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ABSTRACT The advanced services provided by vehicle ad hoc networks (VANETs) often require vehicles
to process complex computing tasks that may not be completed by individual vehicles within a required delay
limit. Offloading tasks to road side units (RSUs) is a typical approach to enhancing service performance in
VANET; however, RSUs may not always have sufficient resources for handling all task offloading requests.
With the increasing amount of computing capacities available on vehicles, offloading tasks to other vehicles
offers a promising alternative to RSU-based task offloading. However, vehicle-to-vehicle task offloading in
VANET faces some new challenges that have not been fully addressed, among which is the degraded delay
performance caused by vehicle mobility. In order to solve this problem, we propose an Online Pre-filtering
Task Offloading System (OPTOS) that is able to mitigate the impact of vehicle mobility on task offloading
performance. OPTOS comprises a process that selects candidate vehicles for hosting offloaded tasks and
an HGSA algorithm that assigns tasks to vehicles for minimizing task completion delay while balancing
utilization of computing capacities on different vehicles. We have conducted extensive experiments using
a real-world dataset for evaluating the performance of the proposed OPTOS. Obtained results indicate that
OPTOS is effective for reducing task completion delay and increasing task success rate in various VANET
scenarios with different levels of vehicle mobility.

INDEX TERMS Task offloading, vehicular ad hoc network (VANET), vehicular-to-vehicular (V2V), vehicle
mobility.

I. INTRODUCTION
In recent years, mobile vehicles are expected to provide
drivers withmore andmore advanced services, including traf-
fic accident analysis, traffic flow forecasting, route planning
and traffic light management, etc [1]–[3]. These services are
often composed of massive and complex computing tasks
that cannot be completed by vehicles independently with an
acceptable response delay. Vehicle ad hoc network (VANET)
has been developed to provide communication connections
between vehicles and infrastructures and also among vehicles
[4], [5]. With the support of VANET, tasks can be offloaded
to roadside units (RSU) with available computing capabilities
to increase task processing speed and reduce response
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delay [6], [7]. However, with the increasing number of
vehicles, the phenomenon of vehicle aggregation and com-
puting task concentration occurs frequently [8]. Therefore,
the strategy of offloading all computing tasks from vehicles to
RSUsmay cause some RSUs to be overloaded thus degrading
the service delay performance.

In order to solve the problem of insufficient RSU
computing resources, one possible solution is to deploy more
RSUs and/or increase the computing capacity of each RSU,
which might not be feasible due to the associated costs,
especially in large-scale transportation systems. Another
solution is to fully utilize the available computational
resources on all vehicles by offloading tasks to other vehicles
for processing [9]. When multiple vehicles are connected
together via VANET, they can form a distributed ‘‘vehicular
cloud’’ [10] in which each vehicle works as a computing
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node. In a vehicular cloud, computing tasks generated on one
vehicle may be offloaded to other vehicles in the same cloud,
which enables the idle resources on a group of vehicles to
be fully utilized to reduce the overall task completion delay.
The increasing computing capacities on vehicles together
with rapid development in 5G wireless communication
technologies [11] make inter-vehicle offloading an attractive
alternative to RSU-based offloading.

The existing technologies for offloading tasks to other
vehicles in a vehicular cloud mainly consider matching task
requirements and vehicle resources [12], [13]. Although
such offloading strategies achieve good results in stationary
vehicular clouds, the impact of vehicle mobility has not been
sufficiently addressed thus may cause unstable performance
in some practical applications. Formed by a group of moving
vehicles, a vehicular cloud is a dynamic structure that a
vehicle may leave at any time (e.g., when the vehicle moves
beyond the maximum communication scope of other vehicles
in the cloud). All the uncompleted tasks offloaded to a left
vehicle will have to be reassigned to other vehicles for
processing, which prolongs the task completion delay. The
main objective of our work is to investigate task offloading
in a vehicular cloud for addressing this challenge introduced
by vehicle mobility. The specific problem we want to solve in
this paper is to find a task offloading strategy in a vehicular
cloud that minimizes task completion delay with the negative
impact of vehicle mobility eliminated.

In this paper, we first formulate vehicle-to-vehicle task
offloading as an optimization problem based on our analysis
on communication and computing delay in vehicular clouds.
Then we design an online pre-filtered task offloading
system (OPTOS) in order to obtain reliable task offloading
in a vehicular cloud. The OPTOS addresses the impact of
vehicle mobility by adding a step for identifying a set of
candidate vehicles before making the offloading decision.
We also develop a half-greedy simulated annealing (HGSA)
algorithm that is employed in OPTOS for assigning tasks to
candidate vehicles and minimizing the total task completion
delay. More specifically, the main contributions of this article
are summarized as follows.

1) We proposed OPTOS, an online pre-filtering task
offloading system that fully considers the impact of vehicle
mobility to obtain a reliable vehicle-to-vehicle offloading
strategy. A key element of OPTOS is a step for filtering out
vehicles that may leave the vehicular cloud before completing
the tasks offloaded to them. This step ensures that tasks
are only assigned to reliable vehicles that can successfully
complete their tasks without being interrupted by mobility
thus avoiding the extra delay in task completion caused by
task reassignment.

2) We designed the HGSA algorithm to solve the task
allocation problem to minimize task completion delay.
The HGSA algorithm considers multiple factors, includ-
ing task complexity, data volume, available resources on
candidate vehicles, and inter-vehicle communication capac-
ities, to make decisions on task-to-vehicle assignment for

minimizing task completion delay while balancing task load
across the candidate vehicles.

3) We conducted extensive experiments using a real
vehicle data set to evaluate the performance of the proposed
scheme. The experiment results indicate that our method
can achieve reliable task offloading that increases the
task success rate from 70% to near 100%. The obtained
results also show that the proposed scheme can reduce
task completion delay by about 19% compared to existing
methods.

The remainder of this paper is organized as follows.
Section II reviews the related work on task offloading.
Section III describes the system model and gives the problem
formulation. The structure of the OPTOS and the task
offloading algorithm HGSA are presented in Section IV.
Section V reports the evaluation experiments and analyzes
the obtained results. The paper is concluded in Section VI.

II. RELATED WORK
In this section, we review state-of-the-art technologies for
task offloading in vehicular networks.

Over the past decade, most research in this area focuses
on offloading tasks to RSUs or cloud servers due to
their rich computing and storage resources [14]–[18]. The
optimization goals of the proposed methods include delay
performance, energy consumption, and bandwidth utiliza-
tion. The techniques for achieving the goals can be divided
into two categories – mathematical optimization and artificial
intelligence.

In the works based on mathematical optimization, task
offloading is formulated as an optimization problem by
defining an objective function with a set of constraints. Then
the optimal solution is found using techniques including
mixed-integer programming (MIP), heuristic algorithms, and
game theory. Y. Wang et al. designed a payoff function
and constructed a distributed optimal response algorithm for
computing offloading games in [17]. It is proved that the
offloading probability of each vehicle can converge to a
unique equilibrium under certain conditions. C. Shu et al. [18]
studied the offloading of dependent tasks to edge servers.
Considering the dependency between subtasks and the
competition among multiple edge servers, they proposed a
new offloading scheme based on game theory to reduce the
overall completion time of applications.

Some other studies are based on reinforcement learn-
ing [7], [19], [20]. H. Ke et al. [19] designed a heterogeneous
vehicle network MEC system considering the changes in
channel state and available bandwidth. They proposed an
adaptive offloading method based on deep reinforcement
learning (ACORL). ACORL can intelligently learn a policy to
solve the trade-off between energy consumption, bandwidth
allocation, and execution delay. Y. Liu et al. [20] regard the
vehicles as mobile edge servers (VES) combined with fixed
edge servers (FES) to provide computing services to users.
They formulated task offloading and resource allocation as
Markov processes and proposed two offloading strategies
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based on Q-Learning and deep reinforcement learning,
respectively. Their scheme achieves better performance than
pure VES or FES methods.

Although RSUs and cloud servers can provide high
computing capacities, their deployments are often expensive.
At the same time, the computing power of vehicles has been
greatly improved in recent years, which enables vehicles to
work as computing nodes for task processing. Therefore,
offloading tasks to vehicles has started attracting research
attention and interesting progress toward this direction has
been reported in the literature.

M. LiWang et al. [21] proposed a randomized graph job
allocation mechanism using hierarchical tree-based subgraph
isomorphismwith low complexity. However, the graph-based
operation mechanism cannot adapt to the rapid changes in the
topological structure of the Internet of Vehicles environment.
At the same time, they did not consider the problem of
imbalanced resource utilization of vehicle nodes. Based on
game theory, J. Zhao et al. [22] designed a collaborative
computation offloading and resource allocation optimiza-
tion (CCORAO) scheme that can effectively improve system
utilization and reduce computing time. J. Zhang et al. [6]
proposed an approximate computing offloading scheme
ALBOA that can utilize computing resources of the edge
server more effectively and reduce the processing delay.
Q. Qi et al. [23] proposed a knowledge-driven (KD)
IoV service offloading decision framework, which provides
an optimal policy directly from the environment. Deep
reinforcement learning is used to obtain the optimal solu-
tion and continuous online learning is carried out during
vehicle service execution to adapt to environmental changes.
Y. Sun et al. [24] proposed an adaptive learning-based
task offloading (ALTO) algorithm to minimize the average
task completion delay. At the same time, they modified
the existing multi-armed bandit (MAB) algorithm to input
sensing and event sensing so that the ALTO algorithm can
adapt to the dynamic vehicle task offloading environment.
G. Qiao et al. [25] proposed a collaborative task offloading
and output transmission mechanism that guarantees low
latency as well as application-level performance.

However, the aforementioned works have not sufficiently
considered the effect of vehicle mobility on task offloading
to vehicles and reasonable allocation of vehicle resources.
To the best of our knowledge, this article is the first effort
to jointly consider the effect of vehicle mobility and the
balanced utilization of the vehicle resource to offload tasks
to vehicles.

III. SYSTEM MODELING AND PROBLEM FORMULATION
In this section, we first describe the system architecture
for task offloading in a vehicular cloud and analyze the
task completion delay, including communication delay and
computing delay, in such a system. Then based on the delay
analysis, we formulate the task offloading in a vehicular cloud
as an optimization problem.

A. SYSTEM OVERVIEW
The high-level architecture of a smart transportation system
with vehicular clouds is shown in Figure 1, which is com-
posed of three layers: the cloud layer, the edge layer, and the
vehicle layer. The cloud layer comprises data centers in the
Internet. The cloud data centers have substantial computing
capabilities but are located far from vehicles; therefore, they
are often used for processing computing-intensive tasks that
can tolerate long delays. The edge layer comprises RSUs
located on the roadside, which have certain amounts of
computational resources for completing lightweight tasks
with shorter delays. RSUs are interconnected via the network
infrastructure. The vehicle layer consists of vehicles clustered
in vehicular clouds. Each vehicle in the system is assumed to
have a certain amount of computing capacity for processing
tasks that are either generated locally or offloaded from
other vehicles. The vehicular ad hoc network provides direct
communication connections among vehicles in the same
vehicular cloud.

The task offloading process in this three-layer architecture
can be described as follows.

1) The basic information of vehicles, such as their
current positions, speeds, moving directions, and available
computing capacities, are collected and sent to RSUs. Such
information may be provided by vehicles and/or measured by
road-side sensors.

2) RSUs receive and process the vehicle information
to maintain an information base about the surrounding
vehicles.

3) The cloud layer might also be involved in assisting
RSUs for processing the vehicle information, especially in
a large-scale system with a large number of vehicles.

4) In the vehicular cloud, a vehicle (referred to as task-
vehicle) generates a series of tasks with different sizes and
types, which can not be completed by the task-vehicle alone.

5) The task-vehicle sends a task offloading request to the
nearest RSU. If the RSU accepts the offloading request, the
task-vehicle offloads its tasks to the RSU and the RSU returns
the processed results back to the task-vehicle.

6) If the RSU cannot accept the offloading request for
some reason, such as lack of sufficient available resources
to complete the tasks within the required time limit, it will
decline the offloading request and returns information about
surrounding vehicles to the task-vehicle.

7) The task-vehicle then makes decisions on offloading its
tasks to other vehicles in the same vehicular cloud based on
the vehicle information provided by RSUs. This is the stage
where the proposed scheme – the proposed OPTOS scheme
and HGSA algorithm – takes place.

8) The task-vehicle offloads its tasks to chosen vehicles
according to the offloading decisions made in step-8.

9) The chosen vehicles (for receiving offloaded tasks)
process the tasks assigned to them and return the results back
to the task-vehicle.

10) If some vehicles leave the vehicular cloud before
completing all their assigned tasks, then these unfinished
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FIGURE 1. The three-layer architecture for task offloading in vehicular
networks.

tasks have to be reassigned by the task-vehicle to other
vehicles in the cloud by repeating the steps 7-9, which
introduces extra delays in task completion.

We regard offloading to vehicles as a complementary
strategy to traditional offloading to RSUs. In this way,
when an RSU is available with sufficient resources for
meeting the performance requirements of task processing, the
task-vehicle offloads its tasks to the RSU. When the RSU
is not available, the task-vehicle has an alternative solution
– offloading tasks to other vehicles. Considering that task
offloading to RSUs has been studied extensively, our research
in this article focuses on the case of task offloading to vehicles
assuming the task-vehicle has decided to do so. The specific
problem we study here is: when the task-vehicle chooses
to offload its tasks to other vehicles, how to assign these
tasks to appropriate target vehicles in order to minimize
the completion delay of all tasks (i.e., total task completion
delay).

B. TASK COMPLETION DELAY
We now analyze the communication delay and computation
delay associated with task offloading to vehicles to determine
the complete task completion time. The main notations we
used in our analysis are summarized in Table 1.

Let V = {v1, v2, . . . , vn} denote the set of n vehicles
in a vehicular cloud. The information for each vehicle vi

TABLE 1. Summary of Main Notations.

can be represented by a tuple {fi, li, si}, in which fi gives
the computing capacity (CPU cycles/s ) of the vehicle, li
is the current vehicle position, and si represents the instant
speed of the vehicle. Suppose that vehicle vk is the only
task-vehicle that generates a set of m tasks denoted as Q =
{q1, q2, . . . , qm}. Each task qi can be presented by a tuple
{Si,Ci,Li}, where Si is the size of data associated with the
task, Ci is the computing complexity of the task (measured
by CPU cycles/bit; i.e., the average number of CPU cycles
needed for processing each bit of data of the task), Li is the
maximum tolerable completion delay of the task.

Due to the differences in data sizes and computing com-
plexity between tasks, offloading tasks directly to vehicles
will lead to imbalanced utilization of vehicle resources.
Therefore, we divide tasks into equal size subtasks and
perform offloading to vehicles in the unit of subtasks.
We suppose that there is no dependency between subtasks and
all subtasks can be processed in parallel on different vehicles.
Then, the total number of subtasks generated fromm tasks can
be calculated as

m′ =
m∑
i=1

Si
e
, (1)

where Si is the data size of task qi and e is the data size of a
subtask.

Each subtask is either executed locally on the task-vehicle
or offloaded to one of the n − 1 vehicles. Each vehicle can
have multiple subtasks simultaneously. We express the task
offloading assignment as an m′ × n matrix X

X =


x11 x12 . . . x1n
x21 x22 . . . x2n
. . .

xm′1 xm′2 . . . xm′n

 (2)
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in which xij = 1 when the i-th subtask is assigned to vehicle
vj otherwise xij = 0. When xik = 1, it indicates that the task-
vehicle vk executes the i-th subtask locally.

When a subtask is executed locally the task completion
delay equals computing delay. If the subtask is offloaded to
another vehicle then the task completion delay is the sum of
communication delay and computing delay. We assume that
direct communication channels exist between all vehicles in
the same vehicular cloud. The communication delay is the
time taken to transmit subtask data from the task-vehicle
to the target vehicle, which is mainly determined by the
throughput of the wireless channel between these two vehi-
cles. According to Shannon formula [26], the transmission
rate between two vehicles can be calculated as

r =
B

n− 1
log2(1+

p · h
N

), (3)

where B denotes the channel bandwidth, p represents the
channel power, h means the channel gain, and N denotes
the noise power. Since the task-vehicle transmits subtasks
outward to all other vehicles simultaneously, the channel
bandwidth will be divided into n − 1 segments one for each
target-vehicle. Therefore, the communication delay can be
obtained by

Dcomm =
e
r
=

e(n− 1)

B · log2(1+
p·h
N )
. (4)

After a subtask is executed, its result will be transmitted
back to the task-vehicle. However, since the size of the result
is much smaller than the size of the subtask, its transmission
delay is negligible relative to the transmission delay of the
subtask.

The computing delay for a subtask is the time for
completing execution of the subtask, which is mainly
determined by the amount of computation required by the
task and the computing capacity of the vehicle where the
task is processed, either the task-vehicle where the task
is generated or a vehicle to which the task is offloaded.
Therefore, the computing delay Dcomp for the i-th subtask on
vehicle vj can be obtained as

Dcomp =
Ci · e
fj

, i = 1, 2, . . . ,m′, j = 1, 2, . . . , n, (5)

where Ci is the computational complexity of the i-th subtask
and fj is the computing capacity of vehicle vj.

Then completion delay Dij for the i-th subtask executed on
vehicle vj can be determined as

Dij =


Ci · e
fj

, j = k

Ci · e
fj
+
e
r
, j 6= k

(6)

where j = k represents the case that this subtask is executed
locally (i.e., without being offloaded).

Since a task is composed of many subtasks that are
assigned to and processed on multiple vehicles, a task is

completed when all its subtasks have been successfully
processed by the vehicles they are assigned to. Therefore, the
completion delay of a task q can be determined as

Ttask (q) = max{

m′q∑
i=1

xij · Dij}, j = 1, 2, . . . , n. (7)

where, m′q is the total number of subtasks generated from
this task. Each task q needs to be completed within its
corresponding maximum tolerable delay L; that is,

max{

m′q∑
i=1

xij · Dij} ≤ Lq, j = 1, 2, . . . , n. (8)

Each vehicle may receive multiple offloaded subtasks. The
total time for vehicle vj to complete all the subtasks offloaded
to it, denoted as Tvehicle(j), is the sum of the completion delays
of these subtasks; that is

Tvehicle(j) =
m′∑
i=1

xij · Dij, j = 1, 2, . . . , n. (9)

If the vehicle leaves the vehicular cloud before finishing all
the offloaded subtasks, then the unfinished subtasks will have
to be reassigned to other vehicles, which causes additional
communication and computing delay. Therefore, although
some vehicles have strong computing power, they are not
suitable for being assigned too many subtasks. The task
offloading strategy should ensure that Tvehicle(j) is no greater
than the stay-time of the vehicle, st(j), which is the residual
time of the vehicle staying in the vehicular cloud. That is,

m′∑
i=1

xij · Dij ≤ st(j), j = 1, 2, . . . , n. (10)

The total task completion delay depends on the last vehicle
that completes all its subtasks. In other words, the total
completion time of all the tasks is equal to the maximum
completion time of all the vehicles. That is,

Ttotal = max{
m′∑
i=1

xij · Dij}, j = 1, 2, . . . , n. (11)

C. PROBLEM FORMATION
Based on the above analysis, we formulate the problem
of task offloading in a vehicular cloud as an optimization
problem as (12). Given the number of subtasks m′ and the
number of vehicles n, the system uses an offloading decision
matrix X that minimizes the total task completion time as the
objective function while satisfying the constraints given by
C1-C4.

min{max{
m′∑
i=1

xij · Dij}, j = 1, 2, . . . , n.}

s.t. C1 : xi1 + xi2 + · · · + xin = 1, i = 1, 2, . . . ,m′
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FIGURE 2. The structure of OPTOS. It contains two main steps: a) selecting candidate vehicles for each subtask; b) allocating subtasks to vehicles by
HGSA Algorithm.

C2 : xij = 0 or xij = 1

C3 : max{

m′q∑
i=1

xij · Dij} ≤ Lq, j = 1, 2, . . . , n.

C4 :
m′∑
i=1

xij · Dij ≤ st(j), j = 1, 2, . . . , n (12)

Constraint C1 limits each subtask to be offloaded to only one
vehicle. C2 indicates that xij = 1 when subtask i is offloaded
to vehicle j, otherwise xij = 0. C3 requires each task to be
completed within its delay budget. C4 requires each vehicle
to complete all the subtasks offloaded to it within its residual
time in the vehicular cloud (i.e., before the vehicle leaves the
current vehicular cloud).

IV. TASK OFFLOADING STRATEGY
In this section, we first introduce the overall process of the
OPTOS and then discuss the details of candidate vehicle
selection and task allocation algorithm HGSA in OPTOS.

A. OPTOS SYSTEM
OPTFO is an online pre-filtering task offloading system,
which includes a filtering process before offloading. It can
obtain the optimal offloading strategy and significantly
reduce the impact of vehicle mobility on task completion
delay. The structure of the proposed OPTOS is shown in
Figure 2, which comprises two steps: selecting candidate
vehicles and allocating tasks to vehicles.

The first step selects reliable candidate vehicles for each
subtask, which is designed to mitigate the negative impact

of vehicle mobility on task offloading performance. Due to
mobility, a vehicle may leave the vehicular cloud before
completing all the subtasks offloaded to it – an event referred
to as ‘‘early-leaving’’ in this paper. When this occurs, the
uncompleted subtasks will need to be reassigned to other
vehicles thus causing an additional delay. Therefore, OPTOS
attempts to avoid early-leaving asmuch as possible. A vehicle
that processes many subtasks or has a short stay-time in
the vehicular cloud is more likely to cause early-leaving;
therefore, it is less desirable to consider such a vehicle as
a candidate when making offloading decisions. In order to
evaluate whether a vehicle can be a candidate for a subtask,
three factors are comprehensively considered in OPTOS – the
stay-time of the vehicle in the vehicular cloud, the completion
time of the subtask on this vehicle, and the task success rate of
the vehicle. The OPTOS uses these three factors to calculate
a value to guide the selection of candidate vehicles for each
subtask.

In the second step, all subtasks are allocated to the
appropriate vehicles. All tasks are divided into multiple
independent subtasks that can be executed on different
vehicles in parallel. This step aims to find the most suitable
vehicle for each subtask tominimize the total completion time
of all tasks. OPTOS first calculates the completion time of
each subtask on all its candidate vehicles and then uses the
proposed algorithm HGSA to obtain an optimal subtask-to-
vehicle assignment in a limited time.

In addition, whenever a vehicle completes all its subtasks
or leaves the vehicular cloud, the task success rate of the
vehicle will be updated. If the task success rate increases,
the vehicle will get more offloading opportunities. If the task

VOLUME 10, 2022 4117



J. He et al.: OPTOS: Strategy of Online Pre-Filtering Task Offloading System in Vehicular Ad Hoc Networks

FIGURE 3. The effect of candidate selection on the overall task
completion delay. (a),(b) Offloading situation before and after the vehicle
leaves without candidate processing. (c) Offloading strategy with
candidate processing.

success rate decreases, it indicates that the risk of offloading
to this vehicle increases. The two-way feedback can improve
the effectiveness of offloading decisions and reduce the total
completion delay.

B. CANDIDATE VEHICLES
Selecting candidate vehicles for each subtask is essential
because it facilitates task offloading to avoid the additional
delay caused by early-leaving phenomenon thus mitigating
the impact of vehicle mobility on delay performance.
Figure 3 shows an example scenario that illustrates the effect
of candidate selection on overall task completion delay, which
demonstrates the necessity of this step.

Suppose there are four equal size subtasks and four
vehicles with different computing capacities. The completion
time of a single subtask on vehicle-1/2/3/4 is 5, 5, 3,
4 respectively. Figure 3(a) gives the subtask assignment
without candidate selection – one subtask on each vehicle
with a total completion time of 5. Figure 3(b) shows that
early-leaving occurs to vehicle-4, which leaves the cloud
at time instant 4 before it completes the subtask. Then
the subtask assigned to vehicle-4 has to be reassigned to
vehicle-3 to restart its execution. The total completion time
of the four subtasks now becomes 7 due to the extra delay
introduced by vehicle-4’s early-leaving. Figure 3(c) gives
the task offloading with candidate vehicle selection. Because
vehicle-4 has a stay-time that is less than 4, which is the
completion delay for a single subtask on this vehicle, vehicle-
4 is removed from the set of candidate vehicles. Then
two subtasks are assigned to vehicle-3 to achieve a shorter
completion time than the case shown in Figure 3 (b).

In order to correctly decide whether a vehicle can be a
candidate for subtasks, OPTOS comprehensively considers
the following three factors:
• The completion time of the subtask: According to the
analysis in Section III, the completion time of each
subtask on each vehicle can be calculated using (6).

TABLE 2. The training set for predicting the suitability of adding a vehicle
to the candidate vehicle.

• The stay-time of the vehicle: The stay-time refers to the
residual time of a vehicle in a vehicular cloud. Vehicle
stay-time can be estimated using a vehicle mobility
model together with vehicle information including the
positions and speeds. We use the Freeway Mobility
Model [27] to mimic vehicles’ movements on highways.
In this model, each mobile node is restricted to a
specific lane and their movement must obey certain
rules of relative speeds and distance between vehicles.
Then the trajectory of the vehicles in a larger time
range can be predicted and the stay-time can be
estimated. We focus our research on highway scenarios
because vehicles moving on highways are more likely to
form stable vehicular clouds, in which task offloading
to vehicles becomes a reasonable alternative to the
conventional RSU-based task offloading. Please note
that the proposed OPTOS may work with different
mobility models for estimating vehicle stay-time.

• Offloading success rate: Assuming that the total number
of tasks that have been offloaded to the i-th vehicle is
yi and the number of tasks completed by the vehicle
is xi, the offloading success rate of this vehicle can be
calculated by xi/yi.

The relationship between task completion time and vehicle
stay-time reflects whether the vehicle is capable of complet-
ing the task in time and the offloading success rate reflects the
possibility that the vehicle fails the task due to other factors.

The historical data of the above three factors can be used
to train a machine learning model that outputs the parameter
λ that indicates the suitability of a vehicle to be a candidate
vehicle. The training set format is shown in Table. 2. The
value of λ is between [0,1], giving the probability that a
vehicle may successfully complete all the subtasks offloaded
to it thus being an appropriate candidate vehicle. This model
is an online model. Therefore, whenever a new task is
completed or failed, OPTOS updates the ‘‘history offloading
success rate’’ and carries out new training on the model.

C. HGSA ALGORITHM
After selecting candidate vehicles for each task, the next step
of OPTOS is to find the optimal task allocation strategy that
minimizes the overall task completion delay.

Before assigning tasks to vehicles, OPTOS calculates the
completion time of each subtask on its candidate vehicles
and forms a cost-delay matrix D. The matrix D has m′

rows and n columns, and each element Dij represents the
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completion time of subtask-i on vehicle vj. If vj is identified
as a candidate vehicle for subtask-i, then Dij is calculated
using (6); otherwise, Dij is set to be infinity.
The goal of this step is to allocate m′ independent subtasks

to n vehicles to minimize the total task completion time.
This problem has been formulated as a 0-1 integer linear
programming problem given by (12), proven to be anNP-hard
problem. This problem can be solved by a greedy algorithm to
find the optimal solution; however, the complexity of a greedy
algorithm increases greatly with the number of subtasks.

In this work, we propose a half greedy simulated anneal-
ing (HGSA) algorithm (Algorithm 1) that assigns subtasks
to vehicles for minimizing the task completion delay. This
algorithm combines the advantages of the greedy algorithm
and simulated annealing, which can gain an optimal strategy
in a limited time. The inputs of the algorithm include
the number of subtasks m′, the number of vehicles n, the
cost-delay matrix D, and the parameters Tmax , Tmin, α for
controlling the iterative annealing process. The algorithm
outputs an m′ × n task offloading matrix X whose element
xij = 1 when the subtask-i is offloaded to vehicle-j otherwise
xij = 0. Another output of the algorithm is a vector of vehicle
total time Eτ with n elements, each giving the total time for a
vehicle to complete all the subtasks offloaded to it.

Steps 1-7 of the HGSA algorithm find a feasible task
offloading matrix X . The algorithm first initializes the matrix
X and Eτ to 0 and then finds an available vehicle from the
candidates for each subtask one by one. In order to obtain
the optimal result in a short time, the algorithm does not
randomly assign subtasks to vehicles in this phase but seeks
a sub-optimal solution as much as possible. The algorithm
ensures the overall delay is minimized in every offloading
operation with the greed principle. After offloading each
subtask to each candidate vehicle, the algorithm calculates the
vehicle’s total completion time and then selects the smallest
one in step-3. Then the algorithm checks the constraints, such
as whether the total completion time of this vehicle exceeds
its stay-time. If the minimum vehicle meets the constraint, the
algorithm selects it as the target vehicle for offloading (step-
4 and step-5). After each subtask is assigned to a vehicle,
the offloading matrix X and the corresponding vehicle’s total
time τ are updated. After the above operations are performed
on all subtasks, the maximum total time in vehicles is the total
completion delay f (X ) of all subtasks.
After initialization, the algorithm will perform simulated

annealing. Similar to the metal annealing process, this part
of the algorithm starts from the initial temperature Tmax ,
with the continuous decline of temperature T , combined
with the probability jump characteristics, randomly finds
the optimal global solution of the objective function in
the solution space until the temperature is lower than the
termination temperature Tmin, when the annealing process
ends. In each iteration from step-9 to step-24, the algorithm
first generates a new strategy by randomly exchanging the
subtasks with different types, and then checks whether the
new strategy meets the constraints. If the constraints are met,

Algorithm 1 HGSA Algorithm
Input: Number of subtasks m′; Number of vehicles n;

Cost-delay matrix D; Initial temperature Tmax ; Terminal
temperature Tmin; Cooling rate α

Output: Task offloading matrix X , Vehicle total time vector
Eτ

1: initial X = 0, Eτ = 0
2: for i = 1 to m′ do
3: j∗← min{τj + Dij}, j = 1, 2, . . . , n
4: Check constraints of (12)
5: xij∗ = 1, τj = τj + Dij
6: end for
7: f (X ) = max{Eτ }, according to (11)
8: T = Tmax , Xold = X , f (X )old = f (X )
9: while T < Tmin do
10: Xold = X , f (X )old = f (X )
11: Randomly exchange two subtasks with different types,

get Xnew and Eτnew
12: Check constraints of (12)
13: f (X )new = max{Eτnew}, according to (11)
14: 1 = f (X )new − f (X )old
15: if 1 < 0 then
16: X = Xnew and Eτ = Eτnew
17: else
18: p = exp(1/T )
19: end if
20: if ramdom.p < p then
21: X = Xnew and Eτ = Eτnew
22: end if
23: T = T · α
24: end while
25: return X and Eτ

the corresponding f (X ) is calculated according to (11) to
obtain the total delay required to complete all tasks (i.e., the
maximum of the cumulative delay of each vehicle). Next,
step-14 compares the value of the total completion delay
f (X ) of the new and old strategies. If f (X )new is smaller than
f (X )old , the new strategy is better than the old one, then the
new strategy X is accepted and vehicle total time Eτ is updated.
When f (X )new is larger, it may be a case of jumping out of
the local optimum. Therefore, the new strategy is accepted
according to a certain probability p = exp(1/T ) related to
the current temperature. Finally, the current temperature is
multiplied by the cooling factor to obtain the new temperature
used in the next iteration. When the temperature drops to
the lowest temperature, the iteration ends and the algorithm
returns the optimal strategy X and the vehicle total time
Eτ . Based on the above analysis, the HGSA algorithm can
quickly obtain an offloading strategy that guarantees the
optimal delay.

The HGSA algorithm also facilitates balancing the uti-
lization of computing resources on different vehicles. In the
process of finding a feasible solution, the algorithm assigns
the current subtask to the vehicle with the lightest task load
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TABLE 3. Summary of Simulation Parameters.

(the vehicle with the shortest completion time for all its
subtasks), ensuring the completion time of different vehicles
to be as close to each other as possible. By running the HGSA
algorithm as a core part of OPTOS, the task-vehicle is not
only responsible for task allocation but also in charge of load
balancing.

V. EXPERIMENT AND EVALUATION
In this section, we first introduce the experiment environ-
ment, datasets, and parameter settings. Then, we evaluate the
delay performance of the proposed algorithm by comparing
it with the baseline algorithms. Finally, we discuss the
effectiveness of the candidate selection process in OPTOS for
handling vehicle mobility.

A. SIMULATION SETUP
We simulated our experiment environment in MATLAB by
implementing a 10 km long three-lane highway and some
moving vehicles. The trajectories of vehicles are selected
from the Madrid trace [28], which is a set of synthetic traces
containing real information from three highways (A6, M40,
and M30) in Madrid, Spain. The vehicles have different
computing capacities ranging from 4 × 106 cycles/sec to
2×107 cycles/sec. The tasks are classified into four categories
– image processing, video processing, interactive game,
and augmented reality, and their computational complexity
parameters are 30, 15, 40, 20 respectively. Each task can
be divided into 50-100 subtasks. The main simulation
parameters are summarized in Table. 3.

In order to simulate the natural movement of the vehicles,
we selected the track records of 20 vehicles on the A6
highway within a 30-minute time period. Furthermore, we set
the vehicle communication range to be 150 m and every
vehicle can communicate with all other vehicles at the
beginning of the experiment. Figure 4 shows the connectivity
among these 20 vehicles at the initial state.

B. PERFORMANCE COMPARISON
For performance comparison, we consider the following four
algorithms as baseline algorithms:

Random: Each subtask will be randomly assigned to any
vehicle that the task-vehicle can connect to.

FIGURE 4. The connectivity among 20 vehicles in the vehicular cloud at
the initial state.

Distance First (DF): Sort all vehicles according to their
distance from the task-vehicle and then offload subtasks to
the closest vehicle with a sufficient stay-time, as in [7].

Strongest Computing power First (SCF): Sort all vehicles
according to their computing capacities and then offload
subtasks to the vehicles with the strongest computing
power.

Shortest Stay-time First (SSF): Subtasks are preferentially
assigned to the earliest departing vehicle with the shortest
stay-time.

1) IMPACT OF VEHICLE NUMBER
In order to study the influence of the number of vehicles on
delay, we fixed the number of subtasks to 400 and then set
the number of vehicles to 10 to 20.

Figure 5 shows the average completion delay of a subtask
when the number of vehicles increases from 10 to 20, with the
total number of subtasks is set to 400. It can be seen that the
average delay of subtasks obtained by all the five algorithms
increases with the number of vehicles. However, HGSA, SSF,
and RANDOM algorithms have shorter average completion
delay than SCF and DF do. This is because the SCF algorithm
focuses on computing power and the DF algorithm focuses on
communication power. Both of them consider only one part
of the task completion delay.

Figure 6 shows how the total task completion delay
changes when the number of vehicles in the vehicular cloud
increases. It can be seen that the total completion delays
obtained by the five algorithms all intend to decrease with
the increase of the number of vehicles, among which the
delay performance of SCF and DF is inferior and basically
remains unchanged. This is because SCF and DF perma-
nently offload tasks to the same vehicle, which weakens
the benefit of executing subtasks on different vehicles in
parallel. In addition, althoughHGSAhas similar performance
with SSF and Random in average task completion delay,
HGSA performs better in total task completion delay.
This is because our HGSA algorithm is able to balance
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FIGURE 5. The average task completion delay versus the number of
vehicles (m′ = 400).

FIGURE 6. The total task completion delay versus the number of vehicles
(m′ = 400).

the task loads across vehicles thus making full use of
the vehicle resources. In conclusion, the HGSA algorithm
outperforms the other four algorithms in total task completion
delay. HGSA achieves 54% delay reduction compared to
DF, SF, and SSF, and 19% delay reduction compared to
Random.

2) IMPACT OF TASK NUMBER
Next, we discuss the impact of the number of tasks on
delay performance when the number of vehicles is set to
be 20.

Figure 7 shows the average completion delay of subtasks
as the task number increases. We can find that the delay
performance of the five algorithms have similar trends and
HGSA always has the least delay regardless of the number
of subtasks. The advantage of HGSA is more obvious when
the number of subtasks is small. With a small number of

FIGURE 7. The average task completion delay versus the number of
subtasks (n = 20).

FIGURE 8. The total task completion delay versus the number of subtasks
(n = 20).

subtasks, the priority offloading of other algorithms to a
vehicle will lead to more idle vehicles while HGSA balances
the computing resources of all vehicles to obtain the shortest
delay.

Figure 8 shows how the total task completion delay
changes with the increasing number of subtasks. It can
be seen from this figure that the curves for HGSA and
RANDOM increase linearly with the subtask number; the
curves for SCF and DF first rise rapidly and then remain
unchanged; while the curve SSF first remains unchanged
and then rises rapidly. This is because the total completion
delay depends on the vehicle with the longest completion
time. When the number of tasks is large enough, SCF, DF,
and SSF need more vehicles to join the offloading. They
inevitably select a vehicle with a long stay-time, resulting in
longer total completion delays. As a result, HGSA offloads
tasks to all vehicles so that more tasks can run in parallel.
The proposed HGSA algorithm reduces the total completion
delay by 20% compared to the best performer among the four
baseline algorithms.
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TABLE 4. The distribution of stay-time of vehicles in three different
scenarios.

FIGURE 9. The total task completion delay in three scenarios with
different mobility levels.

C. IMPACT OF VEHICLE MOBILITY
We conducted our experiments in three scenarios with
different levels of vehicle mobility. The settings of these three
scenarios are shown in Table 4.
• Scenario 1: The vehicular cloud comprises vehicles with
high mobility and most of the vehicles may leave the
cloud soon (having short stay-time).

• Scenario 2: The vehicular cloud comprises vehicles with
low mobility and most of the vehicles stay in the cloud
for a long time (having long stay-time).

• Scenario 3: The vehicular cloud has a medium level of
mobility between scenario 1 and scenario 2.

Figure 9 shows the total completion delay for the three
scenarios with different lengths of stay-time. It can be seen
that the delays of DF, SSF, and SCF differ significantly in dif-
ferent scenarios, which indicates that the delay performance
of these algorithms is greatly impacted by vehicle mobility.
On the other hand, this figure shows that the proposed
HGSA algorithm achieves the same level of delay in all
three scenarios with different stay-time lengths. Therefore,
the obtained experimental results indicate that HSGA is
very stable with respect to vehicle mobility, mainly due
to the candidate vehicle selection mechanism in OPTOS
that mitigates the impact of mobility on task offloading
performance.

In the proposed OPTOS, selecting candidate vehicles for
each subtask plays an essential role in eliminating the impact
of vehicle mobility. In order to demonstrate the importance
of this step, we compared the total completion delay for
each vehicle under the HGSA algorithm with and without
the candidate selection process (HGSA-noCandicate). The
obtained results are reported in Figure 10.

FIGURE 10. Comparison of HGSA algorithms with candidate selection and
without candidate selection.

We set the number of subtasks to 1400 and the number
of vehicles to 20. As can be seen from this figure, when
HGSAwithout candidate selection is used for task offloading,
all vehicles have a similar completion time. However,
in this case, many vehicles, including vehicles 3, 4, 6, 8,
12-20, have a stay-time that is less than their completion
time. It means that these vehicles will leave the vehicular
cloud before completing all the subtasks offloaded onto
them, which causes the failure of 70% of the offloaded
tasks.

With candidate selection, the HGSA algorithm first
guarantees that the total completion time of all the subtasks
offloaded to a vehicle is less than the vehicle’s stay-time, and
then the algorithm balances the task loads across all candidate
vehicles to make the completion time of all vehicles as close
as possible. The results show that by sacrificing a small
amount of delay, the algorithm with candidate selection can
obtain an offloading strategy that achieves a 100% success
rate; that is, all offloaded tasks are successfully completed.
Without candidate selection, the failure rate of offloaded tasks
reaches 70%, which will significantly increase the total task
completion delay due to re-assignment and re-execution of
the failed subtasks.

VI. CONCLUSION
In this paper, we designed the OPTOS system that is able
to eliminate the negative impact of vehicle mobility on
task offloading in vehicular clouds for achieving optimal
delay performance and balanced vehicle resource utilization.
The OPTOS comprises two key components – candidate
vehicle selection and task-to-vehicle allocation. The online
filtering process for selecting candidate vehicles protects
the execution of offloaded tasks from being interrupted
by vehicle mobility thus avoiding the extra delay caused
by re-assignment and re-execution of the interrupted tasks.
The task allocation algorithm HGSA identifies the most
appropriate vehicle for each task in order to minimize the
total task completion delay while balancing the utilization

4122 VOLUME 10, 2022



J. He et al.: OPTOS: Strategy of Online Pre-Filtering Task Offloading System in Vehicular Ad Hoc Networks

of computing capacities on different vehicles. We have
conducted extensive experiments using a real-world dataset
for evaluating the performance of the proposed OPTOS.
Experiment results show that OPTOS outperforms the
baseline algorithms by about 20% in task completion
delay and significantly increases the task success rate. The
obtained results also indicate that OPTOS is effective in
various VANET scenarios with different levels of vehicle
mobility.

In the future, we plan to take subtask inter-dependency
and execution priority into consideration to further enhance
OPTOS. We also plan to study the collaboration between
vehicle clouds to provide more scalable task offloading for
intelligent transportation systems.

REFERENCES
[1] B. N. Silva, M. Khan, and K. Han, ‘‘Towards sustainable smart cities:

A review of trends, architectures, components, and open challenges in
smart cities,’’ Sustain. Soc., vol. 38, pp. 697–713, Apr. 2018.

[2] L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, ‘‘Big data analytics in
intelligent transportation systems: A survey,’’ IEEE Trans. Intell. Transp.
Syst., vol. 20, no. 1, pp. 383–398, Jan. 2019.

[3] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. Shen, ‘‘Big
data driven vehicular networks,’’ IEEE Netw., vol. 32, no. 6, pp. 160–167,
Nov./Dec. 2018.

[4] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti, and H. Zedan, ‘‘A
comprehensive survey on vehicular ad hoc network,’’ J. Netw. Comput.
Appl., vol. 37, pp. 380–392, Jan. 2014.

[5] H. Hartenstein and L. P. Laberteaux, ‘‘A tutorial survey on vehicular ad hoc
networks,’’ IEEE Commun. Mag., vol. 46, no. 6, pp. 164–171, Jun. 2008.

[6] J. Zhang, H. Guo, J. Liu, and Y. Zhang, ‘‘Task offloading in vehicular
edge computing networks: A load-balancing solution,’’ IEEE Trans. Veh.
Technol., vol. 69, no. 2, pp. 2092–2104, Feb. 2020.

[7] J. Sun, Q. Gu, T. Zheng, P. Dong, A. Valera, and Y. Qin, ‘‘Joint
optimization of computation offloading and task scheduling in vehicular
edge computing networks,’’ IEEE Access, vol. 8, pp. 10466–10477, 2020.

[8] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
‘‘A survey on 5G networks for the Internet of Things: Communication
technologies and challenges,’’ IEEE Access, vol. 6, pp. 3619–3647, 2018.

[9] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, ‘‘Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,’’ IEEE
Trans. Veh. Technol., vol. 65, no. 6, pp. 3860–3873, Jun. 2016.

[10] B. Ahmed, A. W. Malik, T. Hafeez, and N. Ahmed, ‘‘Services and
simulation frameworks for vehicular cloud computing: A contemporary
survey,’’ EURASIP J. Wireless Commun. Netw., vol. 4, pp. 1–21, Jan. 2019.

[11] IEEE Standard for Information Technology—Local and Metropolitan Area
Networks—Specific Requirements—Part 11:Wireless LANMedium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 6:
Wireless Access in Vehicular Environments, IEEE Standard 802.11p-2010
(Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-
2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-
2009, and IEEE Std 802.11w-2009), Jul. 2010, pp. 1–51.

[12] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEECommun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[13] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[14] P. Dai, Z. Hang, K. Liu, X. Wu, H. Xing, Z. Yu, and V. C. S. Lee,
‘‘Multi-armed bandit learning for computation-intensive services in MEC-
empowered vehicular networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7821–7834, Jul. 2020.

[15] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang, ‘‘Joint load balancing and
offloading in vehicular edge computing and networks,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 4377–4387, Jun. 2019.

[16] V. D. Nguyen, T. T. Khanh, N. H. Tran, E.-N. Huh, and C. S. Hong, ‘‘Joint
offloading and IEEE 802.11p-based contention control in vehicular edge
computing,’’ IEEE Wireless Commun. Lett., vol. 9, no. 7, pp. 1014–1018,
Jul. 2020.

[17] Y. Wang, P. Lang, D. Tian, J. Zhou, X. Duan, Y. Cao, and D. Zhao,
‘‘A game-based computation offloading method in vehicular multiaccess
edge computing networks,’’ IEEE Internet Things J., vol. 7, no. 6,
pp. 4987–4996, Jun. 2020.

[18] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, ‘‘Multi-user offloading
for edge computing networks: A dependency-aware and latency-optimal
approach,’’ IEEE Internet Things J., vol. 7, no. 3, pp. 1678–1689,
Mar. 2020.

[19] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, ‘‘Deep reinforcement
learning-based adaptive computation offloading for MEC in heteroge-
neous vehicular networks,’’ IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7916–7929, Jul. 2020.

[20] Y. Liu, H. Yu, S. Xie, and Y. Zhang, ‘‘Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158–11168,
Nov. 2019.

[21] M. LiWang, S. Hosseinalipour, Z. Gao, Y. Tang, L. Huang, and H. Dai,
‘‘Allocation of computation-intensive graph jobs over vehicular clouds in
IoV,’’ IEEE Internet Things J., vol. 7, no. 1, pp. 311–324, Jan. 2020.

[22] J. Zhao, Q. Li, Y. Gong, and K. Zhang, ‘‘Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

[23] Q. Qi, J.Wang, Z.Ma, H. Sun, Y. Cao, L. Zhang, and J. Liao, ‘‘Knowledge-
driven service offloading decision for vehicular edge computing: A deep
reinforcement learning approach,’’ IEEE Trans. Veh. Technol., vol. 68,
no. 5, pp. 4192–4203, May 2019.

[24] Y. Sun, X. Guo, J. Song, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, ‘‘Adaptive
learning-based task offloading for vehicular edge computing systems,’’
IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3061–3074, Apr. 2019.

[25] G. Qiao, S. Leng, K. Zhang, and Y. He, ‘‘Collaborative task offloading
in vehicular edge multi-access networks,’’ IEEE Commun. Mag., vol. 56,
no. 8, pp. 48–54, Aug. 2018.

[26] C. E. Shannon, ‘‘A mathematical theory of communication,’’ Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379–423, Jun. 1948.

[27] F. Bai, N. Sadagopan, and A. Helmy, ‘‘The IMPORTANT framework for
analyzing the impact of mobility on performance of RouTing protocols for
Adhoc NeTworks,’’ Ad Hoc Netw., vol. 1, no. 4, pp. 383–403, 2003.

[28] M. Gramaglia, O. Trullols-Cruces, D. Naboulsi, M. Fiore, and
M. Calderon, ‘‘Mobility and connectivity in highway vehicular networks:
A case study in Madrid,’’ Comput. Commun., vol. 78, pp. 28–44,
Dec. 2015.

JUNJING HE is currently pursuing the master’s
degree in computer science with Fudan University,
Shanghai, China. Her research interest includes
edge computing.

YUJIE WANG is currently pursuing the master’s
degree in computer science with Fudan University,
Shanghai, China. His research interests include
edge computing, machine learning, and service
computing.

VOLUME 10, 2022 4123



J. He et al.: OPTOS: Strategy of Online Pre-Filtering Task Offloading System in Vehicular Ad Hoc Networks

XIN DU is currently pursuing the Ph.D. degree
with the Department of Computer Science, Fudan
University, China. His research interests include
edge computing, service computing, and machine
learning.

ZHIHUI LU (Member, IEEE) received the Ph.D.
degree in computer science fromFudanUniversity,
in 2004. He is currently a Professor at the School of
Computer Science, Fudan University. His research
interests include cloud computing and service
computing technology, big data architecture, edge
computing, and the IoT distributed systems. He is
a member of the China computer federation’s
service computing specialized committee.

QIANG DUAN (Senior Member, IEEE) is cur-
rently a Professor with the College of Informa-
tion Sciences and Technology, The Pennsylvania
State University, Abington, PA, USA. His current
research interests include network virtualization
and softwarization, cognitive and autonomous
networking, and edge computing-based ubiquitous
intelligence. He has published three books and
more than 100 research papers in these areas.
He has served as an editor/associate editor for
multiple research journals.

JIE WU received the Ph.D. degree in computer
science from Fudan University, in 2008. He is
currently a Professor at the School of Computer
Science, Fudan University. His research interests
include internet technology, big data architecture,
edge computing, cloud computing, and the IoT
distributed systems.

4124 VOLUME 10, 2022


