
Received December 12, 2021, accepted January 5, 2022, date of publication January 7, 2022, date of current version January 18, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141492

Distributed Finite Memory Estimation From
Relative Measurements for Multiple-Robot
Localization in Wireless Sensor Networks
YEONG JUN KIM1, HYUN HO KANG 1, SANG SU LEE 1, JUNG MIN PAK 2, (Member, IEEE),
AND CHOON KI AHN 1, (Senior Member, IEEE)
1School of Electrical Engineering, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
2Department of Electrical Engineering, Wonkwang University, Iksan-si, Jeollabuk-do 54538, Republic of Korea

Corresponding authors: Jung Min Pak (destin11@wku.ac.kr) and Choon Ki Ahn (hironaka@korea.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) under
Grant 2020R1F1A1072428, and in part by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT)
under Grant 2020R1A2C1005449.

ABSTRACT Mobile robot localizations have been extensively studied, and various algorithms for multiple-
robot localization have been developed. However, existing methods for multiple-robot localization often
exhibit poor performance under harsh conditions, such as missing measurements and sudden appearance of
obstacles. To overcome this problem, this paper proposes a novel method for multiple-robot localization in
wireless sensor networks. The proposed method is theoretically based on the finite memory estimation and
utilizes relative distance and angle measurements between robots. Thus, the proposed method is referred to
as distributed finite memory estimation from relative measurements (DFMERM). Due to the finite memory
structure, the DFMERM has inherent robustness against computational and modeling errors. Moreover, the
novel distributed localization method using relative measurements shows the robustness against missing
measurements. Robust DFMERM localization performance is experimentally demonstrated using multiple
mobile robots under the harsh conditions.

INDEX TERMS Distributed localization, finite memory estimation, mobile robot, relative measurements,
wireless sensor networks.

I. INTRODUCTION
Real-time locating systems (RTLS) based on wireless sensor
networks (WSN) are popular in various industrial fields, such
as smart factories, public facilities, and logistics facilities
[1]–[7]. However, RTLS suffer from localization failure due
to missing measurements [8], [9], which are caused by
communication and sensor errors. Moreover, using light-
weight and low-cost sensors in RTLS exacerbates these
problems. Thus, a novel localization algorithm that can cope
with the missing measurement problem is required.

Localization algorithms based onWSN can be categorized
into two groups: the centralized and distributed algorithms.
The centralized algorithms process data from all mobile
nodes in a single server computer. If the number of mobile
devices is large, the data from the node to the server may
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cause bottlenecks and data loss [10]–[12]. The distributed
algorithms can solve this problem by processing the data in
distributed multiple servers. Various algorithms for multiple-
robot localization have been developed [13]–[24], and espe-
cially, in [13], the problem of the distributed localization
of multiple mobile robots when the communication link
with neighboring nodes is temporarily lost was studied.
In addition, machine learning (ML)-based localization algo-
rithms for WSNs were developed to obtain an accurate
location and minimize the adverse effects of internal or
external factors [25]. A ML-based localization algorithm, the
Bayesian technique with sequential Monte Carlo was used to
estimate the location of unknown nodes [26]. The Bayesian
compressive sensing technique for adaptive localization
was developed to estimate the target locations, considering
environmental noise variance [27]. The variational Bayesian
interface based iterative technique was introduced to recover
sparse signals and faulty prior information [28]. However,
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these algorithms are based on infinite impulse response (IIR)
estimation, and they may exhibit estimation divergence
due to the accumulation of computational or modeling
errors.

IIR estimation is familiar to engineers because the Kalman
filter (KF) is one of themost commonly known IIR estimation
algorithms. Different versions of KF have been studied
and applied to diverse engineering problems, including the
distributed localization [14], [16], [17]. However, KFs suffer
from filter divergence, which is caused by the accumulation
of computational or modeling errors. To overcome this
problem, finite memory estimation (FME) algorithms [5],
[12], [29]–[37] that use only recent finite measurements have
been studied. Distributed FMEwere studied in [32]–[34], and
they exhibited better robustness than those of distributed IIR
filters. However, these studies were limited to the problem of
estimating the location of a single robot in a WSN.

In this paper, we propose a novel distributed FME
algorithm formultiple-robot localization; thus, it can estimate
the pose (i.e., position and heading angle) of all individual
robots in a WSN. The proposed FME is referred to as the
distributed FME from relative measurements (DFMERM).
The technique for refining sensor measurements proposed
in our previous study [31] is evolved and extended to
the distributed multiple-robot localization problem. The
measurements of relative distance and heading angle between
robots are transmitted to neighbors through robot-to-robot
direct communication, which facilitates distributed local-
ization. In addition, the novel measurement redefining
technique proposed in this paper helps the localization
algorithm to cope with missing measurements. Lastly, the
finite memory (FM) structure makes the DFMERM robust
against the computational errors caused by the missing
measurements. Superior DFMERM robustness and reliable
localization performance are experimentally demonstrated
using the multiple mobile robots under harsh conditions,
including missing measurements and sudden appearance of
an obstacle. The main contributions and novelty of this paper
can be summarized as follows:

1) The proposed DFMERM is the first distributed FME
algorithm that is capable of multiple-robot localization;
existing distributed FME algorithms [32]–[34] are only
available for single-robot localization.

2) We designed a novel distributed multiple-robot local-
ization system, in which a few robots are equipped
with expensive sensors that are capable of absolute
positioning, whereas the majority of robots have low-
cost sensors that can only measure relative distance and
bearing between robots. This reduces the implementa-
tion cost of multiple-robot localization systems, and the
cost reduction effect increases as the number of robots
increases.

3) A novel FME algorithm to overcome the missing
measurement problem was proposed. The missing
measurements were replaced by the predicted measure-
ments, and the measurement equation was redefined.

The novel FME was derived using the new state-space
model based on redefined measurements. The resulting
DFMERMexperimentally exhibited robustness against
missing measurements.

4) The proposed DFMERM exhibited superior localiza-
tion performance that is better than that of the con-
ventional IIR localization algorithm. The DFMERM
was more robust than the distributed IIR filter against
not only the missing measurements but also sudden
appearance of an obstacle because the DFMERM has
the FM filter structure, which is inherently robust
against modeling and computational errors.

The remainder of this paper is organized as follows.
Section II describes scheme of the distributed multiple-
robot localization using relative measurements. Section III
derives the DFMERM by utilizing the Frobenius norm and
Lagrange multiplier method. Section IV presents the results
of experiments using six mobile robots. Finally, conclusions
are drawn in Section V.

II. SCHEME OF DISTRIBUTED MULTIPLE-ROBOT
LOCALIZATION USING RELATIVE MEASUREMENTS
We consider a situation in which multiple mobile robots
are in a 2-dimensional (2D) indoor space. We divide the
robots into two groups, Groups A and B. Group A is
composed of a few robots equipped with high-resolution
sensors that can obtain their positions. Group B has many
robots equipped with low-cost sensors that can only measure
relative distance and/or bearing. This paper focuses on the
localization of multiple robots in Group B using the relative
measurements.

A. KINEMATIC MODEL
The state and control input of the i-th robot at a discrete time
step k are defined as follows:

si,k =
[
pTi,k θi,k

]T
, (1)

ui,k =
[
vli,k vθi,k

]T
, (2)

where pi,k =
[
xi,k yi,k

]T , with positions xi,k and yi,k being in
the x- and y-axes, respectively. θi,k is the heading angle of the
i-th robot with respect to the x-axis, and vli,k and v

θ
i,k are the

linear and angular velocities of the i-th robot. We consider the
nonholonomic unicycle kinematic model of the mobile robot
described in Fig. 1. The relationship between si,k and si,k+1
with time variation 1t is defined as [8], [31]

si,k+1 = fi,k (si,k , ui,k )+ ωi,k
, si,k + f̄i,kui,k1t + ωi,k , (3)

where ωi,k is process noise vector of the i-th robot at time k ,
and f̄i,k is defined as

f̄i,k =

cos θi,k 0
sin θi,k 0

0 1

 . (4)
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FIGURE 1. Description of kinematic model.

B. MEASUREMENT
We consider a directed graph, which is denoted as
G = (K, E), where K and E are the set of robots and
links, respectively. The number of robots is M = ‖K‖. In
E , the direction from robot j to i is denoted by (i, j). The
neighbors for robot i are defined as Ni = {j : (i, j) ∈ E}.
Moreover, robot i can fetch the estimated state of Group
A neighboring robots through directed communication.
Accordingly, Ji = |Ni| denotes the number of Group A
i-th neighbors. We assume that the i-th robot can obtain
the estimated positions of neighbors at every sampling time.
The description of the measurement is shown in Fig. 2. The
measurement at time k of the i-th robot is

zi,k = hi,k (si,k )+ πi,k ,

,
[
d1i,k η1i,k d2i,k η2i,k . . . dJii,k η

Ji
i,k θi,k

]T
+πi,k , (5)

where

d ji,k = ‖p̂j,k − pi,k‖,

η
j
i,k = τ

j
i,k − θi,k ,

= arctan(
1yji,k

1x ji,k
)− θi,k ,

1x ji,k =
[
1 0

]
p̂j,k −

[
1 0

]
pi,k ,

1yji,k =
[
0 1

]
p̂j,k −

[
0 1

]
pi,k , (6)

and πi,k is the measurement noise vector of the i-th robot at
time k . p̂j,k is the estimated two-dimensional position of the
j-th robot at time k , d ji,k denotes the center distance between

the i-th and j-th robots at time k , ηji,k denotes the angle from
the heading of the i-th robot to the j-th robot at time k , and

FIGURE 2. Description of measurement with neighbor j ∈ [1, Ji ].

τ
j
i,k denotes the angle from the x-axis to the j-th robot at

time k with respect to the i-th robot. 1x ji,k and 1y
j
i,k are the

differences between i-th and j-th robots on the x- and y-axes,
respectively. If the i-th robot does not have a link with the j-th
robot, then the measurements d ji,k and η

j
i,k are set to zero.

C. REDEFINED MEASUREMENT
As the number of robots increases during position estimation
for the multiple mobile robot system, temporal failure of the
communication link occurs more frequently, which makes it
difficult to estimate the robot positions accurately, and it may
cause a significant failure in the estimation [13]. In this case,
the estimation algorithm needs to handle temporal missing
communication. Therefore, we rewrite (5) using previously
stored estimated values [31]:

z̄i,k = γi,khi,k (si,k )

+(I2Ji+1 − γi,k )hi,k (ši,k )+ π̄i,k ,

=

{
hi,k (ši,k )+ π̄i,k , missing measurement
hi,k (si,k )+ π̄i,k , else

(7)

where ši,k = f (ŝi,k−1, ui,k−1) is the predicted value using
the previous estimated state ŝi,k−1, and π̄i,k is the redefined
measurement noise vector of the i-th robot at time k . I2Ji+1 is
the identity matrix size of 2Ji+1, and γi,k is a diagonal matrix
consisting of a binary value at the current step k . It is set to
0 when a measurement is missing; otherwise, it is 1. γi,k can
also be used to account for transient errors in the sensor.

III. DISTRIBUTED FINITE MEMORY ESTIMATION FROM
RELATIVE MEASUREMENT
This section describes the DFMERM for estimating the state
of a problem formulated in Section II. We consider the robot
index i as the filtering number of all robots. Utilizing the
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nonlinear functions (3) and (7), the discrete-time system
models can be represented by the process and measurement
equations:

si,k+1 = fi,k (si,k , ui,k )+ wi,k , (8)

z̄i,k = γi,khi,k (si,k )

+(I2Ji+1 − γi,k )hi,k (ši,k )+ π̄i,k , (9)

where fi,k (si,k , ui,k ) and hi,k (si,k ) are nonlinear functions.
We assume that wi,k and π̄i,k are zero-mean white Gaussian
noise vectors. The noise covariances of the i-th robot with
respect to wi,k and π̄i,k are defined as Qi = E[wi,kwTi,k ] and
Ri = E[π̄i,k π̄Ti,k ], where E[·] is the expectation operator.
Define the Jacobian matrices of fi,k (si,k , ui,k ) and hi,k (si,k )

around si,k = ŝi,k and si,k = ši,k as

F̂i,k =
∂fi,k (si,k , ui,k )

∂si,k
|s=ŝi,k , (10)

Ĥi,k =
∂hi,k (si,k )
∂si,k

|s=ŝi,k , (11)

Ȟi,k =
∂hi,k (si,k )
∂si,k

|s=ši,k . (12)

Utilizing the Jacobian matrices, (10) (11) and (12), the
linearization of nonlinear system (8) and (9) are defined as
follows:

si,k+1 = fi,k (ŝi,k , ui,k )+ F̂i,k (si,k − ŝi,k )+ wi,k , (13)

z̄i,k = γi,k (hi,k (ŝi,k )+ Ĥi,k (si,k − ŝi,k ))

+(I2Ji+1 − γi,k )(hi,k (ši,k )+ Ȟi,k (si,k − ši,k ))

+π̄i,k . (14)

We simplify linearized system (13) and (14) as follows:

si,k+1 = F̂i,ksi,k +Ai,k + wi,k , (15)

z̄i,k = Bi,ksi,k + Ci,k + π̄i,k , (16)

where

Ai,k = fi,k (ŝi,k , ui,k )− F̂i,k ŝi,k ,

Bi,k = γi,k Ĥi,k + (I2Ji+1 − γi,k )Ȟi,k ,

Ci,k = γi,k (hi,k (ŝi,k )− Ĥi,k ŝi,k )
+(I2Ji+1 − γi,k )(hi,k (ši,k )− Ȟi,k ši,k ). (17)

The proposed algorithm in discrete-time space requires recent
N measurements, where N denotes horizon size. To stack
N measured values, the linearized systems (15) and (16) are
utilized. An equation starting from z̄i,k with n ∈ [1,N ] is

z̄i,k+n = Bi,k+nFi(0, n)si,k
+Bi,k+nFi(1, n)(Ai,k + wi,k )

+Bi,k+nFi(2, n)(Ai,k+1 + wi,k+1)
...

+Bi,k+nFi(n− 1, n)(Ai,k+n−2 + wi,k−2)

+Bi,k+nFi(n, n)(Ai,k+n−1 + wi,k+n−1)

+Ci,k+n + π̄i,k+n, (18)

where

Fi(a, b) =


∏b−1

n=a
F̂i,k+b−n−1 if a < b, a ≥ 0, b > 0;

I if a = b;
0 otherwise.

From (18), the stacked matrix of filter iwith the number of N
is established as follows:

Zi,k+N = 4i,K+N si,k +3i,k+N (0i,k+N +Wi,k+N )

+9i,k+N +8i,k+N , (19)

where

Zi,k+N

=


z̄i,k+1
z̄i,k+2
...

z̄i,k+N

 ,
4i,k+N

=


Bi,k+1F(0, 1)
Bi,k+2F(0, 2)

...

Bi,k+NF(0,N )

 ,
3i,k+N

=


Bi,k+1F(1, 1) 0 · · · 0
Bi,k+2F(1, 2) Bi,k+2F(2, 2) · · · 0

...
...

. . .
...

Bi,k+NF(1,N ) Bi,k+NF(2,N ) · · · Bi,k+NF(N ,N )

,
0i,k+N

=
[
AT
i,k AT

i,k+1 · · · AT
i,k+N−1

]T
,

9i,k+N

=
[
CTi,k+1 CTi,k+2 · · · CTi,k+N

]T
,

Wi,k+N

=
[
wTi,k wTi,k+1 · · · wTi,k+N−1

]T
,

8i,k+N

=
[
π̄Ti,k+1 π̄Ti,k+2 · · · π̄Ti,k+N

]T
. (20)

To obtain the result ŝi,k+N in the DFMERM filtering
algorithm, we utilize the relationship between si,k and si,k+N .
Using 0i,k+N , Wi,k+N , and (15), and si,k+N is obtained as
follows:

si,k+N = Fi(0,N )si,k +�i,k+N (0i,k+N +Wi,k+N ), (21)

where

�i,N =
[
F(1,N ) F(2,N ) · · · F(N ,N )

]
. (22)

We assume the systems have an unbiased condition to obtain
gains. The state estimator algorithm with the filtering index i
is defined as

ŝi,k+N = Qi,k+NZi,k+N + Oi,k+N0i,k+N , (23)
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where Qi,k+N and Oi,k+N are the gain matrices, and
the appropriate gain values are selected to estimate the
state ŝi,k+N . By substituting (19) into (23) and subtract-
ing (21) from both sides, the following equation can be
derived:

ŝi,k+N = (Qi,k+N4i,k+N − Fi(0,N ))si,k
+(Qi,k+N3i,k+N −�i,k+N )(0i,k+N +Wi,k+N )

+Qi,k+N (9i,k+N +8i,k+N )

+Oi,k+N0i,k+N
+si,k+N . (24)

To derive unbiasedness in the condition defined as E[si,k+N ]
= E[ŝi,k+N ], the expectation of the above equation is given
as follows:

E[ŝi,k+N ] = E[si,k+N ]

+(Qi,k+N4i,k+N − Fi(0,N ))E[si,k ]

+(Qi,k+N3i,k+N −�i,k+N + Oi,k+N )0i,k+N
+Qi,k+N9i,k+N , (25)

where 8i,k+N and Wi,k+N constituting π̄i,k and wi,k are zero
when the expectation is calculated. The conditions for the
gain matrices can be obtained from (25) as follows:

Qi,k+N4i,k+N − Fi(0,N ) = 0, (26)

(Qi,k+N3i,k+N −�i,k+N + Oi,k+N )0i,k+N
+Qi,k+N9i,k+N = 0. (27)

To find the gains Qi,k+N and Oi,k+N in (26) and (27), we set
the appropriate optimization problem. Set the following cost
function using the Frobenius norm defined as ‖ · ‖F :

Ji,k+N =
1
2
‖Qi,k+N‖2F . (28)

We use the Lagrange multiplier method to minimize the cost
function. The Lagrange multiplier defined as 2 is used to
solve the cost function. Thus, we can define the following
function:

Li,k+N =
1
2
‖Qi,k+N‖2F

−2T (Qi,k+N4i,k+N − Fi(0,N ))

=
1
2
tr[QTi,k+NQi,k+N ]

−2T (Qi,k+N4i,k+N − Fi(0,N )). (29)

In this case, the optimization problem can be solved to obtain
the gain Qi,k+N when the partial derivative of Li,k+N with
respect to Qi,k+N equals zero. Then, Qi,k+N is obtained as
follows:

Qi,k+N = 2T4T
i,k+N . (30)

By substituting (30) into (26):

2T
= Fi(0,N )(4T

i,k+N4i,k+N )−1.

Algorithm 1 DFMERM
Input: N , G, Ni
while new data exists do

for all i-th robots, i ∈ K do
Get p̂j,k from Ni = {j : (i, j) ∈ E}
Determine Jacobian matrices F̂i,k , Ĥi,k , and Ȟi,k
if zi,k is available then

z̄i,k = hi,k (si,k )+ π̄i,k with γi,k = 1
else

z̄i,k = hi,k (ši,k )+ π̄i,k with γi,k = 0
end if
Stack redefined measurement z̄i,k
if k > N , k = 1, 2, · · · then

for n ∈ [1,N ] do
Construct Zi,k+N with z̄i,k+n
Construct 0i,k+N with AT

i,k+n−1
Construct 4i,k+N with Bi,k+nF(0, n)
Construct 3i,k+N with Bi,k+nF(n, n)
Construct 9i,k+N with CTi,k+n−1
Optimize the cost function Ji,k+N
Obtain gain matrices Qi,k+N and Oi,k+N
Calculate the estimated state

ŝi,K+N = Qi,k+NZi,k+N
+Oi,k+N0i,k+N

end for
end if

end for
end while
return ŝi,K+N

Therefore, the gain matrixQi,k+N andOi,k+N are arranged as
follows.

Qi,k+N
= Fi(0,N )(4T

i,k+N4i,k+N )−14T
i,k+N , (31)

Oi,k+N
= �k+N

−Fi(0,N )(4T
i,k+N4i,k+N )−14T

i,k+N3i,k+N

−Fi(0,N )(4T
i,k+N4i,k+N )−14T

i,k+N9i,k+N0
−1
i,k+N .

(32)

The estimated state ŝi,k+N from applying the gain matrix
Qi,k+N and Oi,k+N is obtained as follows:

ŝi,k+N

=

(
Fi(0,N )(4T

i,k+N4i,k+N )−14T
i,k+N

)
Zi,k+N

+

(
�i,k+N − Fi(0,N )(4T

i,k+N4i,k+N )−14T
i,k+N3i,k+N

−Fi(0,N )(4T
i,k+N4i,k+N )−1

4TZi,k+N9i,k+N0
−1
i,k+N

)
0i,k+N . (33)

Remark 1: If there is a high noise effect that is not covered
in noise covariances in the system, the iterative estimation
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FIGURE 3. Robots in the experiment in the case of constant maneuvering:
robots 1 and 2 are in Group A; their positions are estimated in a 2D plane
in advance. Other robots are in Group B that measure the relative
measurement, and the directional arrows represent information
transmission links.

algorithm does not work properly. However, using the filter
of the FM structure, the noise, which has a significant effect
on the system, is canceled after N sampling times. Moreover,
the FM structure algorithm can achieve better convergence to
the reference in such a situation.
Remark 2: In the DFMERM, the horizon size should

be carefully selected. The computational cost increases
with horizon size. However, the noise-ignoring performance
increases with horizon size. It is important to set an
appropriate horizon size to trade off between computational
cost and noise ignoring performance.
Remark 3: The DFMERM does not consider noise statis-

tics. Thus, the DFMERM guarantees robustness against
incorrect noise information. Moreover, obtaining the gain
matrix by minimizing the Frobenius norm of the filter can
reduce the error caused by mismodeling and an undefined
noise effect.

IV. EXPERIMENT
In this section, the experiment for the distributed localization
of multiple mobile robots is performed in the real world. The
information, such as friction and slipping on the ground, are
undefined in the experiment. We implemented the DFMERM
and distributed IIR filter with ROBOTIS’s TurtleBot3 Burger
mobile robot platform. We used six robots in the experiment,
and the network topology is shown in Fig. 3. A LiDAR scan-
ner was used for relative measurement. We investigated two
practical scenarios. Notably, the distributed FM estimation
algorithm proposed in [32]–[34] cannot be applied to the
experiment because they estimate only one target state.

A. MISSING MEASUREMENT CASE
The temporal sensor process delay and communication error
can occur in real-world situations, and this fault should
be addressed to perform the task successfully. During
the experiment, 100 measurements were collected with

FIGURE 4. Robot 3 trajectory in the case of missing measurement.

FIGURE 5. Robot 4 trajectory in the case of missing measurement.

1t = 1.5 (s), vli,k = 0.03 (m/s), and vθi,k = 0.2 (rad/s).
We considered a missing measurement scenario with the
following time step: robot 3 at times 29 ≤ k ≤ 33 and
80 ≤ k ≤ 86, robot 4 at times 29 ≤ k ≤ 33, robot 5 at
times 29 ≤ k ≤ 33 and 75 ≤ k ≤ 79, and robot 6 at times
29 ≤ k ≤ 33 and 75 ≤ k ≤ 79. The initial states of 1-st,
2-nd, · · · , 6-th robots are given as

[
0.6 1.8 0

]T , [1.8 1.2 0
]T ,[

1.2 1.8 0
]T , [1.8 1.8 0

]T , [0.6 1.2 0
]T , and [1.2 1.2 0

]T ,
respectively. The horizon size was set to N = 7. The noise
covariances are given by Qi = diag(0.1, 0.1, 0.1) and
Ri = diag(0.01, 0.01, · · · , 0.01), where i = 1, 2, · · · 6.
The initial state covariance of the i-th robot was considered
as Pi,0 = diag(0.1 0.1 0.1), where i = 1, 2, · · · 6.

The real trajectories and trajectories for the localization
results with the DFMERM and the distributed IIR filter of
3-rd, 4-th, 5-th, and 6-th robots are shown in Figs. 4-7.
Fig. 4 reveals that the localization performance of the
distributed IIR filter is degraded in sections 29 ≤ k ≤ 33 and
80 ≤ k ≤ 86 where missing measurements occurred in the
3-rd robot. In addition, the 3-rd robot receives measurement
values from the 6-th robot, where missing measurement
occurred in 29 ≤ k ≤ 33 and 75 ≤ k ≤ 79, and the
estimation error that occurred at those sections affected 3-rd
robot. As a result, the section with the performance degrada-
tion appears longer than the section where the actual missing
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FIGURE 6. Robot 5 trajectory in the case of missing measurement.

FIGURE 7. Robot 6 trajectory in the case of missing measurement.

measurement occurred. On the other hand, the proposed
algorithm exhibits robust performance even in situations with
missing measurements, and it can be confirmed that the
output is close to the real value. Both the distributed IIR filter
and proposed algorithm show similar performance, as shown
in Fig. 5, except for one section where a measurement is
missing for 4-th robot. The distributed IIR filter shows a
large error in the section where a measurement is missing,
and the performance deteriorates, whereas the output of the
proposed algorithm approaches near the real value without
large errors. The trajectories of 5-th and 6-th robots, where
measurements were missing in the same 29 ≤ k ≤ 33
and 75 ≤ k ≤ 79 sections, are shown in Figs. 6-7, and
the two robots are connected to each other in the network
topology. Therefore, in a situation where measurements are
missing, the estimated state of each robot affects each the
performance of other robots. In particular, it can be seen that
the estimated states of the 5-th and 6-th robots through the
distributed IIR filter bounce in a similar direction with large
errors, resulting in poor performance. The DFMERM shows
robust performance, although the error increased compared
to where a measurement was missing in 3-rd and 4-th robots.

Fig. 8 shows the estimation errors of both algorithms;
A denotes the interval for 29 ≤ k ≤ 33, B denotes the
interval for 75 ≤ k ≤ 79, and C denotes the interval for
80 ≤ k ≤ 86. In interval A in Fig. 8, where all sensors
are missing, we can see a large difference in the performance

FIGURE 8. Sum of absolute estimation error results in the case of missing
measurement: (a) x position (b) y position (c) heading angle.

TABLE 1. RMSE results.

TABLE 2. Mean operation time.

of both algorithms. In interval B, the sensors of the 5-th and
6-th robots were turned off, and in interval C the sensor of the
3-rd robot was turned off. Similarly, the robust performance
of the DFMERM in intervals B and C in Fig. 8 is notable.
The performance of error handling is clearly shown in Table 1
as root-mean-square error (RMSE) results. The DFMERM
exhibited RMSE results that were more than two times lower.
The distributed IIR filter periodically showed an error peak
and divergence. However, in the DFMERM, the sum of the
absolute estimation error did not grow rapidly and had small
divergence. Therefore the DFMERM was more effective at
handling missing measurement errors. The comparison of
both filters with the average operation time in Table 2 was
conducted in Raspberry Pi 3 B+ model with a 1.4GHz CPU.
The average operation was approximately 1.4 times higher
in DFMERM. However, the DFMERM can be used in real-
time applications because both filters exhibited sufficiently
low computational load.

B. APPEARANCE OF OBSTACLE CASE
In the second scenario, we considered the obstacle case where
other robots could not be sensed. At k = 120, the 3-rd
robot was kidnapped and placed on the opposite side of
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FIGURE 9. Robots trajectories with distributed IIR filter in the case of an
obstacle.

FIGURE 10. Robots trajectories with DFMERM in the case of an obstacle.

the obstacle. A total of 260 measurements were collected
with 1t = 0.5 (s). We considered the topology network as
1 → 5, 1 → 3, 2 → 4, 2 → 6, 4 → 3, 5 → 6,
and 6 → 5. The initial states of the 1-th, 2-th, · · · , 6-th
robots are given as

[
0.6 2.4 0

]T , [1.8 1.8 0
]T , [1.2 2.4 0

]T ,[
1.8 2.4 0

]T , [0.6 1.8 0
]T , and [1.2 1.8 0

]T , respectively.
The horizon size was N = 7. Noise covariances and initial
state covariances were set to be equal those in scenario 1.

The obstacle and real and estimated trajectory graphs are
shown in Figs. 9 and 10, where both the distributed IIR
filter and DFMERM exhibit poor performances when the
3-rd robot was kidnapped. In particular, in the distributed
IIR filter, the error size changes drastically, whereas the
proposed algorithm yielded a smaller error size. Moreover,
as can be seen in Fig. 9, before and after the 3-rd robot
was kidnapped and immediately after being kidnapping was
over, the distributed IIR filter required some time-steps for
stabilization, and continuous fluctuations were generated
compared to the real value. However, Fig. 10 reveals that the
proposed algorithm quickly and accurately approaches the
real value immediately after the kidnapping was over.

The sum of the absolute estimation error is shown in
Fig. 11; D denotes the interval where an obstacle appears.

FIGURE 11. Sum of absolute estimation error results in the case of an
obstacle: (a) x position (b) y position (c) heading angle.

TABLE 3. RMSE results.

TABLE 4. Mean operation time.

The error gradually increased during the kidnap in both
filters. However, in the distributed IIR filter, starting with
the attack, the error rapidly increased. The DFMERM was
more than twice as effective as the distributed IIR filter
when the error was at the peak for both filters. The RMSE
results show that the DFMERM had approximately 2.8 and
4.7 times better performance, in terms of the x- and y-
axes, than the distributed IIR filter, as shown in Table 3.
As in the missing measurement case, the average operating
time in Table 4 sufficiently indicates potential real-world
applicability. Furthermore, according to the experimental
results, the DFMERM is sufficiently applicable to WSNs in
terms of robustness.

In addition to the experiments, a simulation was conducted
to clarify the computational complexity. The simulation
consisted of 25 nodes more robots than in the previous two
experiments. The overall network topology for the simulation
is shown in Fig. 12.
We assumed that the robots in nodes 1, 2, and 24 were

in Group A, and their positions are estimated in a 2D plane
in advance. The sampling interval was set to 0.1s, and
the simulation was run up to 500 time steps. The average
computational complexity during the simulation is shown
in Table 5.
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FIGURE 12. Simulation with 25 nodes with randomly initialized states.

TABLE 5. Mean operation time.

The mean computational complexity of the distributed
IIR filter was about 1.39 times faster than that of the
proposed method, similar to in the previous experiments.
However, the DFMERM had no difficulty in executing
the algorithm in a loop within a given sampling time.
Therefore, both experiments and the simulation confirmed
that although the proposed algorithm is 1.4 times slower
on average in terms of mean computational complexity
than the distributed IIR filter, it can be implemented in
a real-time experiment or simulation within the sampling
time.
Remark 4: In the experiment involving an obstacle, only

one obstacle was considered. When the number of obstacles
increased, the obstacles interrupted communications between
the robots and time delay occurred. This delay degraded
the localization accuracy of both the DFMERM and the
distributed IIR filter. Thus, it is required to study a new
localization algorithm considering the time delay for the
multiple-obstacle case.

V. CONCLUSION
In this paper, we proposed a novel distributed multiple-
robot localization algorithm, namely, DFMERM. Due to the
FM structure, the DFMERM has inherent robustness against
modeling and computational errors. Moreover, the proposed
algorithm overcomes the missing measurement problem
by utilizing redefined measurements. The experimental
results demonstrated that the DFMERM exhibited superior
robustness against missing measurements and the sudden
appearance of an obstacle compared with the conventional
distributed IIR filter. We intend to apply the DFMERM
to the 3D localization of unmanned aerial vehicles in
future work.
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