution. Experiments show that
the ADEGA algorithm can obtain good optimization results
and effectively improve the efficiency of distributed database
queries.

Il. QUERY EXECUTION COST MIODEL

A. THE REPRESENTATION OF QUERY EXECUTION PLAN
As the uncertainty of the join order of relational tables consti-
tutes the diversity of QEPs, the QEPs of a distributed database
can be represented by a query binary tree [15], as shown in
Fig. 1. In the figure, the leaf nodes of the binary tree represent
the relational tables in the database, and the intermediate
nodes represent the intermediate result sets for the joins of
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the left and right relational tables. In general, for a join of
n relational tables, there are n! different kinds of QEP. With
the increase in the number of relational tables, the number of
QEDPs increases exponentially, which is similar to the classical
TSP [16] problem, both of which are NP-hard problems.
Therefore, it is almost impossible to search for the optimal
QEP using an exhaustive method.

oo
/N
oo R,
/N
oo R,
/N
oo R,
/N
R, R

FIGURE 1. Query binary tree.
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B. COST ESTIMATION

In this paper, we considered the multi-join query. Therefore,
we use “00” to represent the join operation of the two rela-
tional tables. For the join of two relational tables in the multi-
join, § = RjooR, the record number of the intermediate
result set after the join is

[R1] x [Ry|
IS| = (1)
Hc max(V(c;, R1), V(ci, Rp))
Ci€

where |R1| and |R;| represent the cardinality of table Ry and
table R», which refer to the number of records of different
tuples. C is the set of common attributes for the two relational
tables that participate in the join operation. V(c;, R;) and
V(ci, Ry) represent the number of different values of the ith
public attribute ¢; in table R; and table R;. S represents the
intermediate dataset after table R1 and table R2 are joined,
and |S| represents the cardinality of this intermediate dataset.

To estimate the size of the intermediate dataset after the
join operation, we made two assumptions [17]. First, the
attribute values were evenly distributed across the tuples of
the table. Second, the values of the different attributes are
independent. Therefore, the width Wg of table R can be
expressed as:

Wr=) W @
i=1

In the expression, i represents the ith attribute of table R, n
represents the total number of attributes for table R, W; is the
width of ith attribute. The join attributes involved in the join
operation can be divided into two types. If the join attribute is
not a pure join attribute, the repeated join attributes should be
removed from the result set, and only one join attribute can
be retained. If the join attribute is a pure join attribute, all of
them are removed from the result set. Therefore, the width Wy
of the intermediate result set S formed by each join operation
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can be expressed as

Wr, + Wr, = 2Wjoinr,,Ry),»  Jion(R1, R)
is pure join attribute
Jjion(R1, R>) is not
pure join attribute

3

We=
5 Wg, + Wry, — Wioin(r,,R>)>

Jjoin(Ry, R») represents the join attributes of table R and table
R>.

Therefore, the size of the intermediate dataset, Size (S),
formed by a join operation is:

Size(S) = |S| x Ws )

Because the data of the distributed database are stored
separately on data tables at different sites, table R; and table
R, may be on the same site or on different sites. When they
are not in the same site, the data of the smaller relational table
must be transferred to the site on which the larger relational
table is located. Therefore, it is necessary to calculate the
transmission cost of the data among the sites. For the joining
of two relational tables, / = Rj0oR;, the cost model cost(j)
is given by

cos t(j)
R R
IR1 x IRl oW,
[T max(V(c;, R1), V(ci, R2))
cieC
R and R»are in the same site
= [Ri] X [Ra| e
x W + min(Size(Ry),
I max(V(c;, Ry), V(ci, R2))
cieC
Size(Ry))
R and R»are in the different sites
(5

In the expression, min(Size(R1), Size(R3)) is the smaller value
between table R; and table Ry, W; is the width of the inter-
mediate dataset after the join. The upper part of equation (5)
indicates that when two tables are joined at the same site, the
cost only includes one part, that is, the cost of the join of two
tables, because there is only the data join within the same site
but no data transmission between different sites. The lower
part of equation (5) indicates that when two tables are in dif-
ferent sites, the data need to be transferred between different
sites, it produced additional transmission cost, so the cost
includes two parts, the first part is the cost of join of tables, the
second part is the cost of data transmission between different
sites and the value is the smaller one between two tables. For a
join query with n relational tables, the intermediate nodes are

(1,j2, -, Jn), and the total cost estimation model, COST,
is defined as
n—1
COST =) cos(j;) (6)

i=1
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C. DATA DICTIONARY AND NETWORK PERFORMANCE
MATRIX

1) GLOBAL DATA DICTIONARY

The global data dictionary [18] is a record of the global
structure and information of a distributed database. It mainly
includes some static information of data tables, such as the
relevant information of fields, table names, number of table
records, number of sites where the tables are located, and
the database to which the table belongs. When a global data
dictionary is being built, multiple records should be created
if a field appears in more than one table, or if the table
containing a field is distributed in more than one site.

In the process of distributed query, by accessing the global
data dictionary, the relevant database information and site
information can be obtained, so that the next query decom-
position operation can be carried out.

2) NETWORK PERFORMANCE MATRIX

The network performance matrix is an intuitive represen-
tation of network performance between sites. The number
of rows and columns is equal to the number of sites; thus,
theoretically, it is a symmetric matrix. When cost evaluation
involves data transmission between different sites, it is nec-
essary to access the network performance matrix to obtain
network performance parameters between sites and take
these parameters into account in the cost evaluation. Assume
that the network performance matrix M of the four sites is
expressed as follows:

-1 12 32 138
12 -1 25 0

32 25 -1 15
1.8 0 1.5 -1

M =

From this performance matrix, we can find that the diag-
onal element represents the site communicates with itself,
because there is no network communication cost when the site
communicates itself, so the site’s self-network performance
is —1. The other elements indicate that the network perfor-
mance varies among different sites. The best performance
was between site 1 and site 3, with a value of 3.2. The
performance between site 1 and site 2 was the worst, with a
value of 1.2. The value of O between site 2 and site 4 indicates
that these two sites cannot communicate with each other
owing to some faults.

lIl. IDEA OF OPTIMIZATION ALGORITHM

The genetic algorithm (GA) is a random search method
derived from the evolution law of biology [19]. It exhibits
strong robustness and fast convergence. The steps generally
include selection, crossover, mutation, and others. However,
classic genetic algorithms generally exist the precocity phe-
nomenon, and it easily falls into the local optimum, which
greatly affects the optimization ability of the algorithm. The
main reason is that the search process is limited to a piece
of area due to the lack of population diversity, and the
results obtained are only the optimal solutions within this
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area, rather than the global optimal solutions. Therefore,
maintaining population diversity is very important for genetic
algorithms, and many researchers have proposed various
measures [20]-[22].

Entropy [23] is a quantitative index used to measure the
diversity and richness of a system state. By monitoring and
controlling the change in entropy, the system can change
in a certain direction. Therefore, we introduced information
entropy into the genetic algorithm [23], [24] as a control index
of state change in the population, so that the algorithm can
always maintain a good population diversity in the evolution
process. In this paper, we propose an adaptive double-entropy
genetic algorithm (ADEGA). Two types of entropy are used
to control the algorithm process. Genotype entropy is used
to optimize the generation of the initial population, so that
the initial population has a better distribution and improves
the initial genetic advantage of the population. Phenotype
entropy is used to control the change in genetic operators dur-
ing the evolution process. Phenotype entropy can be divided
into population entropy and individual entropy. Population
entropy mainly affects the selection process, whereas individ-
ual entropy acts on the crossover, mutation, and recombina-
tion processes. With these two types of entropy, the algorithm
can adaptively adjust the evolutionary strategy, maintain pop-
ulation diversity, and obtain excellent optimization results.

The flow of the optimization algorithm designed in this
paper is shown in Fig. 2.

IV. QUERY OPTIMIZATION BASED ON DOUBLE ENTROPY
GENETIC ALGORITHM

Aiming at the query optimization problem of distributed
database and the shortcoming of genetic algorithm, this paper
proposed an improved algorithm that uses two types of
entropy to optimize the genetic algorithm and applied it to
the query of distributed database. The main content of the
optimization algorithm in this paper includes the encoding
of problem, fitness function, initial population optimization,
genetic operators and so on.

A. ENCODING SCHEME AND FITNESS FUNCTION

In this paper, we chose real encoding to encode the tree
structure of the query execution plan. It is assumed that each
data table is encoded into a one-digit integer, and the order of
the code string represents the access order of the data tables.
For example, for code string 12345, the corresponding access
order is 1—-2—3—4—5. For the encoding of n tables, the
encoding length is simply the number of tables.

The specific encoding method was as follows: First,
we numbered the n data tables participating in the query
from 1 to n, then encoded the leaf nodes of the binary tree
into an ordered sequence from bottom to top according to
the principle of post-order traversal, and the length of the
sequence is n. Then, the access order of each site during
the query process can be obtained according to the site to
which each relational table belongs. Finally, the query cost
can be obtained by substituting the relative data of tables
and sites into the cost calculation model. For example, the
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query binary tree shown in Fig. 1 that contains relational
tables Ry, R>, R3, R4 and Rs5 can be numbered as 1, 2, 3,
4, and 5, and the corresponding encoded string is 12345.
Assume that the five tables are located at four different sites,
and the corresponding sites from table 1 to table 5 are 1, 2, 2,
3, and 4. The site access order corresponding to the encoded
string 12345 was 12234. When two adjacent access sites are
the same, the join operation only needs to calculate the size
of the intermediate data set after joining, and the transmission
cost between sites is ignored. However, for different adjacent
access sites, in addition to calculating the size of the interme-
diate data set, the transmission cost between sites is the main
part of the query cost.

The goal of query optimization is to obtain the QEP with
the lowest join cost, and the fitness value should show the
advantages and disadvantages of the coding individuals cor-
responding to each join order. The smaller the join cost,
the greater the corresponding fitness value. Therefore, the
fitness value should be inversely proportional to the join cost.
In this paper, we calculated the cost of each QEP according
to equations (5) and (6), and the fitness function of each
QEP can be obtained by taking the reciprocal of its cost:

FIGURE 2. Flow chart of ADEGA.

1
f) = WT(}C) @)
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B. INITIAL POPULATION OPTIMIZATION

The initial population should be good at representing the
entire solution space [25], and its distribution will directly
affect the quality of the subsequent new population. In general
genetic algorithms, the initial population is randomly gen-
erated. Due to randomness, the initial chromosome may be
concentrated on a local area of the solution space, so it cannot
represent the whole solution space, the population diversity
is missed, and the genetic advantage is greatly reduced.
To improve the diversity of the initial population, we used
genotype entropy to assist in generating the initial population.
Genotype entropy reflects the diversity of the individual loci.
Assume that there is an initial population composed of M
individuals with an encoding length of L (as shown in Fig. 3),
x} represents the jth gene of individual 7 in the population.

12 ... .. L

Individual 1 ‘ ‘ ‘

Induvidual M ‘ ‘ ‘

Individual i

FIGURE 3. Diagram of group coding.

Genotype entropy H; of the jth gene in the population can
be defined as:

Hj = Y (—Pj log Pjr)

keV;
Py = ®)
=y

In the formula, k represents the possible value of the jth gene,
V; is the set of k, which theoretically equals the encoding
length L, Then, Pj can be understood as the frequency at
which the jth gene in the population is equal to the k value,
that is, the ratio of the number Ny of the k value to the
population size M.

The genotype entropy H of the whole population is defined
as the average value of all genotype entropies H; in the
population:

The specific generation process of the initial population is
as follows:

1) In the individual definition domain, generate Ny individ-
uals randomly (Ny < N) and calculate their entropy Hy.

2) In the individual definition domain, generate an individ-
ual randomly, and then calculate the entropy H with the new
individual and the existing individuals. If H > Hy, we will
receive the new individual and update the value of Hp to
H; otherwise, we will reject the new individual, regenerate
another new individual randomly, and continue step 2) until
H > H.
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3) Repeat step 2) until the number of individuals in the
initial population reaches the target number N.

For example, for the join query of five relational tables
in Fig. 1, the query tree can be encoded into gene sequence
12345, which is one of the combinations in the solution space.
Through the above steps, every turn can produce new gene
sequence combinations that are different from all previous
individuals in the solution space as much as possible. The
retained individuals can ensure that the genotype entropy of
the expanded population is not inferior to that of the previous
population. The initial population generated in this way can
be well distributed in the entire solution space, has good
diversity, and can accelerate the speed of evolution.

C. GENETIC OPERATION
In the iterative process of the genetic algorithm, the fitness
of the chromosome is the core of the judgment. In this
paper, the fitness value was inversely proportional to the cost
of the query execution plan. The higher the fitness value,
the smaller the corresponding query cost, and the better the
corresponding QEP. The fitness value is calculated by substi-
tuting the encoding sequence into the cost model and taking
the reciprocal, which can be regarded as the phenotype of the
chromosome. Therefore, this paper introduces the concept of
phenotype entropy, referring to [26].

Definition 1 (Population Entropy): Population entropy
represents the phenotype entropy of the entire population.
Assume that S is the search space, the population of gener-

ation ¢t is P; = {xtl, xt2, - ,xtN c BSV, N is the population
size, and the subpopulation produced by the population of ¢
generation is O; = {xﬁV +1 , xﬁv +2, o ,xﬁv M \We define the

active window W; of generation ¢ as: 1) the active window of
the initial population is wog = [lo, ugl, o is the lower limit of
the fitness value of the initial population, and ug is the upper
limit; 2) the active window of generation ¢ is w;, = [I;, u,], and
the active window of generation ¢ + 1 is wyy1 = [lr+1, Ur+1],
where l;11 = min(ly, ly), ur41 = max(us, Uy, Iy and u, are
the lower and upper limits of the population fitness of gener-
ation t, l,; and u,, represent the lower and upper limits of the
fitness value of the sub-population produced by generation 7.
Then, the active window is divided into K pieces equally. The
range of the jth part in the population of 7th generation can be
expressed as:

uy — I Uy —

I
L+ G—1)- A & (10)

If the number of individuals falling into the jth interval of
the active window w; in the population P; is nj, then the
individual density in this interval is %, the population entropy
E of tth generation can be defined as:

K
E= =) pjlogp)

J=1

(11

nj
P./=ﬁ
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Definition 2 (Individual Entropy): In the population P; of
generation ¢, if the fitness value of chromosome i falls into
the jth interval of the active window, the individual entropy ¢&;
of chromosome i can be defined as

1
& = —; log(py)) (12)

pij 1s the individual density of the jth active interval in which
chromosome i falls, and N is the population size.

Population entropy and individual entropy are interrelated.
The additivity of entropy can be verified by equations (11)
and (12), that is, the population entropy is equal to the sum
of all individual entropies. Population entropy is a measure of
population distribution in the macro, while individual entropy
is the distribution of individuals in the micro.

1) SELECTION OPERATOR

In this paper, we combined the screening effect of fitness
and individual entropy on the population, and the individual
selection probability is formulated as follows:

N
> fi - exp(e)
i=1

f; is the fitness value of the ith individual in the population,
g; is the individual entropy defined above. We used
roulette [27] as the selection method to filter the population.
When the population diversity is high, individuals with higher
fitness values are more likely to be retained. While the pop-
ulation diversity is lost, the chance of individuals with small
fitness values to be retained in the next generation increases.
It can avoid the loss of effective genes to maintain population
diversity.

2) CROSSOVER OPERATOR

In the genetic algorithm, the crossover operator is the main
method for generating new individuals. In this paper, we con-
sider the influence of evolutionary algebra and entropy on the
crossover operator. In the early stages of evolution, a large
crossover probability should be adopted to accelerate the
generation of new individuals. However, in the later stage
of evolution, the crossover probability should be reduced to
prevent the destruction of the structure of excellent individ-
uals. When the population entropy is large, the population’s
individual diversity is high. At this time, it is necessary to
concentrate on mining the structure of better solutions, so the
crossover probability should be increased. When the popu-
lation entropy is small, the crossover probability should be
reduced to avoid destroying the optimal solution structure.
Therefore, the crossover probability Pc is set as:

-H
Pe = P - exp(— ) (14)

P.o is the initial crossover probability, we chose 0.9 in this
paper, g is the current generation, G is the maximum evolution
times, E is the population entropy of the current population,
H is the maximum population entropy in theory.
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For the two individuals x| and x} of the 7 generation, the
value range of chromosome genes is [a, b], and then the
crossover operator generates sub-individuals xi‘“ and xé‘“

using the following method:

{xﬁlzoﬂa+ﬂn}+a—ﬂng (15)
A= 0.5[(1 — B)xt + (1 + B)xd]
where
e =yul'?, u<1/Q—y=?
p= 2—Q—y Hul"'?, others,

2
y =14+ —— min[(x} — a), (b — x})]
Xy — X

u is a random number uniformly distributed between [0,1].

3) MUTATION OPERATOR

When the algorithm iterates into a local area, it may fall into
a local optimum. To make the algorithm jump out of the
local area and continue to search globally, we adopted the
following mutation strategy.

When the population entropy is large and the diversity of
the population is high, the structure of the solution space is
sufficient, and the mutation operator only needs to search
for the optimal value in the current range. At this time, the
probability and step length of the mutation should be reduced.
Otherwise, when the entropy of the population is small, the
diversity of the population is lacking, and it is necessary
to increase the probability and step length of the mutation,
so that the algorithm can jump out of the local area and
search globally. As the number of iterations increases, the
step length of the mutation should be reduced to prevent
breaking the optimal solution structure that has been found,
and the mutation probability should increase because the
crossover probability is small in the later iteration, and the
mutation operator will be used to assist the generation of new
individuals. According to the above analysis, the mutation
probability Py, is set as

g-H
G-E

Py = Py - exp( ) (16)
Py is the initial mutation probability, we chose 0.06 in this

paper.
We use the following method to generate mutation
individuals:

T R RX( - YU ST

r>0.5
r_ H G
X = E g
—x=D-r-(1— =)0 =200 <0.5
x—@=Der (=™ A= 2) r=
(17)

where x’ is the mutation individual of x, r and r; are random
numbers within (0,1), # and [ are the upper and lower limits
of the values of the chromosome gene.
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4) REORGANIZATION OF FATHER AND SON POPULATIONS
To maintain a good diversity of the population during the evo-
lution process, when the son and parent individuals are reor-
ganized to form the next generation population, the change
in population entropy will be used as the selection criteria
to ensure that the population entropy of the next generation
is not inferior to the previous generation in every turn. The
specific steps are as follows.

1) Add all the parent individuals and all the son individuals
generated after the genetic operation to form an intermediate
population, calculate the fitness value of every individual, and
sort by the fitness value from large to small.

2) According to the elite retention strategy, select the first
Ny individuals with the best fitness value from the interme-
diate population, record them as the temporary population
Py, calculate its population entropy Ep, and remove these Ny
individuals from the intermediate population.

3) Select the first individual from the remaining intermedi-
ate population and add it to Py, and calculate the population
entropy E of the new Py. If E > E, retain the individual in Py
and remove the individual from the intermediate population.
Otherwise, the individual will not be retained, and select the
next individual from the intermediate population and repeat
step 3) until £ > Ej.

4) Repeat step 3) until the number of individuals in the
temporary population Py reaches the required N. Then, Py
is the population of the next generation.

This method can keep the population diversity rich as
much as possible while selecting excellent individuals for the
next generation. This can increase the search speed of the
algorithm.

V. SIMULATION RESULTS

In this section, we test the performance difference between
the ADEGA algorithm and other comparison algorithms for
distributed queries based on a distributed database composed
of five servers. The dataset used in the experiment was a set
containing more than 2 million records obtained from the
Internet, which was divided into several tables and randomly
allocated to the databases of five servers. All experiments
were carried out on an Intel (R) 2.2GHz machine with 8G
physical memory, all five servers using the CentOS 7 system
and MySQL database.

The comparison algorithms selected in this paper were
the adaptive genetic algorithm (AGA) [28] and the paral-
lel ant colony algorithm (PACA) [29]. The parameters of
the algorithms were set as follows: population size was
100, maximum iteration number was 500, initial crossover
probability was 0.9, and initial mutation probability was
0.06. In the experiment, the communication performance
among sites was represented by the following network
performance matrix:

-1 13 25 1.7 3.1
13 -1 18 09 2
M=]25 18 -1 1.1 3
1.7 09 11 -1 14
3.1 2 3 1.4 -1
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In this experiment, we tested the distributed database query
with 4, 6, 8, 10, and 12 tables.

First, to test the performance of the algorithm in this paper
compared to the comparison algorithms, we used the three
algorithms to process a join query of 10 tables. The conver-
gence diagram for the three algorithms is shown in Fig. 4.
When the curve becomes flat, it indicates that the algorithm
has converged.
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FIGURE 4. Convergence diagram of iteration.

It can be seen from the figure that when all three algo-
rithms converged, the number of iterations when the ADEGA
proposed in this paper starts to converge is the smallest, the
number of iterations when PACA starts to converge is slightly
larger than that of ADEGA, and the number of iterations
when AGA starts to converge is the largest. It shows that
compared with comparison algorithms, the algorithm pro-
posed in this paper has a faster convergence speed and can
search for the optimal solution more quickly. The ordinate
in the figure represents the minimum cost in the population
after each iteration. When all three algorithms converged, the
minimum cost of the ADEGA proposed in this paper is the
smallest, the minimum cost of PACA is slightly larger than
that of ADEGA, and the minimum cost of AGA is the largest.
It shows that the algorithm proposed in this paper is better
than comparison algorithms, and its optimal solution that can
be searched is closer to the global optimal solution. The above
results show that the algorithm proposed in this paper has
batter convergence performance and results than comparison
algorithms.

Second, for the distributed database query with the number
of join tables of 4, 6, 8, 10, and 12, we performed the
search using the three algorithms. We selected the amount of
transmission data for the query execution plan to represent the
query cost. Assume that when the minimum query cost does
not change for 100 consecutive generations, the algorithm
is considered to have converged. Record the minimum cost,
iterations, and search time when each algorithm converges.
The results are presented in Table 1, Table 2, and Table 3.

According to the results shown in Table 1, Table 2 and
Table 3, we can conclude the following. When the number of
join tables is 4, the optimization results of the three algorithms
are almost the same. This is because when the number of join
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TABLE 1. Comparison of minimum query cost (unit: kb).

Number of tables 4 6 8 10 12
GA 26.50  73.00 83.53 107.71  96.64
EGA 26.50 72.55 7825  96.98  92.84
ADEGA 26.50 7095 7631 8596  81.66

TABLE 2. Comparison of iteration number.

Number of tables 4 6 8 10 12
GA 105 117 167 178 216

EGA 104 110 139 155 186
ADEGA 102 108 122 145 178

TABLE 3. Comparison of search time (unit: s).

Number of tables 4 6 8 10 12
GA 5.62 11.44 19.61 30.59 42.37
EGA 5.55 9.61 15.32 24.27 28.50
ADEGA 5.38 7.89 12.90 18.67 20.52

tables is 4, the number of different kinds of QEPs is only 24,
which is smaller than the population size of 100. At this time,
the initial population will contain almost all types of chro-
mosome sequences, and all three algorithms can search for
the global optimal QEP at the beginning. Thus, there is little
difference among the three algorithms under this condition.
However, as the number of join tables increases to 6, 8, and
more, the search space of algorithms becomes increasingly
large, which has already exceeded the population size and
needs to search for the optimal solution gradually. Thus, the
performance difference among the three algorithms became
increasingly significant. Under these conditions, compared to
AGA and PACA, ADEGA performed the best. The optimal
solution searched by ADEGA has the lowest query cost, its
number of iterations is the smallest, and its search time is
also the smallest. PACA’s results were the next, and AGA’s
were the worst. Moreover, the larger the number of join tables,
the greater the gap between the ADEGA and the comparison
algorithms. This indicates that the ADEGA proposed in this
paper has the better optimization effect and query efficiency
in distributed database multi-join queries.

Finally, we test the effect of the algorithm in this paper
on distributed database queries. We applied the optimal
query scheme found by the three algorithms in our dis-
tributed database environment, recorded the query time of
each scheme, and used the following evaluation indicators:

search cost ratio
search time of current optimal query scheme

= 18
search time of global optimal query scheme (18)
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query cos t ratio

execution time of current optimal query scheme (19)
"~ execution time of global optimal query scheme

The results were shown in Fig. 5 and Fig. 6.
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FIGURE 5. Search cost ratios of all algorithms.
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FIGURE 6. Query cost ratios of all algorithms.

From Fig. 5 and Fig. 6, we can see that when the number
of tables is 4, because the initial population may contain all
different QEPs, the search cost ratios and query cost ratios
of all three algorithms were very close to 1, and there was
little difference in search performance among these three
algorithms. However, as the number of join tables increases,
compared to AGA and PACA, the ADEGA in this paper has
a smaller search cost ratio and query cost ratio, which are
closer to 1. This indicates that, as the number of join tables
increases, the ADEGA can find the solution that is closest to
the global optimal solution more quickly and efficiently, and
the query efficiency is greatly improved. This is because the
algorithm in this paper always maintains a good diversity of
population in the iteration process, so that the algorithm can
jump out of the local optimum and avoid the algorithm from
falling into premature, to better search for the global optimal
solution.

VI. CONCLUSION

Aiming at the premature problem that exists in multi-join
queries in distributed databases using traditional genetic algo-
rithms. In this paper, we propose an adaptive double-entropy
genetic algorithm (ADEGA) based on genotype entropy and
phenotype entropy. This algorithm optimizes the initial pop-
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ulation distribution based on genotype entropy and adap-
tively selects genetic strategies based on phenotype entropy
to maintain population diversity in the iteration process. The

resu

Its of the experiment show that by maintaining the popu-

lation diversity in the evolution process, this algorithm can be
effectively prevented from falling into the local optimum, the
global search ability is improved, and a better query execution
plan can be obtained.
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