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ABSTRACT Owing to the contagiousness of theft behaviors among customers, collaborative energy theft,
such as village fraud, has become particularly common. In this study, a bunch of electricity thieves that steal
energy at a constant ratio were considered. Conventional correlation-sorting-based methods may have some
trouble handling these electricity thieves when they exist in the same area. To overcome such limitation,
we firstly establish the mathematical model of non-technical loss (NTL) and the load data of fixed ratio
electricity thieves (FRETs). Subsequently, an interesting correlation trend, which can be exploited to locate
FRETs, was observed and analyzed. Based on this trend, we propose a correlation analysis-based detection
method. It adopts a standardized covariance to measure the correlation between the NTL and user data.
The detection of FRETs is realized by solving a combinatorial optimization problem. A corresponding
framework in practice was also designed. Finally, numerical experiments based on a realistic dataset and an
electricity theft dataset from an electricity theft emulator (ETE) are conducted to validate the effectiveness
and superiority of the proposed method in terms of accuracy, stability, and scalability.

INDEX TERMS Data mining, electricity theft detection, fixed ratio electricity theft, covariance analysis.

NOMENCLATURE
A. INDICES
t Index of time interval.
i, j, h Index of user and data sample.
d Index of day.
k Index of optimization order

B. SETS
A Set of all users in an area.
B Set of benign users in the area.
C Set of fraudulent users in the area.
Csus Set of suspicious users.
Csus,d Set of suspicious users on d-th day.
P∗ Any user set having the increasing trend of

correlation.

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabio Mottola .

P∗i Any user set containing user i and having the
increasing trend of correlation.

P∗imax Best solution of the sub-problems of user i.
P∗max Best solution of the combinatorial optimiza-

tion problem.

C. VARIABLES AND PARAMETERS
ui,t Ground truth load for user i at time interval t.
ũi,t Recorded load for user i at time interval t.
ũi Recorded load vector for user i.
ũ∗i Normalized recorded load vector for user i.
ũ∗i,d Normalized recorded load vector for user i on

day d.
ωt NTL of an area at time interval t .
ω NTL vector of an area.
ω∗ Normalized NTL vector of an area.
ω∗d Normalized NTL vector of an area on d-th

day.
αi Ratio that ũi,t accounts for ui,t
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βi Representation coefficient of the fixed ratio
electricity thieves i.

β Coefficient vector composed of all the βi.
β∗ Normalized coefficient vector.
Ũ Matrix composed of all the ũi when i ∈ C.
Ũ
∗

Matrix composed of all the ũ∗i when i ∈ C.
8̃ Matrix composed of the covariance between

every ũ∗i when i ∈ C.
φi Column vector of the i-th column of 8̃.
ũ∗C Combined vector of all the ũ∗i when i ∈ C.
ũ∗P∗ Combined vector of all the ũ∗i when i ∈ P∗.
ũ∗P∗i Combined vector of all the ũ∗i when i ∈ P∗i .
ũ∗P∗max

Combined vector of all the ũ∗i when i ∈ P∗max.
m Number of fraudulent users.
n Number of benign users.
K Ending order of optimization searching.
M Total number of the days of load profiles.
Mi Number of days of user i belongs to Csus,d .
γi Anomaly degree of user i.

D. FUNCTIONS
Corr(·, ·) Correlation measurement of two vectors.
ρ(·, ·) Pearson correlation coefficient of two vec-

tors.
cov(·, ·) Covariance of two vectors.
max(·) Maximum of a vector.
mean(·) Arithmetic average of a vector.

I. INTRODUCTION
Transmission loss in a power grid includes technical loss (TL)
and non-technical loss (NTL) [1]. TL is the normal loss in
the process of power transmission, such as the copper and
core losses in transformers. NTL is the remaining loss that
cannot be explained theoretically after the TL is removed.
Abnormal power consumption behavior, such as electricity
theft, is one of the main sources of NTL [1]. In addition,
electricity theft can seriously harm the economic perfor-
mance of power suppliers and cause safety problems, such
as equipment damage, power outages, and casualties. For
example, the annual bills of stolen electricity in the USA
were almost $ 10 billion in 2017 based on a report by the
Northeast Group [2]. In China, the State Grid Corporation
has also retrieved theft bills of nearly 13 billion RMB in the
past three years.

Fixed-ratio electricity thieves (FRETs) refer to mali-
cious users stealing energy in constant proportion. Most
physically meter-tampering users, such as voltage-reducing,
current-decreasing, and power factor diminishing users, are
FRETs [3]. Although there have been many nonlinear false
data injections (FDIs) via cyberattacks, the high thresholds
of the techniques involved in cyberattacks make them less
common than FRETs. This is especially true in rural areas
of some developing countries [4]. In addition, owing to the
contagiousness of theft behavior among customers, malicious

users have recently tended to conduct electricity theft in
groups. Corresponding cases include collaborative fraud of
the entire village [5] and collective minor fraud [6] have
been reported. For the above reasons, FRETs are the bugs
in the very vitals of power utilities and need to be addressed
urgently.

Advanced metering infrastructure, which consists of smart
meters and sophisticated communication networks, provides
massive amounts of electricity data of users. Thus, technolo-
gies such as data mining and artificial intelligence are more
appropriate for electricity theft identification [7]. Current
data-driven electricity theft detection methods can be clas-
sified into three groups [8]:

A. GAME THEORY-BASED
Electricity theft is supposed to be a game between power
utilizes and energy thieves in the game-theory-based meth-
ods [9], [10]. By formulating a model involving all players in
this game, the difference in bills between electricity thieves
and normal users can be derived with the theory of Nash
equilibrium. This type of method can be used to learn the
interactions of different players under different situations, but
it is not practically applicable because of the complexity of
the modeling.

B. POWER-CONSUMPTION-PATTERN-BASED
This method assumes that the load patterns of electricity
thieves deviate from those of normal users. Thus, tech-
niques such as deep learning and machine learning can be
adopted to analyze the load profiles of customers for electric-
ity theft identification. Deep-learning-based methods require
massive amounts of labeled electricity consumption data for
model training. Examples include support vector machines
(SVM) [11], convolutional neural networks (CNNs) [12]
and other artificial neural networks, which were investigated
in [13]–[15]. The accuracy of these supervised methods can
be as high as 100% in experiments; however, they only
work well when vast reliable samples of electricity theft
can be acquired. On the other hand, machine learning-based
methods focus on information without labels, that is, outliers
deviating from the normal majority. In [16], a method called
spatial clustering of applications with noise (DBSCAN) was
used to locate abnormal users by calculating their anomaly
degree. Zheng et al. [17] utilized clustering by fast search and
find of density peaks (CFSFDP) to identify nonlinear FDIs.

C. SYSTEM-STATE-BASED
The measurements of voltage, current, and other variables
should satisfy the physical equations of the power grid.
Therefore, the data for these variables should be consistent.
However, the meter tempering behaviors of electricity thieves
may ruin this consistency and cause some abnormalities (i.e.,
NTL and voltage limit violation). This kind of method uti-
lizes this fact to locate fraudulent users. For instance, Leite
and Sanches Mantovani [18] exploited the concept of state
estimation to monitor the bias between the estimated and

VOLUME 10, 2022 5609



Y. Yang et al.: Detection Method for Group FRETs Based on Correlation Analysis of NTL

measured voltages. Once the bias was detected, the sources
of the NTL were located using a pathfinding procedure based
on theA-Star algorithm.Anothermethod of this type attempts
to detect bypassing users using a data analytical technique
derived from the three-phase state estimator [19]. Although
state-based methods are capable of locating malicious users
(i.e., bypassing individuals), which is beyond the capability of
other types of methods, their excellent performance requires
accurate information of the topology and parameters of the
network. This information is not likely to be available in
general situations because of the regular alternation of the
network topology. The most practically feasible approach of
this type is [20], in which a linear detection model requiring
only active power and voltage magnitude measurements was
formulated; however, it only can detect three-phase malicious
users.

Recently, some hybridmethods combing the traits of power
patterns and system states have been proposed [21]. And
perhaps, the most directly relevant works are [22],in which a
central meter recording the aggregated consumption of users
in the neighborhood is deployed. Salinas et al. [22] realized
the detection for FRETs by calculating the sparest solution of
a set of underdetermined linear equations. However, obtain-
ing a solution with low sparsity is still a challenging problem,
and its sparsity may not be sufficiently low.

Based on the above brief review, current data-driven elec-
tricity detection methods may face their own problems in
practice. First, game-theory-based methods are not practi-
cally applicable owing to the difficulty of formulating a
model involving all players. Second, deep learning-based
methods demand massive, trustworthy samples for model
training. However, the unbalanced dataset and contaminated
samples [25] significantly affect their accuracies. Moreover,
they maymistake some normal activities such as meter instal-
lation and climate change as theft behaviors. Third, unsuper-
vised methods do not specialize in detecting FRETs because
their attacks are linear, and the tampered data are almost
identical to the ground truth data after normalization (this will
be discussed in Section IV-C).

Our work is an extension and perfection of the research
presented in [23] and [24], where they were trying to detect
FRETs by correlation-based method. In [23] and [24] the
maximum information coefficient (MIC) and a combined
correlation coefficient were used respectively to measure the
correlation between the NTL and meter readings of users.
And a stronger correlation indicated more suspicious FRETs.
This correlation-sorting-based method performs well under
the scenario of one or two FRETs in the same area. However,
when it comes to multiple FRETs, it usually has poor true
positive rate. To effectively identify multiple FRETs in the
same area, we proposed a detection method based on non-
technical loss covariance (NTLC). The main contributions of
this study are as follows:

1) We derive the mathematical model between NTL and
the load data of FRETs, and adopt standardized covariance to
measure the correlation between them.

2) We observe an increasing trend of correlation between
the NTL and load data of FRETs with data superposition.
A theoretical validity analysis of this trend is conducted to
make it exploitable for the detection of FRETs.

3) We put forward a searching approach that needs neither
training samples nor accurate information about the topology
and parameter of network to catch the FRETs effectively.

4) We conduct numerous extensive tests using a realis-
tic dataset and electricity theft dataset from an electricity
theft emulator (ETE). Comparisons with other state-of-the-
art methods demonstrate the merits of the presented method
in detecting FRETs.

II. PROBLEM STATEMENT AND MODELING
In this section, we describe the applicable scenario and the
problem that this study focuses on. The mathematical model
between the NTL and load of the FRETs is then established.
The main purpose is to provide justifications of the search
algorithm presented in the next section.

A. DESCRIPTION OF APPLICABLE SCENE
Figure 1 illustrates a typical distribution network, where a
transformer supplies power to multiple areas simultaneously,
and each area contains a group of adjacent users. Our method
is applicable when a gateway meter is installed in each area to
record the aggregated ground-truth consumption of the users
monitored by it. Owing to the fine security of the gateway
meter and stable topology within the area, the NTL of the
area can be directly calculated by subtracting the sum of
the kWh measurements of all registered users in the area
from the electricity consumptionWt recorded by the gateway
meter, i.e.,

ωt = Wt −
∑

i∈A
ũi,t (1)

where A is the set of all users in area A; ũi,t is the recorded
electricity consumption of user i during time instance t; and
ωt is the NTL of the area. For areas equipped with no gateway
meters, their NTL can also be calculated indirectly usingNTL
evaluation methods [26], [27] with high precision. Therefore,
in this case, the proposed method is feasible.

FIGURE 1. Illustration of applicable scene.

Suppose that there are several electricity thieves in area A.
Assume that all smart meter function well, which means that
the errors of the benign users’ meters are within the normal
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range. Let us denote the set of fraudulent users as C, whose
size ism. The remaining benign uses are denoted as B, whose
size is n. Note that A = B ∪ C. The problem this study
attempts to address is how to find all these electricity thieves
when C contains only FRETs.

B. MATHEMATICAL MODEL OF NTL AND FRETS’ DATA
Assume that user i and his ground-truth load data is ui,t . If i
is a FRET, the attack is linear, i.e.,

ũi,t = αiui,t (2)

where ũi,t is the recorded load data, αi ∈ (0, 1) is a constant,
and represents the ratio of ũi,t to ui,t . Because the gateway
meter cannot be tampered with by fraudulent users, the NTL
ωt caused by them satisfies (3) when C only contains FRETs:

ωt =
∑

i∈C
(ui,t − ũi,t ) =

∑
i∈C
βiũi,t (3)

where βi = 1/αi − 1 > 0. Let us vectorize the recorded
load data and NTL data for one day to obtain the load
vector ũi = [ũi,1, ũi,2, · · · , ũi,T ]T and NTL vector ω =
[ω1, ω2, · · · , ωT ]T. Based on (3), we can derive that ũi|i∈C
and ω satisfy (4).

ω = Ũβ (4)

where Ũ = [ũ1, ũ2, · · · ũm] is a matrix composed of the ũi of
m different FRETs, and β = [β1, β2, · · ·βm] is a ratio vector
composed of βi. Equation (4) shows that when C contains
only FRETs, the NTL vector ω can be linearly represented
by the recorded load vectors ũi|i∈C , and the representation
coefficients depend only on βi. Thus, the correlation between
ω and ũi when i ∈ C should be stronger than the correlation
when i ∈ B, i.e.,

Corr(ω, ũi)|i∈CR > Corr(ω, ũi)|i∈B (5)

where Corr(·) is a correlation measurement for two vec-
tors, such as Pearson correlation coefficient (PCC)ρ(·).
Equation (5) is strictly true when only one or two FRETs exist
within the same area. However, when it comes to the scenario
of a group of FRETs, in which ω is jiontly determined by the
ũi of all FRETs, (5) may not be valid.

With an area containing four FRETs in Figure 2, the load
curves of the four FRETs are clearly dissimilar to the NTL
curve. In addition, the PCCs in Table 1 show that the linear
correlation between the NTL and load data of any single
FRET is not strong. In this case, traditional correlation-
sorting-based methods are disadvantageous. The example in
Figure 2 also reveals that if we add up the load vectors of
all FRETs to obtain a combined vector ũC =

∑
i∈C ũi, ω, and

ũC may have an extremely strong correlation. Moreover, with
each superposition of the FRET load vector, the combined
vector and ω become more correlated, as shown in Table 1:

ρ(ω, ũi)|i∈C
≤ ρ(ω, ũi + ũj)

∣∣i,j∈C
i6=j

≤ ρ(ω, ũi + ũj + ũh)
∣∣i,j,h∈CR
i6=j6=h ≤ · · · ≤ ρ(ω, ũC) (6)

TABLE 1. PCCs between NTL and load vectors of FRETs.

FIGURE 2. Load curves of 4 FRETs and NTL.

If this increasing trend of correlation revealed in (6) is not an
individual case, it can be exploited to capture the entire group
of FRETs.

C. VALIDITY ANALYSIS OF THE TREND
To exploit the above trend for locating FRETs, we must
understand its prerequisite. In this section, we analyze the
validity of such correlation trend and provide a theoretical
foundation for our method. We first normalize all vectors
by (7) to obtain ω∗ and ũ∗i

∣∣
i∈A

x∗ =
x

max(x)
(7)

Because the normalization makes all the vectors under the
same dimension, the value of covariance can also measure
the correlation of two vectors [28]. Thus, we merely need to
explore the precondition of (8) to analyze the validity of the
above trend.

cov(ω∗, ũ∗i )
∣∣
i∈C ≤ cov(ω∗, ũ∗i + ũ

∗

j )
∣∣∣i,j∈C
i6=j

≤ cov(ω∗, ũ∗i + ũ
∗

j + ũ
∗

h)
∣∣∣i,j,h∈C
i6=j6=h

≤ · · · ≤ cov(ω∗, ũ∗C) (8)

where cov(·) is the function of covariance.
To demonstrate (8), wemust introduce thematrix of covari-

ance between every recorded load vector ũ∗i when i ∈ C,
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as follows.

8̃ =

 cov(ũ∗1, ũ
∗

1) . . . cov(ũ∗1, ũ
∗

m)
...

. . .
...

cov(ũ∗m, ũ
∗

1) · · · cov(ũ∗m, ũ
∗

m)


=

[
φ̃1, φ̃2, . . . , φ̃m

]
(9)

where φ̃i denotes the i-th column vector of 8̃. After normal-
ization, ω∗, ũ∗i

∣∣
i∈C , and β

∗ also satisfy the linear equations
in (10).

ω∗ = Ũ
∗
β∗ (10)

where Ũ
∗
= [ũ∗1, ũ

∗

2, · · · ũ
∗

m]; β
∗
= [β∗1 , β

∗

2 , · · ·β
∗
m]

T is
the normalized ratio vector and β∗i = βimax(ũi)/max(ω).
Therefore, the recorded load vector ũ∗i of FRET i can be
expressed as shown in (11).

ũ∗i = Ũ
∗
ei (11)

where ei is an m-dimensional column vector whose i-th ele-
ment is 1 and the remaining elements are 0. Then, based
on the property of covariance, we can obtain the covariance
between ω∗ and ũ∗i using (12).

cov(ω∗, ũ∗i ) = cov(Ũ
∗
β∗, Ũ

∗
ei) = βT∗ 8̃ei

= βT∗ φ̃i (12)

Then, select a FRET j from C (j 6= i) to obtain the combined
vector ũ∗i+j = ũ∗i + ũ

∗

j given by

ũ∗i+j = Ũ
∗
ei,j (13)

where ei,j is an m-dimensional column vector whose i-th and
j-th elements are 1, and the remaining elements are 0. We can
then obtain the covariance between ω∗ and ũ∗i+j from

cov(ω∗, ũ∗i+j) = cov(Ũ
∗
β∗, Ũ

∗
ei,j) = βT∗ 8̃ei,j

= βT
∗ φ̃i + β

T
∗ φ̃j (14)

Comparing (13) and (14), the increment of covariance caused
by the superposition of ũ∗j is given by

cov(ω∗, ũ∗i+j)− cov(ω∗, ũ∗i ) = β
T
∗ φ̃j (15)

Based on (15), this increment depends only on the ratio vector
β∗ and the column vector φ̃j of the j-th column of matrix
8̃. Because every element β∗i of β∗ is above zero, when the
elements of φ̃j are non-negative, the increment βT

∗ φ̃j must be
positive and cov(ω∗, ũ∗i+j) must be greater than cov(ω∗, ũ∗i ).
Similarly, we can deduce that when every element of 8̃ is
non-negative, every increment caused by the superposition of
FRETs is greater than 0. Under these circumstances, equation
(8) is strictly true. Finally, we prove the precondition of the
above trend, which is:

∀i, j ∈ C, cov(ũ∗i , ũ
∗

j ) ≥ 0 (16)

In short, if the recorded load vectors of any two FRETs are
positively correlated, the correlation between the combined

load vector and ω becomes stronger with each superposition
of FRET data. Although this trend may not always be true in
every situation, the precondition in (16) is not very difficult
to satisfy or approximately satisfy. Therefore, we believe that
this trend can be exploited to detect FRET.

III. METHODOLOGY AND DETECTION FRAMEWORK
In this section, we explain our method based on the above
correlation trend. Two practical problems are also considered
and analyzed. Finally, we design the framework of themethod
for future practical applications.

A. DETECTION FOR FRETS
Based on the validity analysis in Section II, when the condi-
tion in (16) is met, the covariance between the NTL and data
of FRETs exhibits an increasing trend with data superposi-
tion. Therefore, the detection of FRETs is limited to finding
the bunch of users with such a trend. However, this trend is not
exclusive to FRET. To locate FRETs precisely and effectively,
another significant trait is needed.
Let us denote any user set with the above increasing trend

as P∗. That is, when the load vectors of users in P∗ are
superposed one by one in a certain order, the covariance
between the NTL vector and the superposed vector continues
to increase. It is clear that C belongs toP∗ when the condition
in (16) is satisfied. According to (10), ω∗ is determined only
by ũ∗i

∣∣
i∈C . Thus, if we add up all vectors of C to obtain

ũ∗C =
∑

i∈C ũ
∗

i , the cov(ω∗, ũ∗C) should be the maximum
of the covariances between ω∗ and the combined vectors
ũ∗P∗ =

∑
i∈P∗ ũ

∗

i of all P∗ with the above trend, that is,

cov(ω∗, ũ∗C) ≈ max∀P∗⊂A
[
cov(ω∗,

∑
i∈P∗

ũ∗i )
]

(17)

Therefore, the detection of FRETs can be transformed into
an optimization problem: find a user set from all P∗ with the
above increasing trend to maximize the covariance between
ω∗ and its combined vector, that is,

max
[
cov(ω∗, ũ∗P∗ )

]
s.t.

{
P∗ ⊂ A&P∗ 6= ∅
ũ∗P∗ =

∑
i∈P∗

ũ∗i
(18)

The best solution to (18) is denoted as P∗max. When the
condition in (16) is satisfied, P∗max is nearly identical to C.
To obtain P∗max, we first decompose (18) into m + n sub-

problems. Each subproblem can be described as follows:
For user i, find a user set containing it and with the increas-

ing trend to maximize the covariance between ω∗ and its
combined vector, that is,

max
[
cov(ω∗, ũ∗P∗i )

]
s.t.

P∗i ⊂ A
ũ∗P∗i =

∑
j∈P∗i

ũ∗j
(19)

where P∗i is any one set containing user i and with the
increasing trend. The best solution to sub-problem of user i is
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FIGURE 3. Optimization searching process of NTLC method.

denote asP∗imax By searching everyP
∗
imax, the optimal global

solution P∗max can be easily obtained.
We propose a searching approach illustrated in Figure 3

to seek the P∗imax of user i. Corresponding procedures are as
follows.

1) FIRST-ORDER OPTIMIZATION
If j belongs to (A−{i}) and cov(ω∗, ũ∗i ) ≤ cov(ω∗, ũ∗i + ũ

∗

j ),
the corresponding j is denoted as j1, and i → j1 is the first-
order incremental path (IP) of user i. The j1 that causes the
cov(ω∗, ũ∗i +ũ

∗

j1 ) to increase the most is denoted as j1max. The
corresponding IP i→ j1max refers to the first-order maximum
incremental path (MIP) of user i. The goal of the first-order
optimization is to find i→ j1max.

2) SECOND-ORDER OPTIMIZATION

Find the user j2max that makes cov(ω∗, ũ∗i + ũ∗j1max
+ ũ∗j2 )

increase the most based on cov(ω∗, ũ∗i + ũ
∗

j1max
). The goal of

the second-order optimization is to find i → j1max → j2max
based on i→ j1max.

3) k-ORDER OPTIMIZATION
On basis of i→ j1max→ . . .→ j(k−1)max, find i→ j1max→

. . .→ j(k−1)max→ jkmax.

4) ENDING CONDITION
After k-order optimization, if k = m+n−1, whichmeans that
the search process has already traversed all users, or if there
is no IP when conducting (k + 1)-order optimization, which

means that the covariance no longer increases, the search
process is terminated.
Once the ending condition is triggered, the optimization

search is terminated, and P∗imax is composed of the users
along the MIP of every order, that is,

P∗imax = {i, j1max, j2max, . . . , jk max} (20)

It is worthwhile to explain that the search for IP of every
order ensures that the obtainedP∗imax possesses the increasing
trend, and the search for MIP of every order ensures that the
covariance increases the most. Thus, the P∗imax sought by the
procedure above is guaranteed to be the best solution for (20).

For every user i, the corresponding P∗imax is determined
according to the search procedure above. The global solution
P∗max is the P∗imax with the greatest cov(ω

∗, ũ∗P∗imax
). Once the

P∗max is obtained, the detection for FRETs is accomplished.

B. PROBLEMS IN PRACTICE
Before introducing the detection framework of the proposed
method, two practical problems must be considered. The
first problem is the computational complexity of the search
algorithm. From the search progress, the computational com-
plexity depends on two factors: the number of users to be
detected and the ending order when conducting the search for
P∗imax for every user i. The number of users was unregulated.
Therefore, to increase the serviceability of the data scales, it is
only possible to control the ending order when conducting a
search forP∗imax. We slack the ending condition in Section III
by setting an optional cut-off orderK . The ending condition is
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adjusted as follows: After k-order optimization, if k = K−1,
or if there is no IP when conducting (k + 1)-order optimiza-
tion, the search process is terminated. Compared with the
original ending condition, it cuts off the following searching
process forP∗imax by settingK to a suitable value, which saves
a lot of time, especially when conducting a search P∗imax for
benign users. A comparison between our search algorithm
(with and without K ) and other detection methods in terms
of computational complexity is presented in Section IV-D.

On the other hand, fraudulent customers may steal elec-
tricity at non-fixed ratios. When an area contains a certain
number of non-FRETs, the proposed method may be invalid.
To address this problem, we set up a scene judgment part
to block our method in cases where fraudulent users were
not FRETs. Because ũ∗i

∣∣
i∈C and ω∗ become increasingly

less satisfying the linear equations in (10) as the number
of non-FRETs increases, the linear correlation between ω∗

and the combined load vector ũ∗P∗max
=
∑

i∈P∗max
ũ∗i search

by our method should be increasingly weaker. This can
be verified by the value variations of cov(ω∗, ũ∗P∗max

) and

ρ(ω∗, ũ∗P∗max
) in Table 2, which provides the basis for scene

judgment. Because the value of PCC is fixed between -1
and 1, ρ(ω∗, ũ∗P∗max

) is more suitable as the standard for scene
judgement. After P∗max is found, calculate ρ(ω∗, ũ∗P∗max

) and
compare it with the threshold θ . When ρ(ω∗, ũ∗P∗max

) > θ ,
we believe that fraudulent users are mainly FRETs, and P∗max
is given as the suspicious user set Csus; when ρ(ω∗, ũ∗P∗max

) ≤
θ , we believe that this is not the target scene, and the void
set ∅ is given as Csus to block the method. After numerous
experiments, it is suggested that the value of θ should be set
as 0.96-0.98 to achieve a favorable result in the real unknown
scene.

P.S. The total number of users in an area is 80, and the total
number of electricity thieves in per area is 8.

C. DETECTION FRAMEWORK
Based on the above principle and methodology, the cor-
responding detection framework is designed with three
modules: preprocessing, detection, and judgment, as shown
in Figure 4.

For an area that contains m + n different users with their
M -day load profiles, the preprocessing module first vector-
izes the load profiles each day to obtain the daily load vectors
ũi,d For every ũi,d , and the missing data are recovered as
follows:

G(ũi,d,t ) =

{
mean(ũi,d ), when ũi,d,t ∈ NaN
ũi,d,t , otherwise

(21)

TABLE 2. cov(ω∗, ũ∗Pmax ) and ρ(ω∗, ũ∗Pmax ) with different numbers of
non-FRETs per area.

Algorithm of NTLC
Input: User set A, normalized load vectors ũ∗i

∣∣
i∈A, NTL

vector ω and parameters K and θ .
Output: Set of suspicious users Csus.
Step1: For every user i in A:

Set the best solution of the sub-problem of i as
P∗imax = {i};
Do:

For every user j in A:
Calculate cov(ω, ũ∗j +

∑
h∈P∗imax

ũ∗h);
If cov(ω, ũ∗j +

∑
h∈P∗imax

ũ∗h)
-cov(ω,

∑
h∈P∗imax

ũ∗h) > 0:
Add user j into P∗imax;

While the ending condition is not triggered;
Step2: Set the best solution of problem (18) as P∗max = ∅;

For every user i in A:
If cov(ω,

∑
h∈P∗imax

ũ∗h) > cov(ω,
∑

h∈P∗max
ũ∗h):

P∗max = P∗imax;

Step3: Calculate ρ(ω,
∑

h∈P∗max
ũ∗h);

If ρ(ω,
∑

h∈P∗max
ũ∗h) > θ :

Csus = P∗max;
Else:

Csus = ∅;

where mean(ũi,d ) is the average value of ũi,d . In addition,
there were some individual erroneous data under certain con-
ditions. Therefore, the preprocessing module also recovers
those data by the following equation according to ‘‘three-
sigma rule of thumb’’.

G(ũi,d,t )

=


ũi,d,t−1 + ũi,d,t+1

2
, if ũi,d,t > 3σ (ũi,d ),

ũi,d,t−1, ũi,d,t+1 6= NaN
ũi,d,t , otherwise

(22)

where σ (ũi,d ) is the standard deviation of ũi,d . Next, the
daily NTL vector ωd is calculated using (3). Subsequently,
all vectors are standardized to obtain ũ∗i,d and ω∗d according
to (9).

The detection module uses ũ∗i,d and ω∗d on the same day
as the input. For every d , its suspect set Csus,d is calculated
according to NTLC algorithm. Then, the judgment module
calculates the anomaly degree γi of user i by counting the
number of times Mi that user i belongs to Csus,d in M days,
that is,

γi =
Mi

M
(23)

From (23), the higher the γi is, the more suspicious user i
is. Finally, a certain number of users with the highest γi are
chosen for on-site inspection.

IV. VALIDATION AND EVALUATION
A. DATASET
1) BENIGN DATA
We utilize a realistic electricity usage dataset from the State
Grid Corporation of China (SGCC) to conduct the experi-
ments. Because all the users in this dataset are from areas
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whose transmission loss rates are less than 3% per month,
their load data are measured synchronously and can be con-
sidered ground truth. Detailed information on this dataset
is presented in Table 3. In particular, it consists of the
load profiles of 3000 single-phase customers and 500 three-
phase customers over 285 days (from April 1, 2019, to
December 31, 2019). Every load profile per day is composed
of kWh measurements every 15 min.

FIGURE 4. Framework of NTLC method.

2) FRAUDULENT DATA
We rely on the electricity theft emulator (ETE) of the China
Electric Power Research Institute to generate fraudulent data.
This emulator, as shown in Figure 5, consists of two sectors:
the load control sector and meter sector. Let us explain how
fraudulent data are generated by ETE using one example.
By inputting the time series of the voltage, current, and power
factor according to the benign dataset, the load control sector
can emulate the power usage processes of real customers.
Meanwhile, smart meters in the meter sector record the data
of emulated customers. If the meter is physically tampered,
for example, the voltage coil of this meter is connected to
a diode, the readings of this meter are the fraudulent data of
such malicious user who tamper with their meters in this way.
By tampering with smart meters in different ways, this emu-
lator can precisely emulate all sorts of real physical attacks,
which are farmore reliable than artificially summarized FDIs.
Fraudulent samples generated by this emulator are shown
in Figure 6.

In this study, we mainly adopt voltage-reducing, current-
decreasing and power factor diminishing these linear physical
attacks to generate fraudulent data of FRETs.

B. EVALUATION METRICS AND COMPARISONS
We adopt the area under the curve (AUC) [29] and mean
average precision (MAP) [30], which are two widely used
classification evaluation metrics to assess the performance of
the proposed method. The AUC is defined as the area under
the receiver operating characteristic curve (ROC). According

to [12], it can be calculated as follows:

AUC =

∑
i∈C ranki − 0.5m(m+ 1)

m× n
(24)

where m is the number of fraudulent users, n is the number
of benign users, and ranki is the rank of user i in ascending
order according to the anomaly degree γi.
MAP is typically used to estimate the quality of informa-

tion retrieval. To calculate the MAP, we need to define P@S,
as in (25).

P@S =
Ys
S

(25)

TABLE 3. Description of the benign dataset.

FIGURE 5. Electricity theft emulator.

FIGURE 6. Some fraudulent samples generated by ETE.
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where Ys is the number of electricity thieves among the top S
suspicious users. Given a certain number of R, MAP@R can
be calculated as in (26).

MAP@R =

∑r
i=1 P@Si
r

(26)

where r is the number of electricity thieves among the top R
suspicious users, and Si is the position of the i-th electric-
ity thieve. It can be inferred that both AUC and MAP@R
are between 0 and 1, and a higher value indicates a better
performance.

To analyze themerits and demerits of the proposedmethod,
we use some state-of-the-art methods for comparison.

1) PCC [31]: A famous bivariate correlation measurement.
2) MIC [31]: A metric that can measure strength of non-

linear correlation of two vectors.
3) CFSFDP [32]: A novel clustering algorithm based on

density and distance. In [17], it was adopted to calculate the
anomaly degrees of users.

4) Local outlier factor (LOF) [33]: a widely used method
of local-density-based outlier method.

C. PERFORMANCE OF THE DETECTION FOR FRETS
In this part, the load profiles of all 500 three-phase users
from Aug.1, 2019 to Sep.31, 2019, were utilized to conduct
the experiments. We randomly and evenly divided 500 three-
phase users into ten areas. Six users in each area were ran-
domly chosen as FRETs, whose load profiles were tampered
with via ETE. Therefore, each area contains 50 users, and
the ratio of FRETs is 12%, which is very high. The test was
repeated 100 times with different combinations of areas and
random selection of FRETs.

Table 4 shows the best values of AUC and MAP@40
for the five methods in the 100 experiments. Figure 7(a)
shows the average scores for the five methods. To analyze
the impact of normalization on the performance of power
pattern-based methods in detecting FRETs, we also present
the evaluation metrics of CFSFDP and LOF without normal-
ization. It is evident that the highest MAP@40 of the power-
pattern-based methods is only 0.343, whereas the lowest
MAP@40 of the correlation-based methods is 0.726. At the
same time, the gap in AUC between these two methods
was also large. This result demonstrates that correlation-
based methods are far more capable of detecting FRETs than
outlier-based methods. This is because normalization makes
the tampered data almost identical to the ground truth data.
Therefore, the patterns of the FRETs cannot differ from the
normal patterns after normalization. However, the evaluation
metrics of CFSFDP and LOF dropped without normalization.
It seems that non-normalization of data cannot help improve
their accuracy when detecting FRETs. Furthermore, compar-
ison among the correlation-based methods shows that both
the AUC and MAP@40 of NTLC are above 0.95, which
increases by nearly 25% based on PCC (0.787, 0.758) and
MIC (0.768, 0.737). This indicates that the proposed method

improves the performance of correlation-based methods in
detecting FRETs.

Figure 7(b) shows the standard deviation σ of AUC and
MAP@40 in 100 experiments for the five methods. The
σauc of the 5 methods are all distributed between 0.04 and
0.06 and are not much different. On the other hand, the
values of σMAP@40 are distributed between 0.09 and 0.19,
in which σMAP@40 of outlier-based methods is lower than
that of correlation-basedmethods. Nevertheless, the σMAP@40
of LLC is 0.12, which is lower than those of the other
two correlation-based methods. From the experiments in this
part, we can conclude that the NTLC method improves both
the accuracy and stability of correlation-based methods for
detecting FRETs.

D. COMPARISON OF TIME CONSUMPTION
In this part, we mainly test the time consumption of the five
methods under three different data scales: 15500 load pro-
files, 30500 load profiles, and 76500 load profiles. To evalu-
ate the impact of the ending order K on the time consumption
and accuracy of our method in detecting FRETs, we also
conducted tests on NTLC with different K values (K = 20,
15, 10, 5, and 3). The other experimental settings, such as the
number of users in one area and the number of FRETs, are the
same as in Section IV. All tests were performed on an AMD
Ryzen 95900@4.7GHz desktop computer with 64GB RAM.
All five methods were developed on PyCharm using Python
3.8. The average time consumption and evaluationmetrics are
shown in Figure 8.

Among these methods, MIC and PCC have the lowest time
consumption, which is less than 25s for all data scales. The
CSFDPF and NTLC without K are the most time-consuming
methods. It takes NTLC 93.75s to complete the detection

FIGURE 7. Values of evaluation metrics of the five methods. (a) Average
value of AUC and MAP@40. (b) Standard deviation of AUC and MAP@40.

TABLE 4. Best evaluation results of the five detection methods.
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of 76500 load profiles, which is nearly five times as long
as the MIC consumption. With an increase in the data scale,
the time consumption of NTLC increased geometrically. The
results suggest that the proposed method indeed faces the
problem of long-time consumptionwhen handling large-scale
data.

To address this problem of NTLC, we set the parameter
of the ending-order K . It can be observed from Figure 8
that when K varies from 20 to 15, the time consumption of
NTLC decreased not too much. This indicates that a higher
K does not affect the time consumption of NTLC. However,
as K decreased continuously, time consumption dropped off
obviously. When K = 5, the time consumption of the NTLC
was at the same level as that of the LOF. Meanwhile, the
AUC and MAP@40 of NTLC did not decrease significantly
during this process. The MAP@40 of NTLC remains above
0.85 when K was 3. The results demonstrate that we can
control the time consumption of NTLC to a reasonable level
(between LOF and MIC) without significant loss of accuracy
when handling large-scale data by setting the value of K to a
suitable level.

E. IMPACT OF NUMBER OF FRETS
To explore the impact of the number of FRETs on the above
five methods, we held 50 users per area and changed the
number of FRETs from 1 to 15 (step size of 2). Figure 9 shows
the results of the fivemethods used in this study. For CFSFDP
and LOF, we only present their results with normalization.

FIGURE 8. Time consumption and evaluation metrics of the five methods
and NTLC with different K. (a) Time consumption and AUC with different
data scales. (b) Time consumption and MAP@40 with different data
scales.

The AUC and MAP@40 of the power pattern-based meth-
ods remained stable and did not change with the number of
FRETs. This is the reason why the tampered load curves of
FRETs are almost identical to the ground truth curves after
normalization, and the outliers have already been decided
from the beginning, regardless of how many users are chosen
to be tampered with. In contrast, the scores of the correlation-
based methods changed with the number of FRETs. To be
specific, with a small number of FRETs, the three correlation-
based methods have fairly closed and high AUCs. However,
as the number of FRETs increased, the AUC of PCC and
MIC decreased rapidly and gradually deviated from that of

the LLC. Overall, the AUC damping of PCC and MIC are
0.231, from 0.92 to 0.689, and 0.251, from 0.911 to 0.654,
respectively, while that of NTLC is only 0.111, from 0.998
to 0.887. The MAP@40 of these three methods exhibited the
same behavior. The analysis above indicates that the number
of FRETs indeed has a negative impact on the accuracy
of PCC and MIC, for which these two methods are not
applicable to the scenario of multiple FRETs. Although the
scores of NTLC decreased slightly in the whole process, they
remained at a very high level. Therefore, the proposedmethod
performed superiorly in detecting group FRETs.

FIGURE 9. Performance of the 5 methods with different numbers of FPET
users per area. (a) Values of AUC. (b) Values of MAP@40.

FIGURE 10. AUC values of the 5 methods with different average PCCs.

F. IMPACT OF CORRELATION OF FRETS
The analysis in Section II proves that when the load vectors of
any two FRETs are positively correlated, the suspicious user
set Csus output by the LLCmethod is nearly identical to the set
of fraudulent users C. In this part, we explore the performance
of the NTLC method when the sufficient condition is not
fully met. For this purpose, we use the average PCC, which is
the mean value of the PCCs between every user, to measure
the correlation of a set of FRETs. Ten sets of FRETs with
ten different average PCCs that were approximately evenly
distributed between -1 and 1 were found. Figure 11 shows
the AUCs of the five methods for detecting these 10 sets of
FPET users.

The AUC of the outlier-based method behaved exactly as
in previous tests for the same reason. In contrast, the curves
of the correlation-based methods show that as the correlation
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of FPET users changes from positive to negative, the AUC of
these three methods decreases differently. Further analyzing
the curve of LLC, we can see that setting 0 as a boundary
when the average PCC is above 0, which means that the
FPET users are positively correlated, the AUC of LLC hardly
decreases significantly. However, when the average PCC is
below 0, which means that the FPET users are negatively
correlated, the AUC reduction of LLC evidently increases.
This shows that negatively correlated FPET users can affect
the accuracy of the LLC method. Even so, the lowest AUC of
LLC was 0.784, which significantly outperformed the other
methods. Thus, the proposed method is more robust from this
perspective.

V. CONCLUSION
This study proposes an NTLC-based method to detect FRETs
and verifies the effectiveness of this method using a real con-
sumption dataset provided by SGCC. The main conclusions
are as follows:

1) We established a mathematical model between the NTL
and load data of FRETs.We then observe that their correlation
becomes increasingly strong with data superposition. The
precondition for this trend is that the load data of any two
FRETs are positively correlated.

2) Based on this trait, we realize the detection of FRETs
and UPUs by searching a set of users who have the maxi-
mum covariance with NTL from all sets that have the above
increasing trend. We also analyzed two problems of the pro-
posed method in practice and took corresponding measures
to address them.

3) We conducted a series of tests via comparisons with
other state-of-the-art methods regarding accuracy, stability,
and scalability. The results indicate that the proposed method
has superior and stable performance in detecting FRETs,
particularly when it comes to multiple FRETs in one area.
In addition, the parameter K is able to reduce the time con-
sumption of the presented method without too much loss
of accuracy. In addition, the performance of the proposed
methodwhen the precondition is not fullymet was also tested.

There are also some limitations to the proposed method.
First, the proposed method analyzes only electricity con-
sumption data, which may contain limited information.
In addition to meter reading data, other information such as
climatic factors (temperature), regional factors, and electric
factors (current and voltage) are worth studying in the future.
Second, ourmethod does not specialize in detecting nonlinear
FDI, which has also been adopted by cyber-attacks. There-
fore, it is worthwhile to investigate ways to supplement the
detection of nonlinear FDI with multiple types of informa-
tion. However, it is the fact that there is no one-fit-all solution
to handle all sorts of FDIs, the NTLC method is of high value
to power utilities for easing the severity of collaborative fraud.
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