
Received December 6, 2021, accepted December 27, 2021, date of publication January 7, 2022, date of current version May 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3141434

Key-Dependent Feedback Configuration Matrix of
Primitive σ−LFSR and Resistance to Some
Known Plaintext Attacks
SUBRATA NANDI 1, SRINIVASAN KRISHNASWAMY 2,
BEHROUZ ZOLFAGHARI 1, AND PINAKI MITRA 1
1CSE Department, Indian Institute of Technology Guwahati, Guwahati 781039, India
2EEE Department, Indian Institute of Technology Guwahati, Guwahati 781039, India

Corresponding author: Subrata Nandi (subrata.nandi@iitg.ac.in)

ABSTRACT In this paper, we propose and evaluate a method for generating key-dependent feedback
configurations (KDFC) for σ -LFSRs. σ -LFSRs with such configurations can be applied to any stream cipher
that uses a word-based LFSR. Here, a configuration generation algorithm uses the secret key(K) and the
Initialization Vector (IV) to generate a new feedback configuration after the initialization round. It replaces
the older known feedback configuration. The keystream is generated from this new feedback configuration
and the FSM part. We have mathematically analysed the feedback configurations generated by this method.
As a test case, we have applied this method on SNOW 2.0 and have studied its impact on resistance to
algebraic attacks. Besides, as a consequence of resisting algebraic attacks, SNOW 2.0 can also withstand
some other attacks like Distinguishing Attack, Fast Correlation Attack, Guess and Determining Attack and
Cache Timing Attack. Further, we have also tested the generated keystream for randomness and have briefly
described its implementation and the challenges involved in the same.

INDEX TERMS Stream Cipher σ -LFSR key-dependent feedback configuration primitive polynomial
algebraic attack.

I. INTRODUCTION
Stream ciphers are used in a variety of applications [1], [2].
LFSRs (Linear Feedback Shift Register) are widely used as
building blocks in stream ciphers([3], [4]) because of their
simple construction, good pseudorandomness([5]) and easy
implementation.

Word-based LFSRs were introduced to efficiently use the
structure of modern word-based processors ([6]–[13]). Such
LFSRs are used in a variety of stream ciphers, most notably
in the SNOW series of stream ciphers. A σ -LFSR is a
word-based LFSR configuration that was introduced in [14].
An important property of this configuration is that multiple
feedback functions are corresponding to a given characteristic
polynomial of the state transition matrix([15]). The number
of such configurations was conjectured in ([14]). This con-
jecture was constructively proved in ([16]).

The knowledge of the feedback function plays a critical
role in most attacks on LSFR based stream ciphers. These

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

include algebraic attacks, correlation attacks, distinguishing
attacks, guess and determining attack andCache timing attack
([17]–[21]). Therefore, hiding the feedback function of the
LFSR could potentially increase the security of such schemes.
One way of doing this is by using dynamic feedback control.
This approach is used in stream ciphers such as K2 ([22])
and A5. This converts the deterministic linear recurrence of
some registers into a probabilistic recurrence. However, key
recovery attacks on K2 and A5 have been reported in the
literature ([23], [24]).

In this paper, we try to increase the security of LFSR based
word-oriented stream ciphers by making the feedback func-
tion dependent on the secret key. The resulting configuration
is called the σ -KDFC (Key Dependent Feedback Configura-
tion). The proposed method for obtaining the feedback func-
tion from the secret key utilizes the algorithm given in [15],
[16]. The feedback gains thus obtained are highly non-linear
functions of the secret key. Further, the number of iterations
in this algorithm can be adjusted depending on the available
computing power. As an example, we study the interconnec-
tion of the σ -KDFC with the finite state machine (FSM) of

44840 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-7140-0608
https://orcid.org/0000-0001-9714-7399
https://orcid.org/0000-0001-6691-0988
https://orcid.org/0000-0002-8254-8234

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

SNOW-2. We use empirical tests to verify the randomness of
the keystream generated by this scheme. Further, we analyse
the scheme for security against various kinds of attacks.

TABLE 1. Symbol and their meaning.

A. SYMBOL TABLE
The rest of this paper is organized as follows. Section II-A
introduces LFSRs, σ -LFSRs and some related concepts.
Section III examines σ -KDFC and its time complexity.
Section IV presents the mathematical analysis on the alge-
braic degree of the parameters of the feedback function gener-
ated by σ -KDFC. Section V discusses the interconnection of
σ -KDFCwith the FSM of SNOWand its security against var-
ious cryptographic attacks. Section VI concludes the paper.

B. CONTRIBUTION
The contribution of this article is as follows:
• We have proposed a method of making of making
the feedback configuration of a word based shift reg-
ister dependent on the key of a stream cipher. Most
Known plaintext attacks (KPAs) on LFSR based stream
ciphers, particularly algebraic ones, make use of the
feedback equation. Therefore, making the feedback
equation dependent on the secret key protects the cipher
against such attacks.

• We have also calculated the algebraic degree of the
entries of the resulting feedback matrices.

• As a test case, we have analysed the security of SNOW
2.0 after replacing the LFSR in that cipher with the
proposed configuration.

• Finally, we have tested the pseudorandomness of
KDFC-SNOW with 16 NIST randomness tests.

II. PRELIMINARY CONCEPTS
A. LFSRs AND σ -LFSRs
An LFSR is an electronic circuit that implements a Linear
Recurring Relation (LRR) of the form xn+b = ab−1xn+b−1+
· · · + a0xn. It consists of a shift register with b flip-flops and
a linear feedback function which is typically implemented
using XOR gates. The integer b is called the length of the
LFSR. The characteristic polynomial of an LFSR is a monic
polynomial with the same coefficients as the LRR imple-
mented by it. For example, the characteristic polynomial of

FIGURE 1. Block diagram of σ -LFSR.

an LFSR which implements the LRR given above is xb +
ab−1xb−1+· · ·+a0. The period of the sequence generated by
an LFSR of length b is at most 2b−1. Further, an LFSR gener-
ates a maximum-period sequence if its characteristic polyno-
mial is primitive [25]. The state vector of an LFSR at any time
instant is a vector whose entries are the outputs of the delay
blocks at the time instant i.e xn = [xn, xn+1, . . . , xn+b−1].
Two consecutive state vectors are related by the equation
xn+1 = xnPf where Pf is the companion matrix of the
characteristic polynomial.

Pf =


0 0 0 a0
1 0 0 a1
0 1 0 a2
...
...

...
...

0 0 1 ab−1

 (1)

In order to efficiently work with word based processors vari-
ous word based LFSR designs have been proposed [6]–[8],
[11], [13], [22], [26]. These designs use multi input multi
output delay blocks. One such design is the σ -LFSR shown
in Figure 1. Here, the feedback gains are matrices and the
implemented linear recurring relation is of the form

xn+b = Bn+b−1xn+b−1 + Bn+b−2xn+b−2 + · · · + B0xn
(2)

where each xi ∈ Fm2 and Bi ∈ Fm×m2 . Here, each delay
block has m-inputs and m-outputs and the σ -LFSR generates
a sequence of vectors in Fm2

The matrices B0,B1, · · · ,Bb−1 are referred to as the gain
matrices of the σ -LFSR and the following matrix is defined
as its configuration matrix.

C =


0 I 0 · · · 0
0 0 I · · · 0
...
...
... · · ·

...

0 0 0 · · · I
B0 B1 B2 · · · Bb−1

 ∈ Fmb×mb2 (3)

where 0, I ∈ Fm×m2 are the all-zero and identity matrices
respectively. We shall refer to the structure of this matrix as
the M -companion structure. The characteristic polynomial
of this configuration matrix is known as the characteristic
polynomial of the σ -LFSR.
If xn is the output of the σ -LFSR at the n-th time

instant, then its state vector at that time instant is defined as

VOLUME 10, 2022 44841

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

x̂n = [xn, xn+1, . . . , xn+b−1]. This vector is got by stacking
the outputs of all the delay blocks at the n-th time instant.
Two consecutive state vectors are related by the following
equation:

ˆxn+1 = x̂nCT (4)

In the case of σ -LFSRs, there are many possible feedback
configurations having the same characteristic polynomial.
For a given primitive polynomial, the number of such con-
figurations was conjectured in [14] to be the following,

NP =
|GL(m,F2)|

2m − 1
×
φ(2mb − 1)

mb
× 2m(m−1)(b−1) (5)

where 5, GL(m,F2) is the general linear group of
non-singular matrices ∈ Fm×m2 , and φ represents Euler’s
totient. This conjecture has been proved in [27]. Moreover,
this inductive proof is constructive and gives an algorithm for
calculating such feedback functions.

In the following section, we shall use the algorithm given
in [27] to develop a key dependent feedback configuration for
the σ -LFSR.

III. σ -KDFC
Stream ciphers, like the SNOW series of ciphers, use word
based LFSRs along with an FSM module. The feedback con-
figuration of the LFSR in such schemes is publicly known.
This feedback relation is used in most attacks on such
schemes [17], [19], [21], [28]. Therefore, the security of such
schemes could potentially increase if the feedback function is
made key dependent.

Before proceeding to our construction of a key dependent
feedback configuration, we briefly describe the algorithm
given in [27] which generates feedback configurations for
σ -LFSRs with a given characteristic polynomial. Given a
primitive polynomial pmb(x) having degreemb, the algorithm
for calculating a feedback configuration for a σ -LFSR with b
m-input m-output delay blocks is as follows:

The matrix C generated in the above algorithm is the con-
figuration matrix of a σ -LFSRwith characteristic polynomial
pmb(x). As can be seen from Equation 3, the last m rows of
this matrix contain the feedback gain matrices. Each set of
choices for the dts and the initial full rank matrix result in a
different feedback configuration.

In Step 3a, the coefficients of the polynomial f (x) can
be calculated by solving the linear equation y × Kt =
(0, 0, . . . , 1) ∈ Fm+i−12 for y, where Ki is given by

Ki =


Y [`, :]

Y [`, :]Am+i−1
...

Y [`, :]Am+i−2m+i−1


In other words f (x) = y(1) + y(2)x + · · · + y(m + i −

1)xm+i−2, where y(j) is the j-th entry of the vector y. Note
that in every iteration of Step 3 in Algorithm 1, m − 1
random numbers are appended to the rows of the matrix Y .

Algorithm 1ConfigurationMatrix Generation Algorithm

1: Initialize Y with a full rank matrix in Fm×m2 .
2: Choosemb−m−1 primitive polynomials pm(x), pm+1(x)
, . . . , pmb−1(x) having degrees m.m + 1, . . . ,mb − 1
respectively. (Note that the polynomial pmb(x) is given).
Let Am,Am+1, . . . ,Amb be the companion matrices of
pm(x), pm+1(x), . . . , pmb(x) respectively.

3: for i = 1 to mb− m do
4: Let ` be the unique integer less or equal to m which is

equivalent to imodm. Find a polynomial f (x) such that
Y [` mod m, :]×Am+i−1 = (0, 0, . . . , 1) ∈ Fm+i−12 and
update Y as follows

Y ← Y ∗ Am+i−1

5: if t 6= ` mod m then
Y [t, :] ← (Y [t, :], dt) where dt is randomly sam-
pled element of F2.(In this step all the rows of Y ,
except the one which is equivalent to i mod m, are
appended with random boolean numbers and their
lengths are increased by 1.)

6: end if
7: if t == ` then
8: Y [t, :]← (0, 0, . . . , 1) ∈ Fm+i2
9: end if

10: end for(At the end of each iteration, an extra column is
added to Y till Y ∈ Fm×mb2).

11: Construct the following matrix Q.

Q←



Y [0 :,]
Y [1 :,]
...

Y [m− 1 :,]
Y [0 :,]× Pmb
Y [1 :,]× Pmb

...

Y [m− 1 :,]× Pmb
...

Y [0 :,]× (Pmb)b−1

Y [1 :,]× (Pmb)b−1

...

Y [m− 1 :,]× (Pmb)b−1



∈ Fmb×mb2

12: C ← Q× Pmb × Q−1

13: return C as Configuration Matrix of pmb(x).

In the proposed scheme, some of these numbers are derived
from the secret key. As a consequence, the derived feedback
configuration is dependent on the secret key.We now proceed
to look at this configuration in detail.
Example 1: For a better understanding, we demonstrate

the generation of an invertable matrix Q for a σ−LFSR
with 2 4-input 4-output delay blocks, i.e. m = 4, b = 2.
The characteristic polynomial of the LFSR is assumed to be

44842 VOLUME 10, 2022

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

FIGURE 2. The Schematic of σ -KDFC.

x8 + x4 + x3 + x2 + 1 which is a primitive polynomial of
degree 8.
Ist Iteration: In this iteration thematrixM is the companion

matrix of the primitive polynomial x4 + x + 1.
1 1 0 1
0 1 0 0
1 0 1 1
0 0 0 1


4×4

xM i

−−→


0 0 0 1
1 1 1 1
1 0 0 1
1 0 1 1

 7→


0 0 0 0 1
1 1 1 1 1
1 0 0 1 1
1 0 1 1 0


4×5

2nd Iteration: In this iteration the matrixM is the compan-
ion matrix of the primitive polynomial x5 + x2 + 1.

0 0 0 0 1
1 1 1 1 1
1 0 0 1 1
1 0 1 1 0


4×5

xM i

−−→


0 0 0 1 1 1
0 0 0 0 0 1
1 0 1 0 0 1
1 1 0 1 0 0


4×6

3rd Iteration: In this iteration the matrixM is the compan-
ion matrix of the primitive polynomial x6 + x + 1.

0 0 0 1 1 1
0 0 0 0 0 1
1 0 1 0 0 1
1 1 0 1 0 0

 xM i

−−→


1 0 0 0 1 0 1
0 0 1 1 0 1 0
0 0 0 0 0 0 1
0 0 0 1 1 0 1


4th Iteration: In this iteration the matrixM is the compan-

ion matrix of the primitive polynomial x7 + x + 1.
1 0 0 0 1 0 1
0 0 1 1 0 1 0
0 0 0 0 0 0 1
0 0 0 1 1 0 1

 xM i

−−→


0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1
1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1


(In the above iterations, the colour red indicates that the

number has been randomly sampled). At the end of the above
iterations we get the following matrix Y

Y =


0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1
1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1


4×4

The corresponding matrix Q is as follows.

Q =



0 0 1 0 0 1 1 1
0 0 0 0 0 1 0 1
1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 1
0 0 0 0 1 0 1 0
0 0 1 1 1 0 1 1
0 0 0 0 0 0 1 0


8×8

The following matrix P is the companion matrix of the
primitive polynomial x8 + x4 + x3 + x2 + 1.

P =



0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


8×8

This results in the following matrix C

C = Q ∗ P ∗ Q−1 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 1 0
1 0 0 1
0 0 0 1
0 1 0 1

0 0 0 1
0 1 1 1
1 0 1 1
0 0 0 0


8×8

C =
(
0 I
B0 B1

)
In the above example, B0 and B1 are the two gain matrices

that we have computed using Algorithm 1.
In order to create a keystream generator from the proposed

σ -LFSR configuration, it can be connected to a Finite state
machine which introduces non-linearity. Figure 2 shows the
schematic of the proposed scheme along with its intercon-
nection with an FSM. The scheme has an initialization phase
wherein the feedback configuration of the σ -LFSR is calcu-
lated by running Algorithm 1. In order to reduce the time
taken for initialization, Algorithm 1 is run offline (at some
server) till k iterations of step 3 and the resulting matrix
Y is made public. The number k can be chosen depending
on the computational capacity of the machine that hosts the
σ -LFSR. The feedback configuration is calculated by running
the remaining part of the algorithm in the initialization phase.
In this phase there is no keystream generated at the output.
The following subsection explains the initialization phase in
detail.

A. THE INITIALIZATION PHASE
During the initialization phase, the σ -LFSR has a publicly
known feedback configuration. Further, the pre-calculated

VOLUME 10, 2022 44843

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

matrix Y ∈ Fm×(m+k)2 , and the primitive polynomials
pm+k+1(x), pm+k+2(x), . . . , pmb(x) are also publicly known.
The initial state of the σ -LFSR is derived from the secret
key and the IV. (as is normally done in word based stream
ciphers like SNOW). The σ -LFSR is run along with the FSM
for mb − m − k clock cycles. This generates mb − m − k
vectors in Fm2 . This corresponds to the mb−m− k remaining
iterations of Step 3 in Algorithm 1.

The remaining part of Algorithm 1 is now run. In each
iteration of Step 3, the boolean numbers appended to the
rows of the matrix Y in Step 3(b) are the entries of the
corresponding vector. More precisely, in the i-th iteration of
Step 3 that is run on the keystream generator, for t 6= i + k
mod m, the t-th row of Y is appended with the t-th entry of
the i-th vector that was generated.

The feedback gains of the σ -LFSR are now set according
to the configuration matrix that is generated by Algorithm 1.

Once the feedback gains are set the σ -LFSR is run along
with the FSM. The first b vectors are discarded and the
keystream starts from the b + 1-th vector. The reason for
doing this is that the initial state of the σ -LFSR with the new
configuration is generated by the publicly known feedback
configuration which is used in the initialization process.

The algorithm for generating the configuration matrix can
be applied for all values of m and b. Therefore, the above
described KDFC scheme can be used along with any existing
word based stream cipher irrespective of the size and number
of delay blocks.

1) TIME COMPLEXITY OF THE INITIALIZATION PHASE
Step 3(a) in Algorithm 1 involves solving a system of linear
equations in less than mb variables. This can be done with
a time complexity of O((mb)3) using Gaussian elimination.
The time complexity of Step 3(b) is linear in m while that of
Step 3(c) is constant. Further, Step 3 hasmb−m−k iterations.
Therefore, if k is chosen such that mb− m− k is O(1), then
the overall time complexity of Step 3 is O((mb)3). In Step 5,
the matrixC can be calculated by solving the linear system of
equations CQ = QPmb for C . This can be done in O((mb)4)
using Gaussian elimination. Step 4 has a time complexity
of O((mb)3). Thus, the time complexity of the initialization
phase is O((mb)4).

IV. ALGEBRAIC ANALYSIS OF σ -KDFC
The entries of the feedback matrices, B0,B1, . . . ,Bb−1, cal-
culated by the procedure given in the previous section are
functions of the matrix Y generated in Step 3 of Algorithm 1.
The entries of Y are in turn non-linear functions of the initial
state of the σ -LFSR.
Note that the last row of Y is always en1. Let the first m− 1

rows of Y be v1, v2, . . . , vm−1. Let U be the set of variables
that denote the entries in these rows. Therefore,

Bk (i, j)= fk(i,j)(U) for 0 ≤ k ≤ b− 1 and 1 ≤ i, j ≤ m (6)

where fk(i,j)s are polynomial functions.

The algebraic degree of the configuration matrix, denoted
by 2, is defined as follows

2(CS) = max
k,i,j

(
|fk(i,j)(U)|

)
(7)

2 can be considered as a measure of the algebraic resis-
tance of σ -KDFC. We now proceed to find a lower bound
for 2.
The matrix Q generated in Step 4 of Algorithm 1 is given

as follows

Q =



v1
v2
...

vm−1
en1

v1Pmb
...

vm−1Pmb
en1Pmb
...

v1P
b−1
mb
...

vm−1P
b−1
mb

e1P
b−1
mb



(8)

where Pmb is the companion matrix of the publicly known
primitive characteristic polynomial of the σ -LFSR. The con-
figuration matrix C is generated by the formula C = Q ×
Pmb × Q−1. Since Q is an invertable boolean matrix, the
determinant of Q is always 1. Therefore, Q−1 = Q(a) where
Q(a) is the adjugate of Q. Moreover, since the elements of Q
belong to F2, the co-factors are equal to the minors of Q. The
rows of Q can be permuted to get the following matrix QP

QP =



en1
en1Pmb
...

e1P
b−1
mb
v1

v1Pmb
...

v1P
b−1
mb
...

vm−1
vm−1Pmb

...

vm−1P
b−1
mb



(9)

ThematrixQP can be decomposed as follows into four sub-
matrices Q1,Q2,Q3 and Q4:

QP =
[
Q1 Q2
Q3 Q4

]
(10)

44844 VOLUME 10, 2022

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

where Q1 ∈ Fb×(mb−b)2 is the all zero matrix and the matrices
Q2 ∈ Fb×b2 ,Q3 ∈ Fmb−b×mb−b2 and Q4 ∈ Fmb−b×b2 are as
follows

Q2 =


0 · · · 0 1
0 · · · 1 ∗
...
...

1 · · · ∗ ∗

 (11)

Q3 =



v1,1 v1,2 · · · v1,mb−b
v1,2 v1,3 · · · v1,mb−b+1
...

... · · ·

v1,b v1,b+1 · · · v1,mb
v2,1 v2,2 · · · v2,mb−b
v2,2 v2,3 · · · v2,mb−b+1
...

... · · ·
...

v2,b v2,b+1 · · · v2,mb
...

... · · ·
...

vm−1,1 vm−1,2 · · · vm−1,mb−b
vm−1,2 vm−1,3 · · · vm−1,mb−b+1
...

... · · ·
...

vm−1,b vm−1,b+1 · · · vm−1,mb



(12)

Q4 =



v1,mb−b+1 · · · v1,mb−1 v1,mb
v1,mb−b+2 · · · v1,mb ∗

...
... · · ·

...

v1,mb+1 · · · ∗ ∗

v2,mb−b+1 · · · v2,mb−1 v2,mb
v2,mb−b+2 · · · v2,mb ∗

...
... · · ·

...

v2,mb+1 · · · ∗ ∗

...
... · · ·

...

vm−1,mb−b+1 · · · vm−1,mb−1 vm−1,mb
vm−1,mb−b+2 · · · vm−1,mb ∗

...
... · · ·

...

v1,mb+1 · · · ∗ ∗



(13)

where ∗s are linear combinations of the entries of the previous
row. Note that Q−1 can be got by permuting the rows of Q−1P .
Since QP is invertible, det(QP) = det(Q3) = 1.
Let 0k be the set of polynomial functions of U variables

with degree k . We now proceed to analyse some of the minors
of QP.
Lemma 1: For 1 ≤ j ≤ (mb− b), µ(QP[b, j])) ∈ 0mb−b
Proof: For two matrices A and B with the same number

of rows, let [AB]p,q be the matrix which is got by removing
the pth column from A and appending the qth column of B to
A. For i = b and 1 ≤ j ≤ (mb− b), µ(QP[i, j])) is given by:

µ(QP[i, j]) = det([Q3Q4]j,1) (14)

Recall that, for a binary matrixM ∈ Fmb×mb2 , its determinant
is given by the following formula,

det(M) =
∑
f ∈Smb

∏
1≤i≤n

M (i, f (i)) (15)

where Smb is the set of permutations on (1, 2, . . . ,mb).
Observe that the diagonal elements of ([Q3Q4])j,1 are distinct
vi,ks. Their product corresponds to the identity permutation
in the determinant expansion formula for [Q3Q4])j,1. The
resultant monomial has degreemb−b. Further, this monomial
will not occur as a result of any other permutation. Hence
det([Q3Q4]j,1) is always a polynomial of degree mb− b. �
Lemma 2: If 1 ≤ i ≤ b then

µ(QP[i, j]) =

{
det(Q3) i+ j = mb+ 1
0 i+ j >= mb+ 1

(16)

Proof: Observe that, for 1 ≤ i ≤ b and i+ j = mb+ 1,
theQP[i, j]s are the anti-diagonal elements ofQ2. Clearly, the
minors of these elements are all equal to the determinant of
Q3. As we have already seen, the invertibility of QP implies
that this determinant is always 1. Therefore, µ(QP[i, j]) = 1
when i+ j = mb+ 1
Note that, for 1 ≤ i ≤ b and i+j > mb+1, theQP[i, j]s are

the elements of Q2 that are below the anti-diagonal. Observe
that, if the row and column corresponding to such an element
are removed fromQP, then the first b−1 rows of the resulting
matrix are always rank deficient. Therefore, the determinant
of this matrix is always 0. Therefore, µ(QP[i, j]) = 0. �
Lemma 3: If b + 1 ≤ i ≤ mb and 1 ≤ j ≤ n − b, then

µ(QP[i, j]) ∈ 0mb−b−1.
Proof: Observe that the elements of QP considered in

this lemma are elements of the sub-matrix Q3. Therefore,
µ(QP[i, j]), for the range of i and j considered, is nothing but
the determinant of the sub-matrix of Q3 got by deleting the
ith row and jth column of Q3. The diagonal elements of such
a sub-matrix are distinct vi,js. Their product will result in a
monomial of degree mb − b − 1. This corresponds to the
identity permutation in the determinant expansion formula
given by Equation 14. Observe that no other permutation
generates this monomial. Hence, the minor will always have
a monomial of degree mb − b − 1 . Therefore, µ(QP[i, j] ∈
0mb−b−1. �
Lemma 4: If b + 1 ≤ i ≤ n and mb − b + 1 ≤ j ≤ mb,

then µ(QP[i, j]) = 0.
Proof: The elements of QP considered in this lemma

are elements of the submatrix Q4. Whenever the row and
column corresponding to such an element is removed from
QP, the rows of the submatrixQ2 become linearly dependent.
Therefore, the first b rows of the resultant matrix are always
rank deficient. Consequently, µ(QP[i, j]) = 0.

�
For a given matrix A with polynomial entries, let 2(A) be

the maximum degree among all the entries of A. As there
are mb − b rows in QP with variable entries, 2(Q−1P) ≤
mb − b. Therefore, we get the following as a consequence
of Lemma 1.

2(Q−1) = 2(Q−1P) = mb− b (17)

Recall that the configuration matrix C is given by
QPmbQ−1. We now use the above developed machinery to
calculate 2(C).

VOLUME 10, 2022 44845

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

Theorem 1: 2(C) ≥ mb− b .
Proof: Observe that the gain matrices B0,B1 · · · ,Bb−1

appear in the last m rows of CS . These rows are generated by
multiplying the last m rows QPmb with Q−1. The last m rows
of QPmb are as follows

0 0 · · · 1 ∗ · · · ∗ ∗
v1,b+1 v1,b+2 · · · v1,mb ∗ · · · ∗ ∗
v2,b+1 v2,b+2 · · · v2,mb ∗ · · · ∗ ∗

...
... · · ·

...
... · · ·

...
...

vm−1,b+1 vm−1,b+2 · · · vm−1,mb ∗ · · · ∗ ∗

 (18)

The elementC[mb−m+1,mb−m+1] is got by multiply-
ing the (mb−m+1)-th row ofQPmb with the (mb− m+ 1)-th
column of Q−1. Note that the (mb − m + 1)-th column of
Q−1 is equal to the b-th column of Q−1P . As a consequence of
Lemmas 1 and 2, this column has the following form.

Q−1[:,mb− m+ 1] = (P1,P2, · · · ,Pmb−b, 1, 0, · · · , 0)T

(19)

where P1,P2, · · · ,Pmb−b ∈ 0(mb− b). Therefore,

C[mb− b+ 1,mb− b+ 1]

= (0, 0, · · · , 1︸ ︷︷ ︸
(mb−b) entries

, ∗, · · · , ∗, ∗)

×(P1,P2, . . . ,Pmb−b, 1, 0, · · · , 0)T

= Pmb−b

Hence, it is proved that 2(C) ≥ mb− b. �
Example 2: Consider a primitive σ−LFSRwith 4, 2-input

2-output delay blocks i.e. m = 2 and b = 4. Therefore n =
mb = 8. The primitive polynomial for the companion matrix
Pz is f (x) = x8+x4+x3+x2+1. The corresponding matrix
QP has the following submatrices.

Q1=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (20)

Q2=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (21)

Q3=


x1 x2 x3 x4
x2 x3 x4 x5
x3 x4 x5 x6
x4 x5 x6 x7

 (22)

Q4=


x5 x6 x7 x8
x6 x7 x8 x1+x3+x4+x5
x7 x8 x1+x3+x4+x5 x2+x4+x5+x6
x8 x1+x3+x4+x5 x2+x4+x5+x6 x3+x5+x6+x7


(23)

Therefore,

Q−1P [:, 4] = [Q−1[:, 7] = (P1,P2,P3,P4, 1, 0, 0, 0)

FIGURE 3. The block diagram of SNOW 2.0.

where
P1 : x2x4x6x8+ x2x4x7+ x2x5x8+ x2x6+ x3x6x8+ x3x7+

x4x5x6 + x4x6 + x4x8 + x5.
P2 : x1x4x6x8 + x1x4x7 + x1x5x8 + x1x6 + x2x3x6x8 +

x2x3x7 + x2x4x5x8 + x2x4x6x7 + x2x5x6 + x2x5x7 +
x3x4x8 + x3x5x6 + x3x5x8 + x3x6x7 + x4x5 + x4x7

P3 : x1x3x6x8+ x1x3x7+ x1x4x5x8+ x1x4x6x7+ x1x5x6+
x1x5x7+ x2x3x5x8+ x2x3x6x7+ x2x4x5x7+ x2x4x6+
x2x4x8+ x2x5x6+ x2x6x8+ x2x7+ x3x4x7+ x3x4x8+
x3x5x7 + x3x5 + x4x5 + x4x6

P4 : x1x3x5x8+ x1x3x6x7+ x1x4x5x7+ x1x4x6+ x1x4x8+
x1x5x6+x2x3x5x7+x2x3x6+x2x4x7+x2x5x8+x2x5+
x2x6x7 + x3x4x6 + x3x4x7 + x3x8 + x4x5

Here, CS [7, 7], is equal to P4 which is a polynomial of
degree 4.

V. CASE STUDY: INTEGRATION WITH SNOW 2.0
In this subsection, we first introduce SNOW 2.0, and then use
it as a case study to show how σ -KDFC can be applied to an
LFSR-based cipher stream. We refer to the resulting cipher
as KDFC-SNOW.

A. SNOW 2.0
The SNOW series of word based stream ciphers was first
introduced in [7]. This version of SNOW is known as SNOW
1.0. This was shown to be vulnerable to a linear distinguishing
attack as well as a guess and determine attack [29].
SNOW 2.0 (Adopted by ISO/IEC standard IS 18033-4)

was introduced later in [8] as a modified version of SNOW
1.0. This version was shown to be vulnerable to algebraic and
other attacks [17], [19], [28]–[31]. We consider SNOW 2.0
as a test case and demonstrate how replacing the LFSR in

FIGURE 4. The block diagram KDFC-SNOW.

44846 VOLUME 10, 2022

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

this scheme with a σ -LFSR increases its resistance to various
attacks.

The block diagram of SNOW 2.0 is shown in figure 3.
In figure 3, + and � represent bit wise XOR (addition in

the fieldGF(2)) and integer additionmodulo 232 respectively.
As shown in figure 3, the keystream generator in SNOW 2.0
consists of an LFSR and an FSM (Feedback State Machine).
The LFSR implements the following linear recurring relation:

xn+16 = α−1xn+11 + xn+2 + αx0.

where, α is the root of the following primitive polynomial

GS (x) = (x4 + β23x3 + β245x2 + β48x + β239) ∈ F28 [X]

where β is the root of the following primitive polynomial.

HS (x) = x8 + x7 + x5 + x3 + 1 ∈ F2[X]

The FSM contains two 32-bit registers R1 and R2. These
registers are connected by means of an S-Box which is made
using four AES S-boxes. This S-box serves as the source of
nonlinearity.

B. KDFC-SNOW
In the proposed modification, we replace the LFSR part of
SNOW 2.0 by a σ -LFSR having 16, 32-input 32-output delay
blocks. The configuration matrix of the σ -LFSR is generated
using Algorithm 1. We shall refer to the modified scheme,
shown in Figure 4, as KDFC-SNOW.

During initialization the feedback function of the σ -LFSR
is identical to that of SNOW-2. As in SNOW2.0, the σ -LFSR
is initialized using a 128-bit IV and a 128/256-bit secret key
K . KDFC-SNOW is run with this configuration for 32 clock
cycles without producing any symbols at the output. The
vectors generated in the last 12 of these clock cycles are used
in Algorithms 1 to generate a new feedback configuration.
As we have already mentioned, some of the iterations of
Algorithm 1 are pre-calculated and the remaining ones are
done as a part of the initialization process. In this case, it is
assumed that 468 of these iterations are pre-calculated and the
last 12 iterations are carried out in the initialization process.
This calculated configuration replaces the original one and
the resulting set-up is used to generate the keystream.

C. INITIALIZATION OF KDFC-SNOW
• The delay blocks D0, · · · ,D15 are initialized using the
128/256 bit secret key K and a 128 bit IV in exactly the
same manner as SNOW 2.0. The registers R1 and R2 are
set to zero.

• The initial feedback configuration of the σ -LFSR is
identical to SNOW 2.0. This is done by setting B11 and
B0 as matrices that represent multiplication by α−1 and
α respectively. Further, B2 is set to identity. The other
gain matrices are set to zero.

• KDFC-SNOW is run in this configuration for 32 clock
cycles without making the output externally available.
The last 12 values of F t are used as the random numbers
in Algorithm 1.

• A new configuration matrix is calculated using
Algorithms 1 and the corresponding feedback config-
uration replaces the original one. The scheme is now
run with this configuration. The first 32 vectors are
discarded and the key stream starts from the 33rd vector.

D. GOVERNING EQUATIONS OF KDFC-SNOW
Let Dti ∈ F232 denote the value stored in the ith delay block
at the t-th time instant after the key stream generation has
started. The outputs of the delay blocks of the σ -LFSR are
related as per the following equation:

Dt+115 = B0Dt0 + B1D
t
1 + · · · + B15D

t
15 (24)

Therefore,

Dt+1k =


D0
k+t+1 0 ≤ k + t + 1 ≤ 15

15∑
i=0

BiD
t+k
i k + t + 1 > 15

(25)

The value of the keystream at the t-th time instant is given
by the following equation Let Ft be the output of the FSM at
time t ,

Ft = zt + Dt0 = (Dt15 � Rt1)+ R
t
2 (26)

The registers are updated as follows:

Rt+11 = Dt5 � Rt2 (27)

Rt+12 = S(Rt1) (28)

zt = Rt1 � Dt15 + R
t
2 + D

t
0

= (Rt−12 � Dt4)� Dt15 + R
t
2+D

t
0 (29)

where Rt1 and R
t
2 represent the values of registers R1 and R2

at time instant t . The operation ‘‘�’’ is defined as follows:

x � y = (x + y) mod 232 (30)

The challenge for an adversary in this scheme is to find the
gain matrices {B0,B1, · · · ,B15} in addition to the initial state
{D0

0, · · · ,D
0
15}.

Note that Equations 26 to 29 are got from the FSM. Since
the FSM part of the keystream generator is identical for
SNOW 2.0 and KDFC-SNOW these equations are identical
for both schemes.

E. SECURITY ENHANCEMENT DUE TO KDFC-SNOW
The primary objective of the proposed scheme is to resist
Algebraic Attack. In these section, we describe how this
happens. Further, for completeness, we briefly describe the
performance of KDFC-SNOW against other attacks such as
DistinguishingAttack, Fast CorrelationAttack andGuess and
Determining Attack.

1) ALGEBRAIC ATTACK:
We first briefly the Algebraic attack on SNOW 2 described
in [17] and demonstrate why this attack becomes difficult
with KDFC-SNOW. This attack first attempts to break a

VOLUME 10, 2022 44847

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

modified version of the scheme where the � operator is
approximated by ⊕. The state of LFSR and the value of
the registers at the end of the 32 initialization cycles are
considered unknown variables. This accounts for a total of
512 + 32 = 544 unknown variables. The algebraic degree
of each of the S-box(S) equations (156 linearly independent
quadratic equations in each clock cycle) is 2. Rearranging
the terms in Equation 29, we get the following

Rt2 = (Rt−12 � Dt4)� Dt15 + D
t
0 + z

t . (31)

Note that R01 = R02+ z
0
+D0

0+D
0
15.Therefore, by approx-

imating � as ⊕, Equation 31 expands to the following:

Rt2 = R02 +
t∑
i=0

zi +
t∑
i=0

(Di4 + D
i
15 + D

i
0) (32)

Further, Equation 28 can be expanded as follows:

Rt+12 = S(Rt1) = S(Rt2 + z
t
+ Dt15 + D

t
0) (33)

In Equation 33, the outputs of the delay blocks can be related
to the initial state of the LFSR using the following equation.

Dt+1k =

{
D0
k+t+1 0 ≤ k + t + 1 ≤ 15

α−1Dk+t11 + D
k+t
2 + αDk+t0 k + t + 1 > 15

(34)

Because of the nature of the S-Box, Equation 33 gives rise
to 156 quadratic equations per time instant ([17]).When these
equations are linearized, the number of variables increases to∑2

i=0
(544
i

)
≈ 217. Therefore with 217/156 ≈ 951 samples,

we get a system of equations, which can be solved in O(251)
time, to obtain the initial state of the LFSR and the registers.
This attack is then modified to consider the � operator. This
attack has a time complexity of approximately O(2294).
When the LFSR in SNOW 2.0 is replaced by a σ -LFSR,

the feedback equation is no longer known. If the entries of
the feedback gain matrices are considered as unknowns, then
there are a total of 16 ∗ m2

+ mb + m = 16928 unknown
variables (This includes the 16 ∗ m2 entries of the feedback
matrices and mb + m entries corresponding to the state of
the LFSR and the register R2 at the beginning of the key
stream). The output of the delay blocks at any given instant
are functions of these variables. Here, Equation 34 is replaced
by Equation 25. Now, if the outputs of the delay blocks in
Equation 33 are linked to the initial state of the LFSR (i.e.
the state when the key stream begins) using Equation 25
instead of Equation 34, then the resulting equations contain
the feedback matrices and their products. For example, in the
expressions for R22 and R

3
2, D

1
15 and D

2
15 are given as follows

D1
15 = B0D0

0 + B1D
0
1 + . . .+ B15D

0
15

D2
15 = B0D1

0 + B1D
1
1 + . . .+ B15D

1
15

= B0D0
1 + B1D

0
2 + . . .

+B15(B0D0
0 + B1D

0
1 + . . .+ B15D

0
15)

= B15B0D0
0 + (B15B1 + B0)D0

1 + . . .

+(B15B15 + B14)D0
15

Observe that, while D1
15 is a polynomial of degree two in

the unknown variables, D2
15 is a polynomial of degree 3.

Similarly, with each successive iteration the degree of the
expression forDt15 keeps increasing, till all them

2b entries of
the feedback matrices are multiplied with each other. A simi-
lar thing happens with the expressions for Dt0. This results in
a set of polynomial equations having maximum degree equal
to m2b + 1 = 16385 . Therefore, although the equations
generated by Equation 33 are quadratic in terms of the initial
state of the σ -LFSR, they are no longer quadratic in the set of
all unknowns.We instead have a system of equations in 16982
variables with a maximum degree of degree of over 16000.
Linearizing such a system will give us a system of linear
equations in N =

∑M
i=0

(16928
i

)
unknowns whereM is higher

than 16000. Such an attack is therefore not feasible.
One could instead consider the rows of the matrix Y gener-

ated byAlgorithm 1 as unknowns. Assuming that the first row
is en1, the total number of unknowns will now be 31 ∗ 512 =
15872. As we have already seen, the entries of the feedback
matrices (Bis) are polynomials in these variables. From The-
orem 1, the maximum degree of these polynomials is atleast
mb − b. Therefore, the maximum degree of the equations
generated by Equation 33 will be atleast mb− b+ 1 = 497.
Therefore, linearizing this system of equations gives rise to a
system of linear equations in N =

∑497
i=0

(16416
i

)
≈ O(23207)

unknowns. Therefore, an algebraic attack on this scheme that
uses linearization seems unfeasible.

Another approach to the algebraic cryptoanalysis of
SNOW2 is found in [32]. Therein, linear equations are gener-
ated by assuming a set of values for the entries of the registers
of the FSM. Two methods of cryptoanalysis are presented in
this paper. In the first method, the attacker guesses the values
of ten consecutive entries of the register R1. The guessed
value of Rt1 uniquely determines the value of = Rt+12 (by
Equation 28). Given values of Rt1 and R

t
2, Equation 26 gives

rise to two linear equations and thirty quadratic equations.
These equations can be generated for nine time instances.
Further, given values of Rt+11 and Rt2, the value of D

t
5 can be

uniquely determined. One can thus determine 8 consecutive
values of Dt5. These along with the linear and quadratic
equations results in an over-determined system of equations.
These, when solved, gives us an estimate of the current state.
Since the relation between the current state and the initial
state is linear, one can get an estimate of the initial state
from the estimate of the current state. The correctness of the
guesses can be verified by using the estimated initial state
and the system equations of SNOW 2.0 to regenerate the key
stream and check if it matches with the actual one.

In the second method, the attacker assumes the following
nine consecutive entries of the register R1

Rt1 = 0, Rt+11 = 232 − 1, Rt+21 = 0, · · · ,Rt+81 = 0

(35)

Now, there are 7 consecutive time instances,k , where the
values of Rk+11 and Rk2 are simultaneously known. Hence,

44848 VOLUME 10, 2022

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

at each of these time instances, Equation 27 gives rise
to 32 linear equations over GF(2). This accounts for a total
of 224 equations. Further, there are 7 consecutive values
of k wherein the value of Rk1 is 0 and the value of Rk2 is
known. Therefore, Equation 26 gives us 32 linear equations
over GF(2) at each of these time instances. This accounts for
another 224 linear equations. If the assumption made in this
attack holds true, at the t+1-th time instance the value in the
register R1 is zero while the value in the regiester R2 is given
as follows.

Rt+12 = Dt+15 + 1111 · · · 1 (36)

When these values are substituted in Equation 26, we get
another 32 linear equations. Recall that, at the t + 2-th time
instance, the value in the register R1 is 1111 · · · 1. As a
consequence of Theorem 2 in [32], this results in Equation 26
generating 32 linear equations which are satisfied with prob-
ability half. This probability becomes 1 when D2

0+ z
2
+ S(0)

is zero. We thus have a total of 512 linear equations. When
these equations are linearly independent, solving them gives
us the state of the LFSR. The correctness of the assumptions
is verified by checking if the sequence generated from this
state matches with the actual keystream.

In both these attacks, in order to verify the correctness
of the assumptions, one has to generate the sequence with
the calculated state of the LFSR and check if it matches the
actual keystream. To do this, the feedback equation of the
LFSR is needed. Since this is not available in KDFC-SNOW,
this verification cannot be done. As a result, KDFC-SNOW
is immune to these attacks. For a similar attack to work on
KDFC-SNOW, the assumptions should enable the attacker to
calculate 512 output words of the LFSR (as against the 32
output words that are calculated in these attacks). This would
mean more assumptions. Consequently, the probability of
these assumptions being true will be significanlty lower. This
will result in a much higher time complexity for the attack.

2) DISTINGUISHING ATTACK:
In the distinguishing attack, the attacker aims to distinguish
the generated keystream from a random sequence. Distin-
guishing attacks on SNOW 2.0 have been launched using the
linear masking method [18]–[20]. This method essentially
adapts the linear cryptanalysis method given in [33] to stream
ciphers. In this method, the algorithm of the key stream
generator is assumed to consist of two parts, a linear one
and a non-linear one. In the case of SNOW 2.0, the linear
part is the LFSR and the non-linear part is the FSM. The
linear part satisfies a linear recurring relation of the form
f (xn, xn+1, xn+2, . . . , xn+k) = 0 for all n.We then try to find a
linear relation, called the masking relation, that the non-linear
part approximately satisfies. This relation is of the following
form:

`1∑
i=0

0ixn+i =
`2∑
i=0

3izn+i (37)

where z0, z1, . . . is the output sequence of the key stream
generator. The 0is and 3s are linear masks that map the
corresponding xn+is and zn+is to F2 respectively. The error in
the masking relation can be seen as a random variable. If p is
the probability that the non linear part satisfies Equation 37,
then p − 1

2 is called the bias of the masking relation. The
Masking relation along with the linear recurring relation is
used to generate a relation in terms of the elements of the
output sequence. The error in this relation can also be seen as
a random variable. If the probability of the sequence satisfy-
ing this relation is pf , then pf − 1

2 is the bias of this relation.
This bias can be related to the bias of the masking relation
using the piling up lemma in [33]. The main task in this type
of attack is to find masks 0is and 0′is which maximise the
bias of the masking relation. The following linear masking
equation is used in [18] and [19] for the FSM of SNOW 2.

00xn + 01xn+1 + 05xn+5 + 015xn+15 + 016xn+16
= 30zn +31zn+1

In [18] it is assumed that all the 0is and3is are equal to each
other. In [19] it is assumed that 00, 015 and 30 are equal to
each other. 01, 05.016 and 31 are also assumed to be equal.
Since f (xn, xn+1, . . . , xn+k) is a linear relation, the following
relation can be written purely in terms of the zis

00f (xn, xn+1, . . . , xn+k)

+01f (xn+1, xn+2, . . . , xn+k+1
+05f (xn+5, xn+6, . . . , xn+k+5)

+015f (xn+15, xn+16, . . . , xn+k+15)

+016f (xn+16, xn+17, . . . , xn+k+16) = 0

The linear relation between the elements of the output
sequence in both [18] and [19] is obtained using this method.
Further, if there are ` non-zero coefficients in f , then the
random variable corresponding to the error in this relation is
a sum of ` random variables each corresponding to the error
in the linear masking equation.

In the proposed σ -LFSR configuration, the feedback equa-
tion is not known. Therefore the only known linear recurring
relation that the output of the σ -LFSR satisfies is the one
defined by its characteristic polynomial. If the characteris-
tic polynomial is assumed to be the same as that of the
LFSR in SNOW 2, then the corresponding linear recurring
relation has 250 non-zero coefficients. Further, since these
coefficients are elements of F2, the non-zero coefficients are
all equal to 1. Therefore, as a consequence of the piling up
lemma, if the bias of the masking equation is ε, then the bias
of the relation between the elements of the key stream is given
as follows

εfinal = 2249 × ε250 (38)

The number of elements of the key stream needed to distin-
guish it from a random sequence is 1

ε2final
. Therefore, for an

identical linearmasking equation, the length of the key stream
for the distinguishing attack is much higher for the proposed

VOLUME 10, 2022 44849

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

configuration as compared to SNOW 2. This is demonstrated
in the following table.

3) FAST CORRELATION ATTACK
The Fast Correlation Attack is a commonly used technique
for the cryptanalysis of LFSR based stream ciphers. This
method was first introduced for bitwise keystreams in ([34]).
Here, the attacker views windows of the key stream as noisy
linear encodings of the initial state of the LFSR. She then
tries to recover the initial state by decoding this window.
Further, linear combinations of elements in this window can
be seen as encodings of subsets of the initial state. This results
in smaller codes which are more efficient to decode [35].
The linear recurring relation satisfied by the output of the
LFSR is used to generate the parity check matrix for this
code. A Fast correlation attack for word based stream ciphers
was first described in [36]. An improvement on this attack
is given in [20]. Both these schemes consider a linear recur-
ring relation with coefficients in F2. For SNOW 2.0, this
relation has order 512. This is equivalent to considering
each component sequence to be generated by a conventional
bitwise LFSR having the same characteristic polynomial as
the LFSR in SNOW 2.0. The time complexity of the attack
given in [20] is 2212.38. The scheme in [21] considers the
LFSR in SNOW 2.0 to be over F28 . This results in a linear
recurring relation of order 64. Further, it utilizes the k− tree
Algorithm given in [37] to generate parity check equations.
This results in a significant improvement in the time com-
plexity of the attack. The time complexity of this attack is
2164.5 which is around 249 times better than that of the attack
given in [20]. However, in order to derive the linear recurring
relation over F28 , the knowledge of the feedback function is
critical. In KDFC SNOW, the characteristic polynomial of
the σ -LFSR is publicly known. The attacker can therefore
generate a linear recurring relation over F2 that the output of
the σ -LFSR satisfies. Therefore, the attack given in [20] will
also be effective against KDFC-SNOW. However, without
the knowledge of the feedback function, the attacker will not
be able to derive a linear recurring relation over F28 . Hence,
KDFC-SNOW is resistant against the attack given in [21].

[38] uses MILP(Mixed Integer Linear Programming) to
find a linear mask that gives better correlation. This results
in an attack with a time complexity of 2162.91 which is 21.59

times better than [21]. [39] further modifies this attack using
a small trick in k− tree algorithm. The time complexity
with this modification turns out to be 2162.86. These attacks
consider a feedback polynomial of degree 512 over F2.
Therefore, KDFC-SNOW does not provide any extra security
against these attacks.

4) GUESS AND DETERMINE ATTACK
In a Guess and Determine Attack, the attacker aims to esti-
mate the values of a minimum number of variables using
which the complete sequence can be constructed. For SNOW
2.0, this includes the values of the outputs of the delay blocks
of the LFSR and the outputs of the registers of the FSM

at some time instant. This is done by guessing some of the
values and determining the rest of them using system equa-
tions. If the sequence generated using these estimatesmatches
the output of the key-stream generator, then the guesses are
deemed to be correct. Otherwise, a fresh set of guesses are
considered. The set of variables whose values are guessed is
known as the basis for the attack. For both SNOW 2.0 and
KDFC-SNOW, these variables take their values from F32

2 .
Hence, if the size of the basis is k , then the probability of a
correct guess is 2−32k . Thus, on average, one needsO(2−32k)
attempts to make a correct guess. Therefore, the problem here
is to find a basis of the minimum possible size. A systematic
Vitterbi-like algorithm for doing this is given in [28].The
complexity of this attack was found to be 2265([28]) for
SNOW2.0. The complexity of this attack reduced to 2192

in ([31]) by incorporating a couple of auxiliary equations.
We now briefly describe the algorithm given in [28] in the
context of SNOW 2.0

TABLE 2. Comparison of Distinguishing Attack Result for SNOW 2.0 and
KDFC SNOW.

Consider the following equations which are satisfied by
SNOW 2.0

D16
t = α

−1D11
t + D

2
t + αD

0
t (39)

R1t = D4
t + S(R1t−2) (40)

zt = D0
t + (D15

t + R1t)+ S(R1t−1) (41)

These equations are used to generate the following tables
The entries in the above tables correspond to the variables
that are to be estimated. The entries in the first table, i.e.
0 to 34, correspond to 35 consecutive outputs of the LFSR.
The entries 35 to 55 correspond to 21 consecutive entries of
Register R1. Each row of the above tables correspond to the
values of the delay blocks and registers in Equations 39, 40
and 41 at a particular time instant.

We now consider a multi-stage graph with 56 nodes in each
stage corresponding to the 56 entries in the above tables. Each
node is connected to all the nodes in the next stage giving
rise to a trellis diagram. An entry is said to be eliminated by a
path if, knowing the values of the entries corresponding to the
nodes in the path, the value of that entry can be calculated.

We now recursively calculate an optimal path that elim-
inates all the entries. The desired basis corresponds to the
nodes in this path. In the i-th iteration of this algorithm,
we calculate the optimal path of length i to each node in the
i-th stage. In order to find the optimal path to the k-th node,
we consider all the incoming edges of node k . By appending
the node k to the optimal paths of length i − 1 ending at
the source nodes of these edges, we get 55 paths of length i.
We choose the edge corresponding to the path that eliminates

44850 VOLUME 10, 2022

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

the most number of variables. In case of a tie, we consider the
path that results in the most number of rows with 2 unknowns
and so on. This process is continued till we get a path that
eliminates all the entries. This algorithm results in a basis of
cardinality 8 for SNOW 2.0.

In KDFC-SNOW, the feedback equation of the σ -LFSR is
not known. The smallest known linear recurring relation that
the output of the σ -LFSR satisfies is the relation correspond-
ing to its characteristic polynomial. This relation is given as
follows

xn+512 = xn+510 + xn+504 + xn+502 + xn+501 + xn+494
+xn+493 + xn+490 + xn+486 + xn+485 + xn+483
+xn+481 + xn+480 + xn+478 + xn+477 + xn+471
+xn+470 + xn+469 + xn+466 + xn+462 + xn+461
+xn+459 + xn+458 + xn+452 + xn+449 + xn+446
+xn+445 + xn+444 + xn+441 + xn+438 + xn+437
+xn+434 + xn+433 + xn+432 + xn+431 + xn+429
+xn+427 + xn+424 + xn+423 + xn+420 + xn+419
+xn+414 + xn+412 + xn+411 + xn+409 + xn+405
+xn+402 + xn+400 + xn+399 + xn+398 + xn+396
+xn+395 + xn+393 + xn+392 + xn+390 + xn+388
+xn+387 + xn+385 + xn+375 + xn+374 + xn+372
+xn+371 + xn+366 + xn+365 + xn+363 + xn+362
+xn+359 + xn+357 + xn+356 + xn+355 + xn+354
+xn+353 + xn+352 + xn+351 + xn+350 + xn+347
+xn+345 + xn+344 + xn+343 + xn+341 + xn+339
+xn+338 + xn+337 + xn+336 + xn+333 + xn+330
+xn+329 + xn+326 + xn+324 + xn+322 + xn+319
+xn+310 + xn+307 + xn+306 + xn+305 + xn+304
+xn+303 + xn+301 + xn+299 + xn+298 + xn+297
+xn+296 + xn+295 + xn+294 + xn+293 + xn+292
+xn+291 + xn+289 + xn+286 + xn+285 + xn+283
+xn+282 + xn+281 + xn+278 + xn+276 + xn+274
+xn+271 + xn+269 + xn+264 + xn+262 + xn+259
+xn+258 + xn+257 + xn+255 + xn+253 + xn+251
+xn+249 + xn+248 + xn+243 + xn+240 + xn+239
+xn+238 + xn+236 + xn+235 + xn+233 + xn+232
+xn+230 + xn+229 + xn+228 + xn+227 + xn+226
+xn+222 + xn+217 + xn+216 + xn+215 + xn+214
+xn+213 + xn+210 + xn+208 + xn+206 + xn+203
+xn+201 + xn+199 + xn+193 + xn+190 + xn+184
+xn+179 + xn+178 + xn+177 + xn+175 + xn+174
+xn+173 + xn+172 + xn+171 + xn+169 + xn+165
+xn+164 + xn+163 + xn+158 + xn+156 + xn+155
+xn+153 + xn+152 + xn+151 + xn+149 + xn+147
+xn+146 + xn+143 + xn+141 + xn+138 + xn+136

TABLE 3. Index table for SNOW 2.0.

+xn+132 + xn+131 + xn+129 + xn+128 + xn+126
+xn+125 + xn+124 + xn+123 + xn+121 + xn+120
+xn+119 + xn+118 + xn+117 + xn+116 + xn+115
+xn+113 + xn+112 + xn+111 + xn+109 + xn+105
+xn+104 + xn+103 + xn+102 + xn+98 + xn+97
+xn+94 + xn+93 + xn+89 + xn+88 + xn+87
+xn+81 + xn+78 + xn+76 + xn+75 + xn+73
+xn+72 + xn+70 + xn+69 + xn+68 + xn+67
+xn+66 + xn+65 + xn+63 + xn+59 + xn+58
+xn+57 + xn+56 + xn+55 + xn+53 + xn+51
+xn+50 + xn+49 + xn+47 + xn+46 + xn+45
+xn+44 + xn+41 + xn+39 + xn+37 + xn+36
+xn+33 + xn+30 + xn+26 + xn+25 + xn+21
+xn+20 + xn+19 + xn+16 + xn+5 + x0

As in SNOW2.0, the following equations are also satisfied,

R1n = xn+4 + S(R1n−1)

zn = xn + (xn+15 + R1n)+ S(R1n−1)

The following tables can be constructed using these three
equations. We ran the Vitterbi-like algorithm with the above
tables on a cluster with 40 INTEL(R) XEON(R) CPUs
(E5-2630 2.2GHz). The program ran for 16 iterations and
generated the path {1041, 17, 15, 13, 28, 16, 11, 14, 9,
1050, 18, 39, 12, 7, 5, 0, 3}. This path has length 17. This
corresponds to a time complexity of O(2544).

5) CACHE TIMING ATTACK
It is a kind of side-channel analysis attack where the cache
memory is accessed by the adversary before or after the
generation of each keystream bit. In schemes like SNOW 2.0
(and other schemes in the SNOWseries), multiplication in the
finite field is performed using look up tables corresponding
to the non-zero constants in the feedback equation. Further,
another look up table is used for the implementation of the
S-BOX. These implementations are cache friendly. However,
the adversary can extract secret information about the LFSR
by monitoring the cache access. According to the attack
model of [40], [41], the adversary uses two synchronous
oracles:

1 KEYSTREAM(J) It returns the J−th keystream block.
2 SCA-KEYSTREAM(J) It returns the unordered list of

cache accesses which is done during the creation of the
J−th keystream.

VOLUME 10, 2022 44851

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

In SNOW 2.0 and SNOW 3G there are multiplications over
F232 that are done in every clock cycle viz. multiplication by
α and α−1. These multiplications are implemented as follows

α ∗ x = (x � 8)⊕ T1[x3] (42)

α−1 ∗ x = (x � 8)⊕ T2[x0] (43)

where x = (x3x2x1x0) ∈ F232 and T1,T2 are two 8 × 32
tables. Thus, from the list of cache accesses the adversary
can extract 8-bits of information viz. the first four bits of St
and the last four bits of St+11. The adversary then gathers all
linear equations formed from these bits for (512/8 = 64)
clock cycles. The state of the LFSR can then be found by
solving these linear equations.

In the proposed KDFC scheme, the feedback gains do not
correspond to known elements of the finite field. Instead,
the feedback gains are matrices which are dependent on the
key. Therefore, the feedback equation cannot be calculated by
using look up tables. As a result, the attacker cannot obtain
any information from the list of cache accesses.

F. RANDOMNESS TEST
In this subsection, we evaluate the randomness of the
keystream generated by KDFC-SNOW.

1) TEST METHODOLOGY
We have used the NIST randomness test suite to evaluate
the randomness of a keystream generated by KDFC-SNOW.
There are 16 randomness tests in the suite. Each test returns
a level of significance i.e. P − Value. If this value is above
0.01 for a given test, then the keystream is considered to be
random for that test.

KDFC-SNOWhas been implemented using SageMath 8.0.
The NIST randomness tests have been conducted on the
generated keystream using Python 3.6. The characterestic
polynomial of the σ -LFSR has been taken as

f (x) = x512 + x510 + x504 + x502 + x501 + x494 + x493

+x490 + x486 + x485 + x483 + x481 + x480 + x478

+x477 + x471 + x470 + x469 + x466 + x462 + x461

+x459 + x458 + x452 + x449 + x446 + x445 + x444

+x441 + x438 + x437 + x434 + x433 + x432 + x431

+x429 + x427 + x424 + x423 + x420 + x419

+x414 + x412 + x411 + x409 + x405 + x402 + x400

+x399 + x398 + x396 + x395 + x393 + x392 + x390

+x388 + x387 + x385 + x375 + x374 + x372 + x371

+x366 + x365 + x363 + x362 + x359 + x357 + x356

TABLE 4. Index table for f 1(x).

TABLE 5. Index table for Equation 31 and Equation 32.

+x355 + x354 + x353 + x352 + x351 + x350 + x347

+x345 + x344 + x343 + x341 + x339 + x338 + x337

+x336 + x333 + x330 + x329 + x326 + x324 + x322

+x319 + x310 + x307 + x306 + x305 + x304 + x303

+x301 + x299 + x298 + x297

+x296 + x295 + x294 + x293 + x292 + x291 + x289

+x286 + x285 + x283 + x282 + x281 + x278 + x276

+x274 + x271 + x269 + x264 + x262 + x259 + x258

+x257 + x255 + x253 + x251 + x249 + x248 + x243

+x240 + x239 + x238 + x236 + x235 + x233 + x232

+x230 + x229 + x228 + x227 + x226 + x222 + x217

+x216 + x215 + x214 + x213 + x210 + x208 + x206

+x203 + x201 + x199 + x193 + x190 + x184 + x179

+x178 + x177 + x175 + x174 + x173 + x172 + x171

+x169 + x165 + x164 + x163 + x158 + x156 + x155

+x153 + x152 + x151 + x149 + x147 + x146 + x143

+x141 + x138 + x136 + x132 + x131 + x129 + x128

+x126 + x125 + x124 + x123 + x121 + x120 + x119

+x118 + x117 + x116 + x115 + x113 + x112 + x111

+x109 + x105 + x104 + x103 + x102 + x98 + x97

+x94 + x93 + x89 + x88 + x87 + x81 + x78 + x76

+x75 + x73 + x72 + x70 + x69 + x68 + x67 + x66

+x65 + x63 + x59 + x58 + x57 + x56 + x55 + x53

+x51 + x50 + x49 + x47 + x46 + x45 + x44 + x41

+x39 + x37 + x36 + x33 + x30 + x26 + x25 + x21

+x20 + x19 + x16 + x5 + 1.

(This polynomial is the characteristic polynomial of the
LFSR in SNOW 2.0 when it is implemented as a σ -LFSR
i.e. when multiplication by α and α−1 are represented by
matrices).

The keystream has been generated using the following key
(K) and initialization vector (IV).

K = [681, 884, 35, 345, 203, 50, 912, 358]

IV = [645, 473, 798, 506]

2) TEST RESULTS
The results obtained from 16 NIST tests are shown in table 6.

These results are comparable to that of SNOW 2.0([42]).
Note that the feedback configuration of SNOW 2.0 is one of
the possible feedback configurations in the σ -KDFC scheme.

44852 VOLUME 10, 2022

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

TABLE 6. NIST Randomness Test.

G. CHALLENGES IN IMPLEMENTATION
The feedback function of a σ -LFSR can be implemented in
hardware by ANDing the bits at the output of the delay blocks
with the corresponding columns of the feedback matrices and
then EXORing their respective outputs. This can be imple-
mented by a fairly fast combinational circuit.

The main problem of KDFC lies in its software implemen-
tation. Since the feedback function is not fixed, look up tables
cannot be used in the implementation of the σ -LFSR. Further,
the choice of the feedback configurations is not restricted to
the set of efficiently implementable σ -LFSR configurations
as given in ([14]). This makes the implementation of KDFC
SNOW extremely challenging.

In our implementation, the state of the σ -LFSR is stored
as a set of 32 integers. The i-th integer corresponds to the i-th
output of the delay blocks. Calculating the feedback function
of the σ -LFSR involves calculating the bitwise XOR of a
subset of the columns of the feedback matrices (Bis). In order
to make the implementation more efficient, for all 1 ≤ i ≤
32, the i-th columns of the feedback matrices are stored in
adjacent memory locations. Thus, each integer in the state of
the σ -LFSR corresponds to a set of columns of the feedback
matrices which are stored in a contiguous block of memory.
The state vector is now sampled one integer at a time and the
columns of the Bis corresponding to the non zero bits in these
integers are XORed with each other. We then do a bit-wise
right shift on each of these integers and introduce the result of
the XOR operation bitwise as the most significant bits. In this
way, the σ -LFSR can be implemented using bitwise XORs
and shifts. The FSM is implemented as in SNOW2.0 [8]. This
implementation takes 25 cycles to generate a single word on
an Intel Probook 4440s machine with a 2.8 Ghz i5 processor.

Each iteration of Algorithm 1 involves solving a system
of linear equations. This process is time consuming and con-
tributes to increasing the initialization time. The initialization
process was implemented using a C code with open mp
(with 3 threads). In this implementation linear equations were
solved using a parallel implementation of the LU decompo-
sition algorithm.

VI. CONCLUSION
In this paper, we have described a method of using
σ -LFSRs with key-dependent feedback configurations in
stream ciphers that use word-based LFSRs. In this method,
an iterative configuration generation algorithm(CGA) uses
key-dependant random numbers to generate a random feed-
back configuration for the σ -LFSR. We have theoretically
analysed the algebraic degree of the resulting feedback con-
figuration As a test case, we have demonstrated how this
scheme can be used along with the Finite State Machine
of SNOW 2.0. We have analysed the security of the result-
ing key-stream generator against various attacks and have
demonstrated the improvement in security as compared to
SNOW 2.0. Further, the key streams generated by the pro-
posed method are comparable to SNOW 2.0 from a random-
ness point of view.

ACKNOWLEDGMENT
The authors are grateful to Prof. Harish K. Pillai, Depart-
ment of Electrical Engineering, Indian Institute of Technol-
ogy Bombay, for his valuable guidance and Associate Prof.
Gaurav Trivedi, Department of Electronics and Electrical
Engineering, Indian Institute of Technology Guwahati, for
helping them with computational resources.

REFERENCES
[1] D. Afdhila, S. M. Nasution, and F. Azmi, ‘‘Implementation of stream

cipher Salsa20 algorithm to secure voice on push to talk application,’’ in
Proc. IEEE Asia Pacific Conf. Wireless Mobile (APWiMob), Sep. 2016,
pp. 137–141.

[2] M. Pistono, R. Bellafqira, and G. Coatrieux, ‘‘Secure processing of stream
cipher encrypted data issued from IoT: Application to a connected knee
prosthesis,’’ in Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
(EMBC), Jul. 2019, pp. 6494–6497.

[3] S. A. Jassim and A. K. Farhan, ‘‘A survey on stream ciphers for constrained
environments,’’ in Proc. 1st Babylon Int. Conf. Inf. Technol. Sci. (BICITS),
Apr. 2021, pp. 228–233.

[4] A. K. Farhan, ‘‘Proposed hybrid approach of stream cipher base on selector
of encryption operation and key symmetric translate,’’ Eng. Tech., vol. 29,
no. 11, pp. 1–11, 2011.

[5] F. Kadhim and H. Mhaibes, ‘‘Quantum random bits generator based on
phase noise of laser,’’ J. Eng. Appl. Sci., vol. 13, no. 3, pp. 629–633, 2018.

[6] G. Rose and P. Hawkes. (1999). The T-Class of Sober Stream
Ciphers. Unpublished manuscript. [Online]. Available: http://www.home.
aone.net.au/qualcomm

[7] P. Ekdahl and T. Johansson, ‘‘Snow—A new stream cipher,’’ in Proc.
1st Open NESSIE Workshop, Leuven, Belgium: KU-Leuven, 2000,
pp. 167–168.

[8] P. Ekdahl and T. Johansson, ‘‘A new version of the stream cipher snow,’’ in
Proc. Int. Workshop Sel. Areas Cryptogr., St. John’s, NL, Canada: Springer,
Aug. 2002, pp. 47–61.

[9] G. G. Rose and P. Hawkes, ‘‘Turing: A fast stream cipher,’’ in Proc. Int.
Workshop Fast Softw. Encryption. Lund, Sweden: Springer, Feb. 2003,
pp. 290–306.

VOLUME 10, 2022 44853

S. Nandi et al.: KDFC Matrix of Primitive σ−LFSR and Resistance to Some Known Plaintext Attacks

[10] P. Kitsos, G. Selimis, and O. Koufopavlou, ‘‘High performance Asic
implementation of the snow 3G stream cipher,’’ in Proc. IFIP/IEEE VLSI-
SOC, Oct. 2008, pp. 13–15.

[11] C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, and T. Pornin,
‘‘SOSEMANUK, a fast software-oriented stream cipher,’’ in New Stream
Cipher Designs. Cham, Switzerland: Springer, 2008, pp. 98–118.

[12] F. Xiu-Tao, ‘‘ZUC algorithm: 3GPP LTE international encryption stan-
dard,’’ Inf. Secur. Commun. Privacy, vol. 19, no. 12, pp. 45–46, 2011.

[13] P. Ekdahl, T. Johansson, A. Maximov, and J. Yang, ‘‘A new SNOW stream
cipher called SNOW-V,’’ IACR Trans. Symmetric Cryptol., vol. 3, no. 3,
pp. 1–42, 2019.

[14] G. Zeng, W. Han, and K. He, ‘‘High efficiency feedback shift register:
Sigma-LFSR,’’ IACR Cryptol. ePrint Arch., vol. 2007, p. 114, Jan. 2007.

[15] S. Krishnaswamy and H. K. Pillai, ‘‘On the number of linear feedback shift
registers with a special structure,’’ IEEE Trans. Inf. Theory, vol. 58, no. 3,
pp. 1783–1790, Mar. 2012.

[16] S. Krishnaswamy and H. K. Pillai, ‘‘On multisequences and their exten-
sions,’’ 2012, arXiv:1208.4501.

[17] O. Billet and H. Gilbert, ‘‘Resistance of snow 2.0 against algebraic
attacks,’’ in Proc. Cryptographers’ Track RSA Conf., San Francisco, CA,
USA: Springer, Feb. 2005, pp. 19–28.

[18] D.Watanabe, A. Biryukov, and C. De Canniere, ‘‘A distinguishing attack of
snow 2.0 with linear masking method,’’ in Proc. Int. Workshop Sel. Areas
Cryptogr. Ottawa, ON, Canada: Springer, 2003, pp. 222–233.

[19] K. Nyberg and J. Wallén, ‘‘Improved linear distinguishers for snow 2.0,’’
in Proc. Int. Workshop Fast Softw. Encryption. Graz, Austria: Springer,
Mar. 2006, pp. 144–162.

[20] J.-K. Lee, D. H. Lee, and S. Park, ‘‘Cryptanalysis of SOSEMANUK and
snow 2.0 using linear masks,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf.
Secur. Berlin, Germany: Springer, 2008, pp. 524–538.

[21] B. Zhang, C. Xu, and W. Meier, ‘‘Fast correlation attacks over extension
fields, large-unit linear approximation and cryptanalysis of snow‘2.0,’’
in Proc. Annu. Cryptol. Conf. Cham, Switzerland: Springer, 2015,
pp. 643–662.

[22] S. Kiyomoto, T. Tanaka, and K. Sakurai, ‘‘K2: A stream cipher algorithm
using dynamic feedback control,’’ in Proc. Secrypt, 2007, pp. 204–213.

[23] S. Ma and J. Guan, ‘‘Improved key recovery attacks on simplified ver-
sion of K2 stream cipher,’’ Comput. J., vol. 64, no. 8, pp. 1253–1263,
Aug. 2021.

[24] J. D. Golić, ‘‘Cryptanalysis of alleged a5 stream cipher,’’ in Proc. Int. Conf.
Theory Appl. Cryptograph. Techn. Cham, Switzerland: Springer, 1997,
pp. 239–255.

[25] N. Ahmad, A. and Nanda, and K. Garg, ‘‘Critical role of primitive polyno-
mials in an LFSR based testing technique,’’ Electron. Lett., vol. 24, no. 15,
pp. 953–956, 1998.

[26] K. Chen, M. Henricksen, W. Millan, J. Fuller, L. Simpson, E. Dawson,
H. J. Lee, and S. J. Moon, ‘‘Dragon: A fast word based stream cipher,’’
in Proc. Int. Conf. Inf. Secur. Cryptol., Seoul South Korea, Dec. 2004,
pp. 33–50.

[27] S. Krishnaswamy and H. K. Pillai, ‘‘On the number of special feedback
configurations in linear modular systems,’’ Syst. Control Lett., vol. 66,
pp. 28–34, Apr. 2014.

[28] H. Ahmadi and T. Eghlidos, ‘‘Heuristic guess-and-determine attacks on
stream ciphers,’’ IET Inf. Secur., vol. 3, no. 2, pp. 66–73, Jun. 2009.

[29] M. Hell, T. Johansson, and L. Brynielsson, ‘‘An overview of distinguishing
attacks on stream ciphers,’’ Cryptogr. Commun., vol. 1, no. 1, pp. 71–94,
Apr. 2009.

[30] B. Debraize and I. M. Corbella, ‘‘Fault analysis of the stream cipher snow
3G,’’ in Proc. Workshop Fault Diagnosis Tolerance Cryptogr. (FDTC),
Sep. 2009, pp. 105–112.

[31] M. S. N. Nia and A. Payandeh, ‘‘The new heuristic guess and determine
attack on snow 2.0 stream cipher,’’ IACR Cryptol. ePrint Arch., vol. 2014,
p. 619, Jan. 2014.

[32] N. T. Courtois and B. Debraize, ‘‘Algebraic description and simultaneous
linear approximations of addition in snow 2.0,’’ in Proc. Int. Conf. Inf.
Commun. Secur. Springer, 2008, pp. 328–344.

[33] M. Matsui, ‘‘Linear cryptanalysis method for des cipher,’’ in Proc. Work-
shop Theory Appl. Cryptograph. Techn. Springer, 1993, pp. 386–397.

[34] W. Meier and O. Staffelbach, ‘‘Fast correlation attacks on certain stream
ciphers,’’ J. Cryptol., vol. 1, no. 3, pp. 159–176, 1989.

[35] V. V. Chepyzhov, T. Johansson, and B. Smeets, ‘‘A simple algorithm for
fast correlation attacks on stream ciphers,’’ in Proc. Int. Workshop Fast
Softw. Encryption. Berlin, Germany: Springer, 2000, pp. 181–195.

[36] F. Jonsson and T. Johansson, ‘‘Correlation attacks on stream ciphers over
GF(2/sup n/),’’ in Proc. IEEE Int. Symp. Inf. Theory, May 2001, p. 140.

[37] D.Wagner, ‘‘A generalized birthday problem,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 2002, pp. 288–304.

[38] Y. Todo, T. Isobe, W. Meier, K. Aoki, and B. Zhang, ‘‘Fast correla-
tion attack revisited,’’ in Proc. Annu. Int. Cryptol. Conf. Springer, 2018,
pp. 129–159.

[39] X. Gong and B. Zhang, ‘‘Fast computation of linear approximation over
certain composition functions and applications to snow 2.0 and snow 3G,’’
Des., Codes Cryptogr., vol. 88, no. 11, pp. 2407–2431, 2020.

[40] G. Leander, E. Zenner, and P. Hawkes, ‘‘Cache timing analysis of LFSR-
based stream ciphers,’’ in Proc. IMA Int. Conf. Cryptogr. Coding Cham,
Switzerland: Springer, 2009, pp. 433–445.

[41] B. B. Brumley, R.M. Hakala, K. Nyberg, and S. Sovio, ‘‘Consecutive s-box
lookups: A timing attack on snow 3G,’’ in Proc. Int. Conf. Inf. Commun.
Secur. Norwell, MA, USA: Springer, 2010, pp. 171–185.

[42] E. Yılmaz, ‘‘Two versions of the stream cipher snow,’’ M.S. thesis, Dept.
Elect. Electron. Eng., Middle East Tech. Univ., Ankara, Turkey, 2004.

SUBRATA NANDI received the M.Tech. degree
in computer science engineering from KIIT Uni-
versity, Bhubaneswar, India. He worked as a
Project Fellow with the Mathematics Depart-
ment, National Institute of Science Education
and Research (NISER), Bhubaneswar, India, in a
DST Funded Project. He is currently working
as a Ph.D. Research Scholar in Cryptology at
the CSE Department, Indian Institute of Tech-
nology (IIT) Guwahati, under the supervision of

Dr. Srinivasan Krishnaswamy and Dr. Pinkai Mitra. His research interests
include σ−LFSR, word-based LFSR, and cryptographic Boolean function.

SRINIVASAN KRISHNASWAMY received the
Ph.D. degree in electrical engineering from the
Indian Institute of Technology Bombay, Mumbai.
He is currently an Assistant Professor at the Indian
Institute of Technology (IIT) Guwahati, India. His
research interests include cryptography and con-
trol systems.

BEHROUZ ZOLFAGHARI received the Ph.D.
degree in computer engineering from the
Amirkabir University of Technology, Tehran, Iran.
He worked as a Postdoctoral Research Fellow at
the Indian Institute of Technology (IIT) Guwahati,
India. His research interests include informa-
tion theory, information-theoretic cryptography,
hardware oriented cryptography, and AI-assisted
cryptography.

PINAKI MITRA received the B.Tech. degree in
computer science and engineering from Jadavpur
University, Kolkata, India, in 1987, the M.Tech.
degree in computer science and engineering from
the Indian Institute of Science Bengaluru, India,
in 1989, and the Ph.D. degree from Simon
Fraser University, Canada, in 1994. He worked
on a project at the Department of Computer
Science and Engineering, Jadavpur University.
Subsequently, he joined the National Institute of

Management, Kolkata, and worked as an Assistant Professor. He joined the
IIT Guwahati, in December 2004. He is currently an Associate Professor
at the Department of Computer Science and Engineering, IIT Guwahati.
His research interests include cryptography, network security, computer
graphics, and multimedia.

44854 VOLUME 10, 2022

